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ON THE FINITENESS AND UNIQUENESS OF CERTAIN
2-TAME W-GROUPS

by S. D. SCOTT

(Received 5th July 1993)

Unlike ring modules certain faithful N-groups are unique. The main theorem is that if N is a 2-tame ring-free
near-ring where N/J{N) has DCCR, then all faithful 2-tame N-groups are finite and JV-isomorphic. The
finiteness of such an N-group follows easily from the fact it has a composition series. It is then shown that the
length of a composition series depends only on N. This fact is used at key points in the proof. The situations
where the /V-group has or has not a minimal submodule require different analysis. The first case makes use of
other interesting results and the second makes strong use of the inductive assumption.

1991 Mathematics subject classification: 16Y30.

Throughout this paper all near-rings are left distributive, zero-symmetric and have an
identity. Also all N-groups will be unitary. In this and other regards we shall be making
use of conventions, notation and definitions taken from [5]. The purpose of this paper
is to prove the following theorem.

Theorem 1. Let N be a 2-tame ring-free near-ring. If N/J(N) has DCCR, then all
faithful 2-tame N-groups are finite and N-isomorphic.

Although the definition of all terms used in the statement of this theorem can be
found in [5], it remains desirable, for the purposes of completeness, to briefly explain
their meaning.

A near-ring N is said to have DCCR if it satisfies the descending chain condition on
right ideals. In the above theorem it is only required that N/J(N) satisfies this condition
but strong consequences follow. The meaning associated with the statement 'N is ring-
free' is that no non-zero homomorphic image of N is a ring.

A tame N-group V is one in which all N-subgroups are submodules. This is
equivalent (see 2.1 of [5]) to requiring that, for any given v and w in V and a in N, we
can find /? in N such that (v + w)<x — WX = H>/?. This characterization of a tame N-group
leads to the definition of n-tame, where n is any cardinal (see 9.169 of [3]). For example,
a 2-tame N-group V is one where, for given v in V and a in N, we may find /? in N,
such that (v + w,)a — VOL = w,/? for any pair (wi,w2) of elements of V. Furthermore, a
near-ring N with a faithful tame (2-tame) N-group is called tame (2-tame).

On p. 242 of [4], we define the centre Z(V) of an /V-group V. Also the useful concept
of a central sum is defined in p. 243. The /V-group V is said to be a central sum of the
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submodules Vh i = 1,2, if K= Vx + V2 and (y1 + u2)a = u1a + t;2a) for all vh / = 1,2, in Vk and
a in N. If this is the case, then Kt n V2^Z(V).

The proof of the above theorem will be accomplished in the sequence of results that
follow. The easiest part of the proof is to establish that the N-groups involved are finite.

According to 5.32 of [3], the semi-simple near-ring N/J(N) is a direct sum
Ri © K2 ©'"' © Rk (* = 1 a n integer) of minimal right ideals. If U is a minimal N-group,
then it is a minimal N/J(N)-group. It follows that C/i?,#{0} for some i in {l,...fc} and
thus «/?, = U for some u in U. From this it is easily verified that the map taking p in Rt

to up in u/?, is an Af-isomorphism of /?, onto U. Thus the number of ^-isomorphism
types of minimal N-groups cannot exceed k. Let this finite number be denoted by m(N).

Proposition 2. Under the assumptions of Theorem 1 the number m(N) of distinct
N-isomorphism types of minimal N-groups is finite

The next lemma is one of the main steps in establishing the finiteness of a faithful
2-tame Af-group.

Lemma 3. Let N be as in the statement of Theorem I. If V is a faithful 2-tame
N-group, then V has a composition series of length ^

Proof. Suppose V is non-zero and does not have a composition series. A series of
submodules.

V0 = {0}<V1<---<Vr=V (a)

of V, with r ^ l an integer, will have a proper refinement and the series obtained in turn
has a proper refinement, etc. It follows readily that, if V does not have a composition
series, or there exists a composition series of length >m(N), then the series (a) can be
chosen so that r>m(N).

