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ON THE FINITENESS AND UNIQUENESS OF CERTAIN
2-TAME N-GROUPS

by S. D. SCOTT
(Received Sth July 1993)

Unlike ring modules certain faithful N-groups are unique. The main theorem is that if N is a 2-tame ring-free
near-ring where N/J(N) has DCCR, then all faithful 2-tame N-groups are finite and N-isomorphic. The
finiteness of such an N-group follows easily from the fact it has a composition series. It is then shown that the
length of a composition series depends only on N. This fact is used at key points in the proof. The situations
where the N-group has or has not a minimal submodule require different analysis. The first case makes use of
other interesting results and the second makes strong use of the inductive assumption.

1991 Mathematics subject classification: 16Y30.

Throughout this paper all near-rings are left distributive, zero-symmetric and have an
identity. Also all N-groups will be unitary. In this and other regards we shall be making
use of conventions, notation and definitions taken from [5]. The purpose of this paper
is to prove the following theorem.

Theorem 1. Let N be a 2-tame ring-free near-ring. If N/J(N) has DCCR, then all
faithful 2-tame N-groups are finite and N-isomorphic.

Although the definition of all terms used in the statement of this theorem can be
found in [S], it remains desirable, for the purposes of completeness, to briefly explain
their meaning.

A near-ring N is said to have DCCR if it satisfies the descending chain condition on
right ideals. In the above theorem it is only required that N/J(N) satisfies this condition
but strong consequences follow. The meaning associated with the statement ‘N is ring-
free’ is that no non-zero homomorphic image of N is a ring.

A tame N-group V is one in which all N-subgroups are submodules. This is
equivalent (see 2.1 of [S]) to requiring that, for any given v and w in V and « in N, we
can find § in N such that (v+w)a —va=wp. This characterization of a tame N-group
leads to the definition of n-tame, where n is any cardinal (see 9.169 of [3]). For example,
a 2-tame N-group V is one where, for given v in V and « in N, we may find § in N,
such that (v+w;)a—va=w,f for any pair (w,,w,) of elements of V. Furthermore, a
near-ring N with a faithful tame (2-tame) N-group is called tame (2-tame).

On p. 242 of [4], we define the centre Z(V) of an N-group V. Also the useful concept
of a central sum is defined in p. 243. The N-group V is said to be a central sum of the
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submodules V,, i=1,2, if V=V, +V, and (v, +v,)a=v,a+v,a, for all v;, i=1,2, in V; and
o in N. If this is the case, then V|, n V, S Z(V).

The proof of the above theorem will be accomplished in the sequence of results that
follow. The easiest part of the proof is to establish that the N-groups involved are finite.

According to 5.32 of [3], the semi-simple near-ring N/J(N) is a direct sum
R, ®R,® - @R, (k=1 an integer) of minimal right ideals. If U is a minimal N-group,
then it is a minimal N/J(N)-group. It follows that UR,# {0} for some i in {1,...k} and
thus uR;=U for some u in U. From this it is easily verified that the map taking p in R,
to up in uR; is an N-isomorphism of R; onto U. Thus the number of N-isomorphism
types of minimal N-groups cannot exceed k. Let this finite number be denoted by m(N).

Proposition 2. Under the assumptions of Theorem 1 the number m(N) of distinct
N-isomorphism types of minimal N-groups is finite

The next lemma is one of the main steps in establishing the finiteness of a faithful
2-tame N-group.

Lemma 3. Let N be as in the statement of Theorem 1. If V is a faithful 2-tame
N-group, then V has a composition series of length <m(N).

Proof. Suppose V is non-zero and does not have a composition series. A series of
submodules.

Vo={0}<V, < - <V,=V (a)

of ¥, with r=1 an integer, will have a proper refinement and the series obtained in turn
has a proper refinement, etc. It follows readily that, if V' does not have a composition
series, or there exists a composition series of length >m(N), then the series (a) can be
chosen so that r>m(N).

