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I n t r o d u c t i o n . This paper is a part ial solution of problem 24 in (2) which 
suggests t ha t the finiteness of the partial ly ordered semigroups generated 
by various combinations of operators on classes of universal algebras be in­
vestigated. T h e main result is t h a t the semigroups generated by the following 
sets of operators (for definitions see § 2 ) are finite: {H, S, P, Ps}, \C, H, S, 
PyPF}} {C,H,S,PU}PF}. 

This paper is pa r t of the au thor ' s Master ' s thesis wri t ten in the Depar t ­
ment of Mathemat ics a t McMas te r University. T h e au thor is indebted to 
the referee for his helpful suggestions. 

1. Part ia l ly ordered s e m i g r o u p s . A part ial ly ordered semigroup is a 
triple (G, < , </>) consisting of a set G, a part ial order < on G, and an associa­
tive binary operation <£ on G such tha t , for all a, b, c, d £ G, if a < c and 
b < d, then $(a , c) < </>(&, d). As usual we write ab for 4>(a, b) and G for 
(G, <,</>). A positively ordered semigroup is a part ial ly ordered semigroup 
G such tha t , for all a, b £ G, ab > a and ab > b. 

Let G be a partially ordered semigroup generated by a set S. T h e elements 
of G are products of finite sequences of elements of S. For any non-empty 
set T Ç S, let [T] be the subsemigroup of G generated by T. T h e 7'-length 
LT(a) of an element a £ [7"] is defined to be the smallest natural number n 
for which there exists an w-element sequence in T, the product of which is a. 

T H E O R E M 1. If G is a positively ordered semigroup generated by n idempotent 
elements xi, . . . , xn such that if i < j then Xj xt < XiXj} then G is finite. 

Proof. We prove by induction on k t h a t if Sk = {xi, . . . , xk}, then for 
any a ê [Sk], LSk(a) < 2* - 1. 

In the case k = 1, S± = {xi} and [Si] = {xi} since x\ is idempotent and 
LSl(Xl) = 1 = 2* - 1. 

Suppose there exists an a G [Sfc+i] with LSk+1(a) = m > 2k+1. Then a is 
equal to a product of an m-element sequence of elements from SA+i, and, 
since m > 2k+1, by the induction hypothesis, there are a t least two occurrences 
of xk+i in this m-element sequence. T h u s a = bxk+i cxk+\ d, where b, c, d G [Sfc+i] 
and 

LSk+i(b) + LSk+1(c) + LSk+1(d) + 2 = m. 
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(Or a = bxk+i cxk+i or a = xk+i cxk+\d\ bu t these cases can be treated in the 
same way as the first.) Since for all xt Ç Sk+i, xk+i xt < xt x^+i, it follows t ha t 

bxk+i cxk+i d < bcxk+i d = bcxk+\d. 

B u t bcxk+i d < bxk+i cxk+i d since G is positively ordered, and hence a = bcxk+id. 
This implies t ha t 

Lsk+i(<*>) < LSk+1(b) + LSk+l(c) + LSk+1(d) + l = m - l < m , 

and this contradicts the assumption t ha t LSk+1 (a) = m. Hence for all a G [S^+i], 

LSk+l(a) < 2 * + i - 1. 
In particular, for all x £ G, Ls(x) < 2n — 1; hence G is finite. 

I t may be noted a t this point t ha t if x and y are idempotent elements in 
a positively ordered semigroup G, then x < y implies yx < xy, since then 
xy < yy = y < xy and yx < yy = y < yx, so t ha t xy = y = yx. 

2. Semigroups of operators in a universal algebra. A universal 
algebra is a set together with a family of finitary operations defined on t ha t 
set. Two universal algebras are of the same type if their families of operations 
have the same indexing set and, if the two families are (/x)xez, and (g\)\eL 

and if f\ is an w-ary operation, then g\ is also ^-ary. All algebras under con­
sideration will be of the same type. We assume tha t the reader is familiar 
with the notion of subalgebra, homomorphic image, isomorphic image, direct 
product , congruence relation, and quot ient of universal algebras; see (1, 2) . 