Now take u, in V{ but not in V{-x for i=l, . . . , r . Using Zorn's lemma we can find a
submodule X, of K containing ^•_1 and maximal for excluding vh Let 1J = i>,JV + .Y,-. It
follows that for each i=\,...,r, K_, ^A\< > ^ K and YJXi is a minimal factor of V.
Since r>m(N), there exists j and k, j<k, in {l,...r} such that YJXk is AMsomorphic
(by a say) to YJ/XJ. It is also clear that

Let K be the natural Af-homomorphism of YJXj onto

(Yk/Xj)/(Xk/Xj).

Since this Af-group is A/-isomorphic (by 5 say) to YJXk, KSO is an Af-endomorphism of
Yk/Xj onto Yj/Xj. By 7.3 of [5], 1 — KSO is an Af-endomorphism of YJXj and, by 1.4 of
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[4], YJXj is a central sum of the submodules (YJX^Kdo and (Yk/Xj)(\ — KSO). NOW
(Yk/Xj)Kda = Yj/Xj. Also ker K8O = kerK = Xk/Xj and

Thus

(YJXJKSO n (Yt/Xj){l -KSCT)^ YJ/XJ.

It follows, by 1.3 of [4], that YJXj is a central submodule of Yk/Xj. Thus
N/(0: YJXj)(^{0}) is a ring. This contradiction implies V has a composition series of
length ^m(N). The lemma is entirely proved.

Our next requirement is a result that depends on 8.4 of [5] (see also 1.5 of [4]). A
relatively straightforward proof, based on 8.4 of [5], can be found in [6] (see also 4.61
of [3]).

Theorem 4. Suppose the non-ring N is 2-tame and primitive on V. If N has DCCR,
then V is finite.

The proof that the AT-groups of Theorem 1 are finite now follows readily.

Lemma 5. Let N be as in the statement of Theorem I. If V is a faithful 2-tame
N-group, then V and N are finite.

Proof. If V^{0}, then by Lemma 3, there exists an integer r ^ l and composition
series

V0 = {0}<Vl<V2<-<Vr=V

of submodules of V. Since K,/Vj_i, i = l , . . . , r , are minimal N-groups the primitive
non-rings JV/(O: KJ/VJ-J are homomorphic images of N/J(N). Therefore they have
DCCR. Clearly they are 2-tame on K,/K--i for i= l,-..,r. Thus, by 4, each ^ /K_i ,
i=l,...,r, is finite. Thus V is finite. Since N can be regarded as a subnear-ring of

) , N must be finite also. The lemma is completely proved.

We now come to a much more difficult aspect, that of proving that all Af-groups, as
in the statement of Theorem 1, are in fact N-isomorphic.

At this stage it is possible to sharpen Lemma 3. The more precise information given
in the next lemma will be required later.

Lemma 6. Let N be as in the statement of Theorem \. If V is a faithful 2-tame
N-group, then the length of a composition series of V is m(N).

Proof. Suppose
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V0 = {0}<Vl<V2<---<Vr=V

is a composition series of V (rS 1 being an integer). By Lemma 3, we have r^m(N). If it
is shown that for any minimal N-group U there exists a minimal factor Y/X of V, N-
isomorphic to U, then, since Y/X is N-isomorphic to some ^/Vj_i (i in {l,...,r}), it will
follow that r^m(N) and r = m(N).

As in the explanation proceeding Proportion 2 we have that U is Af-isomorphic to a
minimal right ideal of N/J{N). This right ideal is clearly of the form R/J(N), where
R>J(N) is a right ideal of AT. By Lemma 5, N is finite and out of all minimal factors of
N, Af-isomorphic to the minimal factor R/J(N), we may choose one H/K where H is
minimal. Now if Kt<H is a right ideal of N such that K^K, then Kl+K = H and
H/K is N-isomorphic to the minimal factor KJK^^ n K. Thus K^K. Since V is faithful
there exists v in K such that (0:v)nH<H. Consequently (0: v)nH^K.

Let 5 be the obvious AT-homomorphism of H into vN. Let K be the natural N-
homomorphism of vH onto vH/vK. Since fcer 5K consists of all p in H such that up is in
vK, it contains /C. However, kerSic is an A'-subgroup of H and therefore, by 4.2 of [5],
ker&K = K or kerbK = H. Suppose ker5ic = H. In this case vH = vK and for each a in H
there exists /? in K such that v<x = v/}. This implies H ^ K + (0:i;), and therefore
H=K+(0: t )nff . However, from above (0:v)nH^K and we have the contradiction
that H = K. Thus ker SK = K and vH/vK is AT-isomorphic to ///K which is AT-isomorphic
to U. Thus V has a minimal factor AMsomorphic to U and, according to the
explanation given at the beginning of the proof r = m(N). The lemma is completely
proved.