Now take v; in V; but not in V,_, for i=1,...,r. Using Zorn’s lemma we can find a
submodule X; of V; containing V;_, and maximal for excluding v;. Let Y;=o,N+ X, It
follows that for each i=1,...,r, V,_ | ZX;<Y.£V; and Y/X, is a minimal factor of V.
Since r>m(N), there exists j and k, j<k, in {l,...r} such that Y,/X, is N-isomorphic
(by o say) to Y;/X ;. It is also clear that

Xi<YisVh- X, <Y.
Let k be the natural N-homomorphism of Y,/X; onto
(N/XM(X /X ;).

Since this N-group is N-isomorphic (by 4 say) to Y,/X,, xdg is an N-endomorphism of
Y,/X; onto Y;/X;. By 7.3 of [5], | —«do is an N-endomorphism of Y,/X; and, by 1.4 of
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[4], Yi/X; is a central sum of the submodules (Y,/X;)xdo and (Y,/X;)(1—xds). Now
(/X )xda=Y,/X;. Also kerkéc=kerxk=X,/X; and

(Xk/Xj)(l_K60)=(Xk/Xj)-
Thus
(%/X kb0 O (%/X,)(1 —Kda) 2 Yy/X ;.
It follows, by 1.3 of [4], that Y/X; is a central submodule of Y,/X;. Thus

N/(0:Y;/X ;)(#{0}) is a ring. This contradiction implies V has a composition series of
length Sm(N). The lemma is entirely proved.

Our next requirement is a result that depends on 8.4 of [S] (see also 1.5 of [4]). A
relatively straightforward proof, based on 8.4 of [5], can be found in [6] (see also 4.61

of [3]).

Theorem 4. Suppose the non-ring N is 2-tame and primitive on V. If N has DCCR,
then V is finite.

The proof that the N-groups of Theorem 1 are finite now follows readily.

Lemma 5. Let N be as in the statement of Theorem 1. If V is a faithful 2-tame
N-group, then V and N are finite.

Proof. If V #{0}, then by Lemma 3, there exists an integer r=1 and composition
series

Vo={0} <V, <V, < - <V,=V

of submodules of V. Since V,/V,_,, i=1,...,r, are minimal N-groups the primitive
non-rings N/(0:V;/V;_,) are homomorphic images of N/J(N). Therefore they have
DCCR. Clearly they are 2-tame on V,/V;_, for i=1,...,r. Thus, by 4, each V/V,_,,
i=1,...,r, is finite. Thus V is finite. Since N can be regarded as a subnear-ring of
My(V), N must be finite also. The lemma is completely proved.

We now come to a much more difficult aspect, that of proving that all N-groups, as
in the statement of Theorem 1, are in fact N-isomorphic.

At this stage it is possible to sharpen Lemma 3. The more precise information given
in the next lemma will be required later.

Lemma 6. Let N be as in the statement of Theorem 1. If V is a faithful 2-tame
N-group, then the length of a composition series of V is m(N).

Proof. Suppose
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Vo={0}<Vi<V,<---<V,=V
is a composition series of V (r=1 being an integer). By Lemma 3, we have r <m(N). If it
is shown that for any minimal N-group U there exists a minimal factor Y/X of V, N-
isomorphic to U, then, since Y/X is N-isomorphic to some V,/V,_, (i in {1,...,r}), it will
follow that r=m(N) and r=m(N).

As in the explanation proceeding Proportion 2 we have that U is N-isomorphic to a
minimal right ideal of N/J(N). This right ideal is clearly of the form R/J(N), where
R>J(N) is a right ideal of N. By Lemma 5, N is finite and out of all minimal factors of
N, N-isomorphic to the minimal factor R/J(N), we may choose one H/K where H is
minimal. Now if K, <H is a right ideal of N such that K, £K, then K,+K=H and
H/K is N-isomorphic to the minimal factor K,/K, n K. Thus K, < K. Since V is faithful
there exists v in V such that (0:v) n H < H. Consequently (0:v) n HZK.

