ON EULER’S CRITERION

EMMA LEHMER

(rec. 2 April 1959)

Euler’s criterion states that if 4 is a prime then
(1) Di=1 (mod p), p = kf + 1,

if and only if D is a k-th power residue of $..
However if (1) does not hold then

(2) D’ = a;, (mod ), o, % 1 (mod p),

where «, is some k-th root of unity modulo 4.
For £ = 2 it is obvious that «, = —1 and we have the usual congruence
for the Legendre symbol, namely

(3) DDz = (g-) (mod ).

For & > 2 there seems to have been no attempt in the literature to
specify which «, corresponds to a given D. This is probably due to the fact
that in general one would not expect to be able to distinguish between
primitive k-th roots of unity. The possibility of this determination for
k = 3 and D = 2 was suggested by empirical results of N.Y. Wilson which
can be reduced to our criterion (24). Explicit results will be given for D = 2
also with 2 = 3, 4, 5, and 8 as well as some general congruence relations
involving the so called Jacobsthal sums

@ w0 =3 (3) (552):

We consider the sum (4) as a congruence modulo . Using (3) we obtain

-1 (p-1)/2 —
6 #0) =3 wonrpr D=3 (¢ V) pes,

y=1 £=0 M
where
p—1
ot D> vEe if £ is odd
— e+ (o-1)—kp — | V71
Sk(l"") vglv - p—1 ) ]

Sy@-b/2-ke  jif k is even.
=1
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Hence if 2 is odd

—1 (mod p) if u = mf

Silu) E{ 0 (mod p) otherwise,

while if 2 is even

—1 (mod p) if u= (2m + 1)f/2

Si(w) E{ 0 (mod p) otherwise.

Combining these results we have

—(k_y_i"zpmf( (p—1)/ 2) (mod p) for % odd

m=0 mf
(") ¢x(D)= _(k—é:zl)(zmﬂwz ((2(’7; :_11))/;;2) (mod ), % and f even

0 (mod p) for % even, f odd.

This congruence can be found in a slightly different form in Whiteman [1].
For k=2, f2=@p—-1)/4, p=4m+1=4a%2+b% a=1 (mod 4)
congruence (7) becomes

® $(D) = —pw-vis (7 1) mod ).
Putting D = 1 we get the well known result of Gauss
®—1/2\_ _ _
g (65 = 1)) = —#:(0) = 20 (mod 2).
Therefore
(10) D=1/t = $,(D)/y(1) (mod p).
Jacobsthal [2] proved in his dissertation that if D = m? (mod )
2) — (7 - (2
) $D) = o) = () utt) = = () 28

Substituting this into (10) gives (3). In case D is not a quadratic residue
Jacobsthal was only able to prove that

D
(12) (D) = +2b if (;—) = —1,
which is insufficient for our purposes. In another paper [3] we were able

to improve on this result if 2 is not a quartic residue of p = 4n 4 1 as
follows:
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D = 2m?® (mod p), (—;—) -b——/z— 1; ot 4
2=1 (mo
D= +/2m?® (mod ), (;25—) =1,

b/4 = (—1)" (mod 4).

(13) ¢4(D) = —2b(%) where

Substituting these values into (10) we obtain in case 2 ¢s not a quartic

residue
(14) D-1/4 = (%) b/a (mod p)
: 2
in case either D = 2m? and (?) = —1 with §/2=1 (mod 4)

or D = 4/2m?® and (—;—) = +1 with /4= (—1)" (mod 4).

In the case D = 2, the results are much more explicit. It is well known
that 2 is a quartic residue of  if and only if 6 = 0 (mod 8). If 2 is a quadratic
but not quartic residue then b = 4 (mod 8), in the remaining cases b is
oddly even and we can take as above /2 = 1 (mod 4) and state our criterion
as follows:

If p=4n+1=2a%>+ 0% a=1 (mod 4), then

(—1)°/4 (mod ) if b=0 (mod 4)

(15) 2(p—1)/4—=—{b/a (mod p) otherwise [6/2=1 (mod 4)].