More detailed information on the structural properties of tame Af-groups of a
ring-free near-ring N is now developed.

Theorem 7. Suppose N is a ring-free near-ring. If V is a tame N-group with a
composition series, then there exists v in V such that vN — V.

Proof. Clearly V satisfies both ascending and descending chain conditions on
submodules. It follows that if V is not cyclic (i.e. monogenic), then there exists a
minimal non-cyclic submodule U of V. Obviously t/#{0}. Suppose the sum of any two
proper submodules H,, i = l,2, of U is such that H1+H2<U. If H is a maximal
submodule of U, then H+H2 = H and H2^H. In this case H must be the unique
maximal submodule of U. Take v in U\H. Clearly vN is not contained in H. This
implies vN = U. Thus there exist proper submodules Ht, i = 1,2, of U, such that
Hl + H2 = U. Out of all such pairs of submodules choose one Kh i = 1,2, with Kt n K2

minimal. Now Ki+K2 = U and there exists vh i = 1,2, in K( such that VjN = Kj. Since
the vh i = 1,2, are contained in U, it follows that

However, (v1-\-v2)N + v1N contains v2N. Similarly (uj + t)2)N + D2A
r contains vtN. Since

K1+K2 = U, it follows that
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(v1+v2)N + vtN = U

for i = l and 2. Since N/(0:V) is ring-free, it follows by 3.24 of [2] that the lattice of
submodules of V is distributive. Thus

(vt + v2)N +(vi+v2)N n vlN+(vl + v2)N n v2N + vlN n v2N = U.

Clearly

(vi + v2)N n ViN^(Vi + v2)N

for i = 1,2, and it therefore follows that

(v1 + v2)N + v1Nnv2N = V. (b)

However, if

(v1+v2)N nvvN nv2N <vtN n v2N,

then we have a contradiction to the choice of K( ( = u,A0, i= 1,2. Thus

^ i ; ^ ni)2iV

and, by (b), U = (vl + v2)N. This contradiction to the nature of U establishes that the
Af-group V is cyclic. Theorem 7 is entirely proved.

Suppose N is as in the statement of Theorem 1. In proving that all faithful 2-tame
Af-groups are N-isomorphic there are two cases to be distinguished. These are the
situations where N has more than one minimal ideal and where N has a unique
minimal ideal. We deal with the second case first. This property of N can be recovered
from a faithful 2-tame Af-group.

Lemma 8. Let N be as in the statement of Theorem 1. A faithful 2-tame N-group has
a unique minimal submodule if, and only if, N has a unique minimal ideal.

Proof. Let V be a faithful 2-tame N-group. Suppose V has a unique minimal
submodule U. By Lemma 5, N has DCC on JV-subgroups and therefore has a minimal
ideal T say. From 3.54 of [3], T can be expressed as a direct sum R, ©R2@---®Kt

(fc_ 1 an integer) of minimal right ideals. Also, by 4.2 of [5], these minimal right ideals
are minimal right N-subgroups of N. If x is in V, then XT = YJ=\ XRS. Furthermore, each
xRj = {0} or is yV-isomorphic to /?,. Thus, if xRt # {0}, then it is a minimal TV-subgroup
of V and coincides with U. It follows that xT = {0} or xT= U.

Now suppose T, and T2 are two distinct minimal ideals of N. By Theorem 7, V = vN
for some v in V. Since K7]^{0} for i= l ,2 , we have, from above, vT1 = vT2 = V.
However, since the sum T^ + T2 is direct, U is a central sum of vTh i= 1,2. By 1.3 of [4],
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this implies U is a ring module and N/(0: U) is a ring. Thus N has a unique minimal
ideal.