Let 6 be the obvious N-homomorphism of H into vN. Let x be the natural N-
homomorphism of vH onto vH/vK. Since ker 3k consists of all p in H such that vp is in
vK, it contains K. However, ker 8k is an N-subgroup of H and therefore, by 4.2 of [5],
ker 5k =K or ker dx=H. Suppose ker dx =H. In this case vH=vK and for each « in H
there exists f in K such that va=vf. This implies H<K+(0:v), and therefore
H=K+(0:v) n H. However, from above (0:v) n HLK and we have the contradiction
that H=K. Thus ker dx =K and vH/vK is N-isomorphic to H/K which is N-isomorphic
to U. Thus V has a minimal factor N-isomorphic to U and, according to the
explanation given at the beginning of the proof r=m(N). The lemma is completely
proved.

More detailed information on the structural properties of tame N-groups of a
ring-free near-ring N is now developed.

Theorem 7. Suppose N is a ring-free near-ring. If V is a tame N-group with a
composition series, then there exists v in V such that vN=YV.

Proof. Clearly V satisfies both ascending and descending chain conditions on
submodules. It follows that if V is not cyclic (ie. monogenic), then there exists a
minimal non-cyclic submodule U of V. Obviously U #{0}. Suppose the sum of any two
proper submodules H;, i=1,2, of U is such that H,+H,<U. If H is a maximal
submodule of U, then H+ H,=H and H,<H. In this case H must be the unique
maximal submodule of U. Take v in U\H. Clearly vN is not contained in H. This
implies vN=U. Thus there exist proper submodules H; i=1,2, of U, such that
H,+ H,=U. Out of all such pairs of submodules choose one K;, i=1,2, with K; nK,
minimal. Now K, +K,=U and there exists v;, i=1,2, in K; such that y;N =K,. Since
the v;, i=1,2, are contained in U, it follows that

(vi +v) N+, NSU.

However, (v, +v,)N +v,N contains v,N. Similarly (v, +v,)N +0v,N contains v,N. Since
K, +K,=U, it follows that
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(Ul +Uz)N +v"N= U

for i=1 and 2. Since N/(0: V) is ring-free, it follows by 3.24 of [2] that the lattice of
submodules of V is distributive. Thus

(0, +0)N +(v; +v)NnoyN+(v, +v,)Nno,N+o,Nno,N=U.
Clearly

(v, +v)N nyN £(v, +0v,)N
for i=1,2, and it therefore follows that
(vi+v)N+o Nno,N=U. (b)
However, if
(vy+v,)NnovyNnov,N<o,Nnuo,N,
then we have a contradiction to the choice of K; (=u;N), i=1,2. Thus
(v, +v)NZv,Nnov,N

and, by (b), U=(v,+v,)N. This contradiction to the nature of U establishes that the
N-group V is cyclic. Theorem 7 is entirely proved.

Suppose N is as in the statement of Theorem 1. In proving that all faithful 2-tame
N-groups are N-isomorphic there are two cases to be distinguished. These are the
situations where N has more than one minimal ideal and where N has a unique
minimal ideal. We deal with the second case first. This property of N can be recovered
from a faithful 2-tame N-group.

Lemma 8. Let N be as in the statement of Theorem 1. A faithful 2-tame N-group has
a unique minimal submodule if, and only if, N has a unique minimal ideal.

Proof. Let V be a faithful 2-tame N-group. Suppose V has a unique minimal
submodule U. By Lemma 5, N has DCC on N-subgroups and therefore has a minimal
ideal T say. From 3.54 of [3], T can be expressed as a direct sum R, ® R, @®---®R,
(k=1 an integer) of minimal right ideals. Also, by 4.2 of [5], these minimal right ideals
are minimal right N-subgroups of N. If x is in ¥, then xT =) f_, xR;. Furthermore, each
xR;={0} or is N-isomorphic to R;. Thus, if xR;5 {0}, then it is a minimal N-subgroup
of V and coincides with U. It follows that xT={0} or xT=U.

Now suppose T, and T, are two distinct minimal ideals of N. By Theorem 7, V =vN
for some v in V. Since VT;#{0} for i=1,2, we have, from above, vT;=vT,=U.
However, since the sum T, + T, is direct, U is a central sum of vT;, i=1,2. By 1.3 of [4],
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this implies U is a ring module and N/(0:U) is a ring. Thus N has a unique minimal
ideal.