A universal algebra U is a subdirect product of the family (A t) iei of uni­
versal algebras if it is a subalgebra of the direct product Yl^ t (i £ -0 a n d if, 
for each i, the restriction to U of the natural projection P / . \\A t —> Aj maps 
onto Aj. 

If (Ai)ia is any family of universal algebras and if % is a filter on 7, then 
the relation = % defined on Y\Ai (i £ 7) by / = $ g if and only if 

{*!/(*) = g ( » ) } € % 

(where the elements of a direct product \\A t are denoted by choice functions 
on {A i) ifI) is a congruence relation. T h e quot ient algebra Yl^ * /3 °f Yl^ t 
modulo this congruence relation is called a filter product of the family 
(Ai)iei. If 5 is a n ultrafilter, I J ^ U / S *s called an u l t raproduc t ; see (1). No te 
t h a t if % = {/}, the filter product reduces to an ordinary product . 

A universal algebra U is called a cover of the family {A t) iei of universal 
algebras if, for each i, A t is a subalgebra of U, and if U = ^JAi (i £ 7) . 

I t may be noted a t this point t h a t all these operators are invar iant under 
isomorphism, i.e., if (At)iei and {Bt)iU are families of universal algebras 
such t ha t A t is isomorphic to Bt for each i £ I, and if one of the above opera­
tions is applied to both of these families of algebras, the two resulting algebras 
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will be isomorphic. For example, if g is a filter on 7, then the filter products 

n*€/^4*/§ a n d I l i a ^ i / 8 a r e isomorphic. 
A class of universal algebras will be called algebraic if it contains all iso­

morphic copies of the algebras contained in it. 
For an arbitrary class K of universal algebras we define S(K) to be the 

smallest algebraic class containing all subalgebras of algebras in K. Then S 
is an operator on classes of universal algebras. Similarly the operators H, P , 
Ps, PF, PVl and C are defined, to correspond to homomorphic images, direct 
products, subdirect products, filter products, ultraproducts, and covers 
respectively. 

For two operators X, Y we define I F by XY(K) = X(Y{K)) for an 
arbitrary algebraic class K of universal algebras. This defines an associative 
binary operation and so we can consider the semigroup G generated by these 
operators. The relation < is defined on G by: X < Fif and only if X(K)C1 Y(K) 
for all algebraic classes K of universal algebras. Then (G, < ) is a partially 
ordered semigroup. Moreover, since if X is any one of S, H, P , Ps, PF, PU, 
or C, then X(K) 2 K for all algebraic classes K of universal algebras, (G, < ) 
is a positively ordered semigroup. 

LEMMA 1. The operators S, H, P , Ps, PF, PUf and C are idempotent. 

Proof. The proof that S2 = S, H2 = H, P 2 = P , P\ = Ps, C2 = C is 
trivial. 

PF = PF\ Let K be an arbitrary algebraic class of universal algebras and 
let A G PF(K). Since PF is invariant under isomorphism, it is enough to 
consider A = Yli&Ai/iS where g is a filter on 7, At = YiieJi Bu/%i f° r e a c r i 

i, $i a filter on Ju and Btj G K. Let 

The filtered sum §1 of the family ($:*)*€/ of filters is defined as follows: 

? I = \MQS\{i\M(i) € %f] e $}, 

where M(i) = {j \jCJi and (i,j) £ M}. For more details on "filtered sums" 
see (4, pp. 330ff.). For each / €Y\Bi} ((i,j) € S), and each i £ / , define 
/(*, ) € At b y / ( t , )0') =/(*', i ) f o r i £ / , . Define </>: YIU.JKS Btj — /I by 

* (0 = [([/(*, )]g.O««Is. 

where square brackets denote congruence classes, and subscripts the filters 
giving the congruence relations. For / , g G Yi^ij ((i,j) G S), 

* ( 0 = *(g) if and only if {i\\f(i, )]«*, = [g(if )fe,} G g 
if and only if [i\{j G /«(/(i, ) (j) = g(i, )(j)} G g,} G g 

if and only if {(ij)\f(i,j) = g(i,j)} G 21 
if and only iî f ==% g. 
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This, together with the fact that 0 is an epimorphism, yields that 

is isomorphic to A. Thus A G PF{K). Hence PF < PF and thus PF = P^. 
If g> S* are all ultrafilters, then % is also an ultrafilter; see (4, p. 335). This, 

together with the above, yields Pv < P^, and hence Pv = Pv. 