Suppose on the other hand N has a unique minimal ideal. Clearly V # {0} and, by 5,
V has minimal submodules. To obtain a contradiction assume, that Uh i = 1,2, are
distinct minimal submodules of V. If (U1:V) = {0}, then N is faithful on the 2-tame
A/-group V/U',. By Lemma 6 this implies that V/U\ has a composition series of length
m(N). However, since N is faithful on V, V also has a composition series of length m(N).
This contradiction means (Uy: V)^{0}. Similarly (t/2: V)jt{0}. Clearly

By Lemma 5, N has minimal ideals 7J, £ = 1,2, contained in (U,:V). However, since
TlnT2 = {0} the 7] are distinct. This contradiction implies V has a unique minimal
submodule. The lemma is completely proved.

Let N be as in the statement of Theorem 1. We come now to the main step in
showing that, when N has a unique minimal ideal, all faithful 2-tame A?-groups are N-
isomorphic. In order to state this lemma it is convenient at this stage to introduce the
centralizer of a right ideal of a ring-free near-ring.

If N is a ring-free near-ring and R a right ideal of N, then, by Zorn's lemma, there
exists a right ideal H of N maximal for the property that H nR = {0}. Furthermore, H
is unique since if / / t is a right ideal of N such that Hl ni? = {0}, then, by 3.24 of [2],
Rn(H1 + H) = {0}. Thus Hl + H = H and H^H. We shall denote the right ideal H of
N by Cf^R). This will be called the centralizer of R in N. This name is given to H since,
as is easily verified, it is the unique right ideal of N maximal for the property that
(p + h)tx = pa. + ha for all p in R, h in H and a in N.

Lemma 9. Let N be as in the statement of Theorem 1. Suppose N has a unique
minimal ideal T and R^T is a minimal right ideal of N. If V is a faithful 2-tame N-group,
then V is N-isomorphic to N/C^R).

Proof. Since V is a faithful A/-group there exists v in V such that vR # {0}. We first
show that vN=V. Clearly i>NT=i>/?/{0}. Thus T n(0:vN) = {0}. However, by Lemma
5, N is finite and if (0: vN) # {0}, then (0:vN) contains a minimal ideal. This
contradiction implies (0:DN) = {0}. Thus vN is a faithful 2-tame N-group and
{0} ^ vN ̂  V. Since by Lemma 6, vN and V both have composition series of length
m{N), it follows that vN=V.

Now let 5 be the obvious /V-homomorphism of N onto vN. Since kerd=(0:v) the
lemma will follow if it is shown that (0: v) = C^/?). By 4.2 of [5], R is a minimal
N-group, since vR # {0} the map taking p in R to vp is an ^-isomorphism of R onto vR.
Thus vR is a minimal A/-group. However, the sum R + CN(R) is direct and, vR + vCf^R)
is a central sum of vR and vCN(R) (see §.1 of [4]). If vC^R) # {0}, then by Lemma 5,
DC^/?) contains a minimal A/-subgroup of V. However, by Lemma 8, this coincides with
vR. In this case it follows, by 1.3 of [4], that vR is central in vR + vCN(R)( = vCN(R)).
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This yields the contradiction that N/(0: vR)( # {0}) is a ring. Thus vCN(R) = {0} and
CN(R)^(0:V). If C^R)<(0:v), then, by the maximality of C^R), (0:v)^R. This
contradiction to the fact that u/?#{0} implies (0: v) = C^R). The lemma is completely
proved.

As will be seen later the above result in fact deals with the situation where N has a
faithful 2-tame N-group V with a unique minimal N-subgroup. Results that follow are
directed toward providing insight as to what happens when V has more than one
minimal N-subgroup.

Lemma 10. Let N be a ring-free near-ring and V a tame N-group. If Wh £=1,2, are
minimal N-isomorphic N-subgroups of V, then Wl = W2.

Proof. Suppose Wl^W2. In this case the sum Wl + W2 is direct. Suppose 8 is an
N-isomorphism of Wt onto W2. Let A be the subset of Wx @ W2 consisting of all w + w8
where w is in Wv Clearly A/{0}. Furthermore the difference of two elements of A is in
A and, if a is in JV and wt in Wu then (w1 + w1<5)a = w1a + w1a<5 is again in A. Thus A is
an iV-subgroup of V and consequently a submodule. If for xx in Wu x1+xl5 is in Wu

then x1S = 0 and xl + xl5=0. Thus An W, = {0} and similarly AnW2 = {0}. It follows,
from Section 1 of [4], that A is a central submodule of Wy @ W2. Thus if Wv ^ W2,
N/(0: A)( # {0}) is a ring. This contradiction implies W^ — W2 and the lemma follows.