Suppose on the other hand N has a unique minimal ideal. Clearly V # {0} and, by 5,
V has minimal submodules. To obtain a contradiction assume, that U, i=1,2, are
distinct minimal submodules of V. If (U,: V)={0}, then N is faithful on the 2-tame
N-group V/U,. By Lemma 6 this implies that V/U, has a composition series of length
m(N). However, since N is faithful on V, V also has a composition series of length m(N).
This contradiction means (U,: V)#{0}. Similarly (U,: V) #{0}. Clearly

(Uy: VYA (Uy: V)(0: V)={0}.

By Lemma 5, N has minimal ideals T, i=1,2, contained in (U;: V). However, since
T, n T,={0} the T; are distinct. This contradiction implies ¥ has a unique minimal
submodule. The lemma is completely proved.

Let N be as in the statement of Theorem 1. We come now to the main step in
showing that, when N has a unique minimal ideal, all faithful 2-tame N-groups are N-
isomorphic. In order to state this lemma it is convenient at this stage to introduce the
centralizer of a right ideal of a ring-free near-ring.

If N is a ring-free near-ring and R a right ideal of N, then, by Zorn’s lemma, there
exists a right ideal H of N maximal for the property that H n R={0}. Furthermore, H
is unique since if H, is a right ideal of N such that H, n R={0}, then, by 3.24 of [2],
Rn(H,+H)={0}. Thus H,+H=H and H, < H. We shall denote the right ideal H of
N by C(R). This will be called the centralizer of R in N. This name is given to H since,
as is easily verified, it is the unique right ideal of N maximal for the property that
(p+ha=pa+haforall pin R, hin H and « in N.

Lemma 9. Let N be as in the statement of Theorem 1. Suppose N has a unique
minimal ideal T and R< T is a minimal right ideal of N. If V is a faithful 2-tame N-group,
then V is N-isomorphic to N/Cy(R).

Proof. Since V is a faithful N-group there exists v in ¥ such that vR #{0}. We first
show that vN = V. Clearly vyNT2vR #{0}. Thus T n(0:uN)={0}. However, by Lemma
5, N is finite and if (0:uN)#{0}, then (0:vN) contains a minimal ideal. This
contradiction implies (0:vN)={0}. Thus oN is a faithful 2-tame N-group and
{0} <vN<V. Since by Lemma 6, vN and V both have composition series of length
m(N), it follows that yN=V.

Now let 6 be the obvious N-homomorphism of N onto vN. Since ker §=(0:v) the
lemma will follow if it is shown that (0:v)=C\R). By 4.2 of [5], R is a minimal
N-group, since vR # {0} the map taking p in R to vp is an N-isomorphism of R onto vR.
Thus vR is a minimal N-group. However, the sum R+ Cy(R) is direct and, vR+ vCy(R)
is a central sum of vR and vCy(R) (see §.1 of [4]). If vC\(R)#{0}, then by Lemma 5,
vC(R) contains a minimal N-subgroup of V. However, by Lemma 8, this coincides with
vR. In this case it follows, by 1.3 of [4], that vR is central in vR+vCy(R)(=vCy(R)).
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This yields the contradiction that N/(0:vR)(#{0}) is a ring. Thus vCy(R)={0} and
CMR)S(0:v). If Cy(R)<(0:v), then, by the maximality of Cu(R), (0:0)=R. This
contradiction to the fact that vR#{0} implies (0:v)=CpR). The lemma is completely
proved.

As will be seen later the above result in fact deals with the situation where N has a
faithful 2-tame N-group V with a unique minimal N-subgroup. Results that follow are
directed toward providing insight as to what happens when V has more than one
minimal N-subgroup.

Lemma 10. Let N be a ring-free near-ring and V a tame N-group. If W, i=1,2, are
minimal N-isomorphic N-subgroups of V, then W, =W,.

Proof. Suppose W,*W,. In this case the sum W, + W, is direct. Suppose & is an
N-isomorphism of W, onto W,. Let A be the subset of W, @ W, consisting of all w+ wd
where w is in W,. Clearly A #{0}. Furthermore the difference of two elements of A is in
A and, if a is in N and w, in W,, then (w, + w,0)a=w,a+w,ad is again in A. Thus A is
an N-subgroup of ¥V and consequently a submodule. If for x; in W, x, +x,6 is in W,
then x,6=0 and x,+x,6=0. Thus A~ W, ={0} and similarly A n W,={0}. It follows,
from Section 1 of [4], that A is a central submodule of W, ® W,. Thus if W, #W,,
N/(0: A)(£{0}) is a ring. This contradiction implies W, =W, and the lemma follows.