LEMMA 2. PFS < 5P F , P ^ S < SP^, P S < SP. 

Proof. Let X be an arbitrary class of universal algebras and let A G PFS(K). 
I t is enough to consider A =Yliei^-t/^ where g is a filter on / , and for 
each i, Ai is a subalgebra of Bu and Bt G K. Then the canonical homomor-
phism from I T J E J ^ U / S to Yliei^i/% *s a monomorphism, and hence 
A G SPF(K). Thus P F 5 < SP F . The same argument shows that Pv S < SPV 

and, if % = {/}, that P S < SP. 

LEMMA 3. PFH < HPF, PVH < ffP^, P # < # P . 

Proof. Let X be an arbitrary algebraic class of universal algebras and let 
A G PFH(K). Since P ^ is invariant under isomorphism, it is enough to con­
sider A = n*€i ^ i/% where % is a filter on / and, for each i, there is a 5^ G -K" 
and an epimorphism 0*: ^^ —> 4̂ .̂ Let B =Y[ia ^*/5> a n d define 

by (0(f))(i) =<t>i(f(i)). 
It is then obvious that, for any/ , g G IX^* d £ -0» / = 8 £ (inlX^*) implies 

that 0(f) =g 0(g) (inJ~[-4*)- Hence 0 induces an epimorphism 0' of 

rL€/s,/3f 
onto r i i € / ^ < / S - Hence 4 G HPF(K), and thus PFH < HPF. 

The same argument shows that Pv H <^ HPV and, if g = {/}, that 
P # < HP. 

LEMMA 4. P F C < CPF, PVC < CP^, PC < CP. 

Proof. Let X be an arbitrary algebraic class of universal algebras and let 
A G PF C(K). We may consider A = n * e / At/%, where g is a filter on I 
and, for each i, At = W 5 ^ (j G Ji), where the Btj are subalgebras of At 

and P^- G i£. For each r G 1 1 ^ / / * = ^ ^et Ar = 1 1 ^ / ^ M t ) / S - Then the 
canonical homomorphism <j)r:Ar-*A is a monomorphism. Moreover, 
A = \JT£j <j>r(Ar). Hence A G CPF(K), and so PF C < CP^. The same argu­
ment shows that Pu C < CPV and, in the special case where % = {/}, that 
PC < CP. (PS < SP, PH < # P can be found in (2, p. 252); PC < CP 
in (3, p. 1).) 
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THEOREM 2. The partially ordered semigroups generated by the following 
sets of operators are finite: 

1. \H,S,P,PS). 

2. {C,H,S,P,PF}. 

3. {C, H, S, PF, Pu} • 

Proof. These sets of operators generate positively ordered semigroups, and, 
by Lemma 1, each of the operators in these sets is idempotent. We apply 
Theorem 1: 

1. It is sufficient to show that SH < HS, PH < HP, PS < SP, 
PSH < HP8, PSS < SPS, and Ps P < PPS. The first, fourth, and fifth of 
these inequalities are proved in (5, pp. 44fL); PH < HP and PS < SP are 
proved above. Since P < Ps, Ps P < -P^s- Hence the semigroup generated 
by H, S, P , P 5 is finite. 

2. In addition to what has already been shown it is sufficient to show 
that PFH < HPF, PFS < 5P„, P ^ C < CPF, P F P < PPF, PC < CP, 
HC < Cff, and 5C < CS. The first three and the fifth inequalities are proved 
in the lemmas above; HC < CH and SC < CS can be found in (3), and, 
since P < PF, PF P < PPF. Hence the semigroup generated by H, S, P, PF, 
C is finite. 

3. In addition to what is shown above, it is sufficient to show that 
PVH < HPUt Pu S < SPUf PVC < CPU} and PVPF < PFPV. The proofs 
of the first three inequalities are in the lemmas above, and since Pv < PF, 
Pu PF < PF PJJ. Hence the semigroup generated by H, S, PFy Pu, and C 
is finite. 

The fact that H, S, and P generate a finite semigroup is stated in (6). 
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