Let N be as in the statement of Theorem 1 and V a faithful 2-tame N-group. The
requirement that V has a minimal N-subgroup of given ^-isomorphism type is, in fact,
equivalent to a condition on N.

Lemma 11. Let N be as in the statement of Theorem 1, V a faithful 2-tame N-group
and U a minimal N-group. We have that V has a minimal N-subgroup N-isomorphic to U
if and only if, N contains a minimal right ideal N-isomorphic to U.

Proof. Suppose X is a minimal N-subgroup of V, N-isomorphic to U. If (AT: V) = {0},
then V/X is a faithful 2-tame N-group. By Lemma 6, V/X has a composition series of
length m(N). However, by Lemma 6, we have the contradiction that V also has a
composition series of length m(N). We conclude that (X: V)=^{0}. Now, from Lemma 5,
there exists a minimal right ideal R^(X: V). Since V is faithful we may find v in V such
that u/?#{0}. Now vR^X, and thus vR = X. The map taking p in R to vp in X is an
N-isomorphism of R onto X. Thus R is a minimal right ideal N-isomorphic to X and
therefore to I).

Suppose on the other hand R is a minimal right ideal of N, N-isomorphic to U. Since
Kis faithful we can find pin K such that i>R#{0}. The map that takes p in R to vp in
vR is an N-isomorphism of R onto vR. Thus U is N-isomorphic to the minimal N-
subgroup vR of V. The proof of Lemma 11 is complete.

To proceed further we need some straightforward results on complete reducibility.
A submodule U of an N-group V is said to be completely reducible in V (c.f. 15.1 of
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[1]) if, for every submodule Ul of V contained in U, there can be found a submodule
U2 of V such that Ul@U2 = U.

It is an elementary fact that:

Proposition 12. If a submodule U of an N-group V is completely reducible in V, then
any submodule H^U of V is completely reducible in V.

The techniques used to prove 15.3 of [1] are available to show that:

Proposition 13. A non-zero submodule of an N-group V is completely reducible in V if,
and only if, it is a sum of minimal submodules of V.

The socle, soc AT of a near-ring N is defined to be a sum of all minimal right ideals of
N when such right ideals exist. Otherwise socN is taken to be {0}. Proposition 12 and
Proposition 13 have been stated in order to present the following corollary:

Corollary 14. Let N be a near-ring. A non-zero right ideal of N contained in soc N is
a sum of minimal right ideals.

Let N be a near-ring and U a minimal N-group. It will be of use to have notation for
specifying certain right ideals of N contained in soc AT. In this regard S(U) is taken to be
the sum £ Rt over all minimal right ideals /?, of N, AT-isomorphic to U provided such
right ideals exist. If there are no such right ideals of N, then S{U) is taken to be {0}.

Lemma 15. Let N be as in the statement of Theorem 1 and V a faithful 2-tame
N-group. If U is a minimal N-subgroup of V, then S(U)=(U: V).

Proof. It will first be shown that S(U)^(U:V). If S(t/) = {0}, then this inclusion
holds. We may therefore suppose (see Lemma 11) that there exists minimal right ideals
of N, N-isomorphic to U. Let R be such a right ideal. It is easily seen that for each v in
V, vR = {0} or vR is N-isomorphic to the N-subgroup U of V. This follows since if
vR # {0}, then the map taking p in R to vp in vR is an AMsomorphism of R onto vR.
However, by Lemma 10, vR = U when vR^{0}. Thus for all v in V, vR^U and
R^(U: V). Since this is true for any such R, S(U)^(U: V).