Let N be as in the statement of Theorem 1 and V a faithful 2-tame N-group. The
requirement that V' has a minimal N-subgroup of given N-isomorphism type is, in fact,
equivalent to a condition on N.

Lemma 11. Let N be as in the statement of Theorem 1, V a faithful 2-tame N-group
and U a minimal N-group. We have that V has a minimal N-subgroup N-isomorphic to U
if and only if, N contains a minimal right ideal N-isomorphic to U.

Proof. Suppose X is a minimal N-subgroup of ¥, N-isomorphic to U. If (X: V)={0},
then V/X is a faithful 2-tame N-group. By Lemma 6, ¥/X has a composition series of
length m(N). However, by Lemma 6, we have the contradiction that V also has a
composition series of length m(N). We conclude that (X: V)#{0}. Now, from Lemma 5,
there exists a minimal right ideal R <(X: V). Since V is faithful we may find v in V such
that vR#{0}. Now vR=< X, and thus vR=X. The map taking p in R to vp in X is an
N-isomorphism of R onto X. Thus R is a minimal right ideal N-isomorphic to X and
therefore to U.

Suppose on the other hand R is a minimal right ideal of N, N-isomorphic to U. Since
Vis faithful we can find v in V such that vR #{0}. The map that takes p in R to vp in
vR is an N-isomorphism of R onto vR. Thus U is N-isomorphic to the minimal N-
subgroup vR of V. The proof of Lemma 11 is complete.

To proceed further we need some straightforward results on complete reducibility.
A submodule U of an N-group V is said to be completely reducible in V (cf. 15.1 of
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[1]) if, for every submodule U, of ¥V contained in U, there can be found a submodule
U, of V such that U, ® U,=U.
It is an elementary fact that:

Proposition 12. If a submodule U of an N-group V is completely reducible in V, then
any submodule H<U of V is completely reducible in V.

The techniques used to prove 15.3 of [1] are available to show that:

Proposition 13. A non-zero submodule of an N-group V is completely reducible in V if,
and only if, it is a sum of minimal submodules of V.

The socle, soc N of a near-ring N is defined to be a sum of all minimal right ideals of
N when such right ideals exist. Otherwise soc N is taken to be {0}. Proposition 12 and
Proposition 13 have been stated in order to present the following corollary:

Corollary 14. Let N be a near-ring. A non-zero right ideal of N contained in soc N is
a sum of minimal right ideals.

Let N be a near-ring and U a minimal N-group. It will be of use to have notation for
specifying certain right ideals of N contained in soc N. In this regard S(U) is taken to be
the sum ) R; over all minimal right ideals R; of N, N-isomorphic to U provided such
right ideals exist. If there are no such right ideals of N, then S(U) is taken to be {0}.

Lemma 15. Let N be as in the statement of Theorem 1 and V a faithful 2-tame
N-group. If U is a minimal N-subgroup of V, then S(U)=(U:V).

Proof. It will first be shown that S(U)<(U:V). If S(U)={0}, then this inclusion
holds. We may therefore suppose (see Lemma 11) that there exists minimal right ideals
of N, N-isomorphic to U. Let R be such a right ideal. It is easily seen that for each v in
¥, vR={0} or vR is N-isomorphic to the N-subgroup U of V. This follows since if
vR #{0}, then the map taking p in R to vp in vR is an N-isomorphism of R onto vR.
However, by Lemma 10, vR=U when vR#{0}. Thus for all v in ¥, vRSU and
RZ(U: V). Since this is true for any such R, S(U)Z(U: V).