Next let £ =3, f = (p — 1)/3. In this case the sum (7) reduces to

(16) $o(D)= —1 —Df((i) y 1)/2) (mod ).
Letting D = 1 we have
b—1/2\_ _;_
(17) (1) =—1—#0 (mod p).
Substituting this back into (16) we obtain
(18) D@03 = (¢3(D) + 1)/(¢3(1) +1) (mod p).

Since ¢3(D) = ¢4(1) if D is a cubic residue the above congruence reduces
in this case to Euler’s criterion. If D is not a cubic residue however the
general formula for ¢4(D) contains an ambiguity of sign. We were able to
determine this sign in a previous paper [3] under the condition that 2
is not a cubic residue. Let

p=A2 1 3B2and 4p =L+ 2IM?, A=L=1 (mod 3)
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then

(19) 200-1/3 = 1/40-118= —24/L (mod 9),
since [4]

(20) $5(D) = ¢5(1) = — (24 + 1) if D = m,
while

2 w0 = T T D mod h)

It might be worth recalling that 2 is a cubic residue of p if and only
if L =0 (mod 2); but this implies B= 0 (mod 3) and L = —24,
B = 4+3M; hence (19) reduces to (1). If 2 is not a cubic residue then
B #£ 0 (mod 3) and we may choose B =1 (mod 3). Then it can be easily
verified that the two forms are related by L = 4 + 3B, A — B = +3M.
Hence we can eliminate L in (21), thus obtaining our result in terms of a
single form as follows:

If p = A% 4+ 3B2% A = B=1 (mod 3) and 2 is not a cubic residue, then,
A—3B—1if D=2m? (mod p)
A+ 3B—1if D=4m® (mod ).
Substituting this and (20) into (18) we obtain
1 if D=m3 (mod )
(23) Do»-D/3 = {(—A + 3B)/24 if D= 2m® (mod p)
—(4 + 3B)/24 if D= 4m® (mod 7).

It might be worth noting that (—A44-3B)/24 = (¥4 — B)/2B (mod 7).
This can be verified by cross multiplication using A?2= —3B? (mod 9).
For D = 2 we get the following explicit result:

1 (mod 9) if B=0 (mod 3)
(BB—A4))24= —(A+ B)/2B [B=1 (mod 3)]

By (20) and (17) we get the well known result.

(25) (g : i;g) =24 (mod ), A=1 (mod 3).

For =5, f = (p — 1)/5, congruence (7) gives

22) 7a(D) = |

(24) 20-V3= {

o) —01+ 40 = 20 7 V%) (D) mod g,

We write this congruence for D = 44%, v =0, 1, 2, 3, 4, where d is any
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quintic non-residue of $ and let

(27) 6, = —[1+¢s(4d")], (=0, 1,2 3, 4),

. _ (@ =12\ _ (%

(28) n=o (P72 = (%) (moa p),

and

. _ g (B —1)/2Y _ (41 _ (3

(29) = (P = () = (7) moa s
Then (26) can be replaced by the system of congruences

(30) ¢, = @7 + y,d®’ (mod 5) (=01, 2, 3, 4).

This system can be solved for y; and y, as follows. We note that
Bl) ¢ —cp—c3+cg= (@ —a¥ —d¥ + a¥) (y; — y,) (mod p),
(32) €164 + €95 = 2()’? + Vg) — V¥V = 00(2) — 5yy,  (mod p),
since y, + y, = ¢, (mod p),

(33) ey — eats = (@ — & — & + M)y,
= (&’ — d¥ — d¥ + d¥) (20(2) — €46, —CoC3) /5 (mod p),
by (32). Hence by (31) and (33)

(34)  y1— 2= (61— €y — €3+ ¢4) (2c§ — €164 — €aC3)/5(c1¢q — Co¢3) (mod p).