It remains to show that (U: V)^S(U). Since

V{U:V)J(N)<=UJ(N) = {0}

it follows that (U: V)J(N) = {0}. However, by Lemma 5, N has DCCR. By 5.3 of [5], it
follows that ([/: V)^socN. Clearly we may assume (U:V)^{0}. Now Corollary 14
implies that (U: V) is a sum £/?,-, iel, of minimal right ideals of N. However for each
Rh iel, there exists v in V such that u«,^{0}. Since R,g(t/:K), u/*, = C/ and the map
taking p in R-, to vp is an ^-isomorphism of Rt onto U. Thus Rf is in S(U) and
(U: V)^S(U). The lemma is entirely proved.
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The completion of the proof of Theorem 1 will be given once information concerning
the embedding of certain N-groups into direct sums has been obtained. This accounts
for the next three lemmas. The result that follows covers well known properties of
certain subdirect products (the proof is omitted). All the information covered will be
required.

Lemma 16. Let V be an N-group and Uj,j= 1,2, submodules of V such that
UlnU2 = {0}. Let Y be the external direct sum of K/l/, and V/U2 and let //t =
(K/£/,,{0}) and H2=({0},V/U2). Furthermore let X, =(([/!+ l/2)/t/1,{0}) and X2 =
{{0},(Ui + U2)/U2) and d be the map of V into Y given by vd = (v+Uuv+U2)for all v in
V. We have that Hj and Xj,j= 1,2, are submodules of Y and Y is the internal direct sum
H1 © H2. Furthermore, S is an N-group embedding of V into Y, such that V5 + H}= Y and
VSnHj=Xjfor j=l,2.

Under conditions similar to those of Lemma 16 information is required as to how
certain 2-tame Af-groups are embedded in H, © H2. The next lemma facilitates the
proof of a much more useful result i.e. Lemma 19.

Lemma 17. Let N be a ring-free near-ring. Suppose the N-group Y is a direct sum
H{ © H2 of submodules H}, j— 1,2. / / Tk, /c = 1,2, are 2-tame N-subgroups of Y such that
Tk + Hj=Y and TknHj = {0} for fe = l,2, and j=l,2, then T^T2.

Proof. Let nj,j= 1,2, be the projection of Y onto H}. Let nkj be the restriction of itj
to Tk, j = 1,2, k = \,2. Since kern1 = H2, kern2 = Hl and Tkr\Hj = {0}, we see that nkj is
an N-isomorphism of Tk into Hj. However for k— 1,2,

and similarly

Thus nkj is an N-isomorphism of Tk, k=l,2, onto Hj, ;=1,2. Now n^ is an
N-isomorphism of T, onto Hu rcj,1 an A/-isomorphism of H1 onto T2, n22 an
N-isomorphism of T2 onto H2 and n^ an N-isomorphism of H2 onto T,. Thus
Ttlin2l

1n22ni2 ( = 5 say) is an TV-automorphism of Tx. Since 7\ is 2-tame it is, by 1.4 of
[4], a central sum of T,<5 and T^l-5) (here 1 is the identity on TJ. However, 7 ^ = 7 ;
and, by 1.3 of [4], T^l-d) is in the centre of T,. Thus if T,(l-^)#{0}, then
N/(0: Ti(l — <5)) is a non-zero ring. Since N is ring-free, we have 7 (̂1 — <5) = {0} and thus

Now a typical element x2 of T2 is of the form x2n2l+x2n22. However, since nnn2l
l is

an ^-isomorphism of Tt onto T2, there exists xt in Tt such that xlnlln2~i=x2. Thus
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x2=xlnlln2-l
in2l+xlnlln2l

ln22

which by (c) yields

Thus, x2 is in Tx and T2^Tt. Similarly Tt£T2. Thus Tt = T2 and the lemma is proved.

To prove the straightforward extension of this lemma, that was mentioned above, an
elementary proposition is in order.

Proposition 18. Suppose the N-group Y is a direct sum Hl@H2 of submodules Ht,
i= 1,2. IfW is a submodule of' Hlt then it is a submodule of Y.

Material has been covered that provides a key result in establishing Theorem 1.

Lemma 19. Let N be a ring-free near-ring. Suppose the N-group Y is a direct sum
Hi © H2 of submodules HJy j= 1,2. If Tk, k=l,2, are 2-tame N-subgroups of Y such that
Tt nHj=T2 nHj for j= 1,2, and Tk + Hj= Yfor k=l,2, j= 1,2, then Tj = T2.