It remains to show that (U: V)< S(U). Since

V(U:V)J(N)S U - J(N)={0}

it follows that (U: V)J(N)={0}. However, by Lemma S5, N has DCCR. By 5.3 of [5], it
follows that (U:V)<socN. Clearly we may assume (U:V)#{0}. Now Corollary 14
implies that (U: V) is a sum ) R;, iel, of minimal right ideals of N. However for each
R,, i€l, there exists v in V such that vR;#{0}. Since R;<(U:V), vR;=U and the map
taking p in R; to vp is an N-isomorphism of R; onto U. Thus R; is in S(U) and
(U: V)< S(U). The lemma is entirely proved.
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The completion of the proof of Theorem 1 will be given once information concerning
the embedding of certain N-groups into direct sums has been obtained. This accounts
for the next three lemmas. The result that follows covers well known properties of
certain subdirect products (the proof is omitted). All the information covered will be
required.

Lemma 16. Let V be an N-group and Ujj=1,2, submodules of V such that
U,nU,={0}. Let Y be the external direct sum of V/U, and V/U, and let H,=
(V/U,{0}) and H,=({0},V/U,). Furthermore let X,=((U,+U,)/U,{0}) and X,=
({0},(U,+ U,)/U,) and & be the map of V into Y given by vd=(v+U,v+U,) for all v in
V. We have that H; and X ;,j=1,2, are submodules of Y and Y is the internal direct sum
H, ® H,. Furthermore, 6 is an N-group embedding of V into Y, such that Vé+H;=Y and
VénH;=X; for j=1,2.

Under conditions similar to those of Lemma 16 information is required as to how
certain 2-tame N-groups are embedded in H, @ H,. The next lemma facilitates the
proof of a much more useful result i.e. Lemma 19.

Lemma 17. Let N be a ring-free near-ring. Suppose the N-group Y is a direct sum
H, ® H, of submodules H;, j=1,2. If Ty, k=1,2, are 2-tame N-subgroups of Y such that
T.+H;=Y and T, H;={0} for k=1,2, and j=1,2, then T, =T,.

Proof. Let n;,j=1,2, be the projection of Y onto H;. Let m,; be the restriction of =;
to T, j=1,2, k=1,2. Since kern,=H,, kern,=H, and T, n H;={0}, we see that r,; is
an N-isomorphism of T, into H;. However for k=1,2,

H,=Yn,=(T,+H))n,=Tin,
and similarly
H,=(Ty+Hy)n, =Tim,.

Thus n,; is an N-isomorphism of T,, k=1,2, onto H; j=1,2. Now m;, is an
N-isomorphism of T, onto H,, n; an N-isomorphism of H, onto T,, m,, an
N-isomorphism of T, onto H, and n;;' an N-isomorphism of H, onto T,. Thus
T My e, 2 (=6 say) is an N-automorphism of T,. Since T, is 2-tame it is, by 1.4 of
[4], a central sum of T;6 and T,(1—6) (here 1 is the identity on T,). However, T,6=T,
and, by 1.3 of [4], T;(1-9) is in the centre of T,. Thus if T,(1—5)#{0}, then
N/(0: T;(1—48)) is a non-zero ring. Since N is ring-free, we have T)(1—8)={0} and thus

MMy Maalyy =1 (c)

Now a typical element x, of T, is of the form x,n,, +x,7,,. However, since n, n5,' is
an N-isomorphism of T, onto T, there exists x, in T, such that x,n,,n;,! = x,. Thus
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Xy =X My Moy Mgy + X170y A5 g
which by (c) yields
X=X My 1+ X33 =X,.

Thus, x, isin T; and T, £ T,. Similarly T, £T,. Thus T, =T, and the lemma is proved.

To prove the straightforward extension of this lemma, that was mentioned above, an
elementary proposition is in order.

Proposition 18. Suppose the N-group Y is a direct sum H, ® H, of submodules H,,
i=1,2. If W is a submodule of H, then it is a submodule of Y.

Material has been covered that provides a key result in establishing Theorem 1.

Lemma 19. Let N be a ring-free near-ring. Suppose the N-group Y is a direct sum
H, ® H, of submodules H;, j=1,2. If T,, k=1,2, are 2-tame N-subgroups of Y such that
Ty,nH;=T,nH; for j=1,2, and T+ H;=Y for k=1,2, j=1,2, then T, =T,.