Therefore,

(35) y1= (2/) = §[co + (1 — g — €3+ €4) (26§ — €164 — €263)[5(C164 — €aC3)]
f (mod p)

and

(36) y.= (3f) = }[co — (61 — €2 — €3+ €4) (265 — €164 — €5€5)[5(€164 — Co3)]
/ (mod p).

We now recall that ¢;(44”) and therefore the ¢,’s can be evaluated [1]
in terms of the quadratic partition
(37) { 16p = 2% 4 50u® 4 50v% 4 125w?

rw = v — u? — 4uv, =1 (mod 5),

as follows:
co = —[1l+ ¢5(4)] = —x
4c, = x — 25w — 10(u + 2v)
(38) 4c, = x + 256w — 10(2u — v)
4c; = x + 25w + 10(2u — v)
4c, = x — 26w + 10(u + 2v).
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Therefore ¢; — ¢, — ¢; + ¢, = — 25w, while
4(cicq + Coc3) = 322 + 62502
and
€164 — CoCg = 25(u? — v2 — uv) = ——’125(xw + 5uv) (mod ).

Hence (35) and (36) become

o ()=l | e
and
e

We note that these results are unambiguous since the same answer is
obtained by substituting either of the four solutions of (37), namely

(41) (x, #, v, w); (x, —u, —v, w); (x, v, —u, —w); (r, —v, u, —w).

Knowing y, we can solve the system (30) for 4’/ as follows. Writing 2v»
and 3y for » in (30) we obtain

¢y, = y1d% + y, (mod )

(42) — 3vf vf
C3p = 11837 + y,d (mod ).

Hence subtracting,

(43) @7 = (c3, + ¥3)/(Cay + 72) (mod p).

The last expression is not devoid of ambiguity, however, since the ¢’s depend
on the choice of the solution in (40). For d = 2, however, we can make a
complete determination by noting that

(44) g = —[1 + $5(4d%)] = —[1 + $5(1)]

must be even, while the other ¢’s are odd. This follows from the fact that
¢5(1) is odd since it contains five zero terms, while all the other ¢,’s are
composed exclusively of an even number of plus and minus ones and must
be even. Hence we must have

(45) x + 25w + 204 — 10v =0 (mod 8).

It is known [4] that « and w are both even or odd according as 2 is a quintic
residue of p or not. Hence # and w are both odd and # and v must be of
different parity by the second equation in (37). We can let # be even, then
by (37)

xw=1—u’=1+ 24 (mod 8)
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and this implies
w=ux -+ 2u (mod 8)

and by (45)
v=z-+ % (mod 4)

or what is the same thing
(46) v= (—1)*/2z (mod 4).
This determines a uniqile solution of the system (38) and we can write

w (125w2—2x2) 42 (zw -+ 5uv) (25w —2x -+ 20u— 10v)
w (125w2—a?) + 2 (xw—+ 5uv) (26w —xr— 201+ 10v)

(47) 2015 = (mod ).

For example let p =31,z =11, v =2, v =1, w = — 1. We find
—1(4) + 2(—1)(—86) 8 8

(P-1)/5 — 26 = = ==

2" = @ re—1)(—6s 1z 1 2 (med3l)
while
(162)51}[-—11—1]5—65 25and(168) =1[—11+41]= —5=26 (mod3l).

Similarly by (38) and (42),
w(125w? —x?) — 2 (xw+ 5uv) (26w + -+ 101+ 20v)
w (125w? —2?) — 2 (xw - 5uv) (25w -+x— 108 —20v)

For £ = 8, p = 8z 4+ 1 = a? + b2, it is well known that if 2 is a quartic
residue of p, then b =0 (mod 8) and

(48) 4(»-1/5 =

(mod ).

(49) : 200-1)/8 = (—1)°/8+"* (mod p).

Otherwise since 2 is a quadratic residue, we can use (14) with D = /2
to obtain
(50) 2(»-1)/8 = p/a (mod p), where b/4 = (—1)" (mod 4)..

Expressions for 2(*-V/* (mod $) for £ = 6, 10, 12, 15, 20, 24 and 40 can
be easily obtained by combining the above results.
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