Proof. Let Jti be the projection of T onto Ht. Since kernl = H2 and Tt + H2 = Y we
have H1 = T1n1 and //j is an N-homomorphic image of a 2-tame N-group. Thus Ht is
2-tame and, by Proposition 18, Ti n //j( = T2 n / / , ) is a submodule of Y. Similarly
Tj n H2{ = T2n H2) is a submodule of Y. Let X be the submodule

T, n ff, 0 T, n H2 = T2 n H, © T2 n H2

of Y. Set Y=Y/X, HJ=(HJ + X)/X for_j=l,2, and Tk=Tk/X for k=\,2. Clearly the
7;,fc=l,2, are 2-tame N-subgroups of Y. If it is shown that Y = Hl @H2, TknHj={0}
and 7; + H ; = F for fc=l,2, and y=l,2, then it will follow, by Lemma 17, that T1 = T2.
This will in turn imply T, = T2.

Firstly Hl + H2= Y, since Hl+H2=Y. Also the sum Hl + H2 is direct, since

= HlnTl+H2nTl=X.

Secondly we must show TknHj = {0} for k=l,2, and j=l,2. Since for fe = l,2,

it follows that T,nf l , = {0}. Similarly TknH2 = {0} and TknRj={0} for fc = l,2, and
7= 1,2. Finally it is clearly true that since Tk + Hj=Y for fc=l,2, j=l,2, that
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Tk + Hj=Y. From comments above it follows that Tt = T2. The proof of Lemma 19 is
complete.

The proof of Theorem 1 is now accomplished in the concluding analysis that follows.
We shall be assuming that N is a near-ring satisfying the conditions of Theorem 1.

Furthermore, we shall assume that Vb i= 1,2, are two faithful 2-tame N-groups. The fact
that the Vh /=1,2, are finite follows from Lemma 5. The remaining requirement is to
show that Vx is AMsomorphic to V2. By Lemma 6, Vb i=\, 2, must both have a
composition series of length m(N). It will be shown by induction on m(N) that V, is
AMsomorphic to V2. If m(N)=0, then, by Lemma 5, Vh i— 1,2, cannot have any minimal
Af-groups. This can only happen if the Vh i— 1,2, are {0} and N = {0}. In this case Vl is
AMsomorphic to V2.

We may therefore assume that m(N)>0 and thus, by Lemma 6, both Vt, i=l ,2, are
non-zero AT-groups. Also Vx clearly has a minimal N-subgroup. We now use Lemma 9
to exclude that situation where this minimal N-subgroup is unique. If such an N-
subgroup is unique, then, by Lemma 8, N has a unique minimal ideal (T say). By 5,
there exists a minimal right ideal R^T of N. However, Lemma 9 implies that both Vh

i== 1,2, are AMsomorphic to N/CN(R) and Kj is therefore AMsomorphic to V2.
The proof of Theorem 1 has been reduced to showing that when Vh i = 1,2, are

non-zero and K, has more than one minimal N-subgroup then Vx is AMsomorphic to
V2. In the remainder of the proof a certain amount of extra notation will be required. In
supplying this requirement we shall also obtain certain useful equations (see (d) below).
Let Un, 7= 1,2, be two distinct minimal N-subgroups of Vu By Lemma 10, t / n is not
AMsomorphic to U21. Also, by Lemma 11, N has a minimal right ideal AMsomorphic to
l / u . Again, by Lemma 11, we can find a minimal A/-subgroup t/12 of V2, AMsomorphic
to Un. Similarly V2 contains a minimal N-subgroup U22, AT-isomorphic to U21. Since
Ul2 and U22 are not AF-isomorphic, they are clearly distinct. Now take Yh i=l ,2, to be
the external direct sum of VJUu and VJU2i. If Hu is taken to be (K/l/u,{0}) and H2i is
taken as ({0}, VJU2i), then, by 16, the Hji,j=\,2, i = l,2, are submodules of Yh £ = 1,2,
and Yt = HU(B H2i. Furthermore, by Lemma 16, we can define two N-group embeddings
5h i=l ,2, of V, into Y, by setting vidi=(vi + Uu,vi + U2i), for all vt in V{. If Xu is taken
as dUu + U2,)/Uu,{0}), i = l,2, and X2i as ({0},{Uu+U2l)/U2l) then, by Lemma 16,
Xjh _/= 1,2, i= 1,2, are submodules of Yt and