Proof. Let 7, be the projection of T onto H,. Since kern,=H, and T+ H,=Y we
have H,=T,=, and H, is an N-homomorphic image of a 2-tame N-group. Thus H, is
2-tame and, by Proposition 18, T,nH,(=T,~nH,) is a submodule of Y. Similarly
T, nH,(=T, n H,) is a submodule of Y. Let X be the submodule

ThnH@T,nH,=T,nH,®T,nH,
of Y. Set Y=Y/X, Hi=(H;+X)/X for j=1,2, and T,=T,/X for k=1,2. Clearly the
T..k=1,2, are 2-tame N-subgroups of Y. If it is shown that Y=H, @ H,, T, n H;={0}
and T,+H;=Y for k=1,2, and j=1,2, then it will follow, by Lemma 17, that T, =T,.
This will in turn imply 7, =T,.
Firstly H,+ H,=Y, since H,+ H,=Y. Also the sum H, + H, is direct, since
(Hl +X)h(H2+X)=(Hl+H2n Tl)ﬂ(H2+H1 o] Tl)
=H,n(H,+H,nT)+H,;nT,
=H1F\T1+H2ﬁTl=X.
Secondly we must show T, n H;={0} for k=1,2, and j=1,2. Since for k=1,2,
Lin(Hi+TinHy)=X

it follows that T, H,={0}. Similarly T, n H,={0} and T, ~ H;={0} for k=1,2, and
j=1,2. Finally it is clearly true that since T,+H;=Y for k=1,2, j=1,2, that
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T,+H;=Y. From comments above it follows that T,=T,. The proof of Lemma 19 is
complete.

The proof of Theorem 1 is now accomplished in the concluding analysis that follows.

We shall be assuming that N is a near-ring satisfying the conditions of Theorem 1.
Furthermore, we shall assume that V;, i=1,2, are two faithful 2-tame N-groups. The fact
that the V, i=1,2, are finite follows from Lemma 5. The remaining requirement is to
show that V, is N-isomorphic to V,. By Lemma 6, V, i=1, 2, must both have a
composition series of length m(N). It will be shown by induction on m(N) that V, is
N-isomorphic to V,. If m(N)=0, then, by Lemma 5, ¥, i=1,2, cannot have any minimal
N-groups. This can only happen if the V, i=1,2, are {0} and N ={0}. In this case V, is
N-isomorphic to V,.

We may therefore assume that m(N)>0 and thus, by Lemma 6, both V,, i=1,2, are
non-zero N-groups. Also V; clearly has a minimal N-subgroup. We now use Lemma 9
to exclude that situation where this minimal N-subgroup is unique. If such an N-
subgroup is unique, then, by Lemma 8, N has a unique minimal ideal (T say). By 5,
there exists a minimal right ideal RS T of N. However, Lemma 9 implies that both V,,
i=1,2, are N-isomorphic to N/Cy(R) and V, is therefore N-isomorphic to V.

The proof of Theorem 1 has been reduced to showing that when ¥, i=1,2, are
non-zero and V, has more than one minimal N-subgroup then V| is N-isomorphic to
V. In the remainder of the proof a certain amount of extra notation will be required. In
supplying this requirement we shall also obtain certain useful equations (see (d) below).
Let U;,, j=1,2, be two distinct minimal N-subgroups of ¥,. By Lemma 10, U,, is not
N-isomorphic to U,,. Also, by Lemma 11, N has a minimal right ideal N-isomorphic to
U,,. Again, by Lemma 11, we can find a minimal N-subgroup U,, of V,, N-isomorphic
to U,,. Similarly V, contains a minimal N-subgroup U,,, N-isomorphic to U,,. Since
U,, and U,, are not N-isomorphic, they are clearly distinct. Now take Y, i=1,2, to be
the external direct sum of V;/U; and V,/U,,. If H,; is taken to be (V;/U,;,{0}) and H,; is
taken as ({0}, Vi/U,)), then, by 16, the H;,j=1,2, i=1,2, are submodules of ¥, i=1,2,
and Y;=H,; @ H,;. Furthermore, by Lemma 16, we can define two N-group embeddings
d;, i=1,2, of V; into Y, by setting v,0;,=(v;+ U,;, 0;+ Uy), for all v; in V.. If X,; is taken
as (Uy;+U,)/U,,{0}), i=1,2, and X,; as ({0},(U;+U,;)/U,;) then, by Lemma 16,
X, j=1,2,i=1,2, are submodules of ¥; and

K6|+H” = x and V,(S, N Hji=in' (d)

We now show how the equations (d) can be used in conjunction with certain other
equations. If it is shown that there exists an N-isomorphism 7 of ¥, onto Y, having the
properties

H-lt=Hj2 and X‘“T=Xj2 (e)

J

then, using (d), Theorem 1 will follow from Lemma 19. The actual construction of T,
which depends on the induction assumption, is postponed until the next paragraph.
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It is sufficient for the moment to show that the existence of such an N-isomorphism
shows V), is N-isomorphic to V,. By (d), we have that for j=1,2, V;6,+H; =Y, and
Vio,nH;; =X, for j=1,2. By (e), it follows on applying 7 to these results, we obtain
Vidyt+H;=Y,,and V,é,1nHj;, =X, for j=1,2. However, by (d) this implies

V1611+Hj2= V2(52+Hj2 and VlalTnsz=l/262th2 for ]=1,2

Thus if in Lemma 19 we take Y=Y,, H,=H,,, H,=H,,, T,=V,6,7 and T,=V,6,,
then we obtain V,4,7=V,3,. This follows because the N-groups V, and V, are 2-tame
and, since J, and 8,1t are N-homomorphisms, V,d,7 and V,4, are also 2-tame N-groups.
Thus V,d,1=V,d,, where V;, i=1,2, is N-isomorphic to V3, (the §; are embeddings).
Since t is an N-isomorphism, it follows that V; is N-isomorphic to V,. It only remains
to show that there exists an N-isomorphism 7 of ¥; onto Y, such that (e) holds.

The proof of the existence of ¢ will use the induction assumption and previous results.
Let S(U,;), i=1,2, be the right ideals defined as in Lemma 15. Since U,, is
N-isomorphic to U,,, S(U,,;)=S(U,,). Thus, by Lemma 15, we have that (U,: V)=
(U,3:V,). Thus V/U,, i=1,2, are faithful 2-tame N/(U,,:V;)-groups (i.e.
N/(U,,: V,)-groups). The near-ring N/(U,,:V;) (ie. N(U,,:V;)) is ring-free. Further-
more, both the N-groups V,/U,;, i=1,2, have a composition series of length m(N)—1.
By induction, we may assume that V,/U,, is N/U,,:V,)-isomorphic (ie.
N/(U ,,: V;)-isomorphic) to V,/U,,. Since (U, ,: Vi) (=(U,,:V;)) annihilates V;/U,;, i=
1,2, we have that V,/U,, is N-isomorphic (by A, say) to V,/U,,. Similarly, V,/U,, is
N-isomorphic (by 4, say) to V,/U,,. We can now find an N-isomorphism 7 of Y, into
Y, as in the previous paragraph. For any (x,,x,) in Y}, x, in V;/U,, and x, in V,/U,,,
we define the map t of Y] into Y, by setting (x,,x,)t=(x,4,,x,4,). Clearly 7 is an
N-isomorphism of Y, onto Y,. Since H,, is simply the submodule (see Lemma 16)
(V1/U1y, {0}) of Y, it follows that H, ,t=H,. Similarly H,,7=H,,. Thus the first set
of equations in (¢) hold. It remains to show that X;t=X; for j=1,2. Now
X11=((U,1+U,)/U,,{0}) and this submodule of Y, is clearly N-isomorphic to U,,.
Thus X,,t is a submodule of Y,, N-isomorphic to U,,. However X,,1<H,,t=H,,.
Thus X,;7 is a submodule of H,,, N-isomorphic to U,, (ie. to U,;). Since H,, is
N-isomorphic to V,/U,,, H,, is a 2-tame N-group. Since X, =((U,,+U,;)/U,,, {0})
is N-isomorphic to U,, it follows, by Lemma 10, that X, ;1= X ,,. Similarly X,,1=X,,.
The second set of equations in (e) also hold. From the previous paragraph V, is
N-isomorphic to V¥, and Theorem 1 is completely proved.
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