Vfr + H^Y, and VfrnH^Xj,. (d)

We now show how the equations (d) can be used in conjunction with certain other
equations. If it is shown that there exists an N-isomorphism T of Yj onto Y2 having the
properties

Hnx = HJ2 and XJlx = XJ2 (e)

then, using (d), Theorem 1 will follow from Lemma 19. The actual construction of T,
which depends on the induction assumption, is postponed until the next paragraph.
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It is sufficient for the moment to show that the existence of such an Af-isomorphism
shows Vi is AMsomorphic to V2. By (d), we have that for 7= 1,2, Vl5l+HJl = Yl and
V18lnHji = XJl for j=l,2. By (e), it follows on applying x to these results, we obtain
V1dlx + HJ2 = Y2, and V^b^x n Hj2 = XJ2 for j=l,2. However, by (d) this implies

Vi5lx + Hj2 = V282 + Hj2 and Vl8lTnHJ2 = V2d2nHj2 for ;=1,2.

Thus if in Lemma 19 we take Y=Y2, Hx = Hl2, H2 = H22, Tl = Vl6lx and T2 = V282,
then we obtain VibiX=V282. This follows because the Af-groups Vl and V2 are 2-tame
and, since 82 and btx are N-homomorphisms, V^d^x and V282 are also 2-tame N-groups.
Thus F1<51T= K2<52, where Vh 1 = 1,2, is Af-isomorphic to V& (the <5f are embeddings).
Since x is an AMsomorphism, it follows that Vt is AT-isomorphic to V2. It only remains
to show that there exists an Af-isomorphism x of Yl onto Y2 such that (e) holds.

The proof of the existence of x will use the induction assumption and previous results.
Let S(UU), i = l,2, be the right ideals defined as in Lemma 15. Since Uu is
Af-isomorphic to U12, S(U11) = S(Ul2). Thus, by Lemma 15, we have that (C/11:K1) =
(U12:V2). Thus VJUU, i= 1,2, are faithful 2-tame A7(l/U: KJ-groups (i.e.
N/(U12: F2)-groups). The near-ring N/(Un: Vx) (i.e. N/(U12:V2)) is ring-free. Further-
more, both the Af-groups VJUU, i=l ,2 , have a composition series of length m(N) — 1.
By induction, we may assume that VJUu is N/iUn'. Kx)-isomorphic (i.e.
Ar/(t/12:F2)-isomorphic) to V2/U12. Since {Ull:Vi)( = (U12:V2)) annihilates V,/Uu, i =
1,2, we have that VJUlt is N-isomorphic (by ?n say) to V2/Ul2. Similarly, Vl/U2l is
AT-isomorphic (by k2 say) to V2/U22. We can now find an ^-isomorphism x of ŷ  into
Y2 as in the previous paragraph. For any (xl5x2) in Yu xt in V1/Ull and x2 in Vl/U2l,
we define the map x of Yt into Y2 by setting (X1,X2)T=(X1/11,X212). Clearly T is an
AF-isomorphism of Ŷ  onto Y2. Since H n is simply the submodule (see Lemma 16)
(VJU11, {0}) of Yi, it follows that Hlix = Hl2. Similarly H2ix = H22. Thus the first set
of equations in (e) hold. It remains to show that Xjlx = Xj2 for y = 1,2. Now
-^ i i = ( ( ^ i i + ^2i)/^n>{0}) a nd this submodule of YY is clearly AT-isomorphic to U21.
Thus Xtlx is a submodule of Y2, N-isomorphic to U2i. However Xilx^Hllx = Hl2.
Thus X11x is a submodule of H12, Af-isomorphic to U2l (i.e. to t/22). Since H12 is
N-isomorphic to V2/Ul2, Hi2 is a 2-tame AT-group. Since Xl2=((U12 + U22)/Ui2, {0})
is AMsomorphic to U22 it follows, by Lemma 10, that Xvlx = Xl2. Similarly X2lx = X22.
The second set of equations in (e) also hold. From the previous paragraph Vl is
N-isomorphic to V2 and Theorem 1 is completely proved.
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