FINITENESS OF SEMIGROUPS OF OPERATORS IN
UNIVERSAL ALGEBRA

EVELYN NELSON

Introduction. This paper is a partial solution of problem 24 in (2) which
suggests that the finiteness of the partially ordered semigroups generated
by various combinations of operators on classes of universal algebras be in-
vestigated. The main result is that the semigroups generated by the following
sets of operators (for definitions see § 2) are finite: {H, S, P, Ps}, {C, H, S,
P, Py}, {C,H,S, Py, Pg}.

This paper is part of the author’s Master’s thesis written in the Depart-
ment of Mathematics at McMaster University. The author is indebted to
the referee for his helpful suggestions.

1. Partially ordered semigroups. A partially ordered semigroup is a
triple (G, <, ¢) consisting of a set G, a partial order < on G, and an associa-
tive binary operation ¢ on G such that, for all ¢, d,¢,d € G, if @« < ¢ and
b < d, then ¢(a,c) < ¢(b,d). As usual we write ab for ¢(a, b) and G for
(G, <, ¢). A positively ordered semigroup is a partially ordered semigroup
G such that, for all a, b € G, ab > a and ad > b.

Let G be a partially ordered semigroup generated by a set .S. The elements
of G are products of finite sequences of elements of .S. For any non-empty
set T"C S, let [1'] be the subsemigroup of G generated by 7". The 7-length
Lr(a) of an element a € [T] is defined to be the smallest natural number
for which there exists an n-element sequence in 7', the product of which is a.

THEOREM 1. If G s a positively ordered semigroup generated by n idempotent

elements x1, . .., %, such that if © < j then x;x; < x;x;, then G is finite.
Proof. We prove by induction on k that if Sy = {x1,...,x:}, then for
any a € [S;], Lg,(a) < 2¥F — 1.
In the case £ =1, .S; = {x1} and [Si] = {x1} since x; is idempotent and

L () =1 =2F— 1.

Suppose there exists an a € [Si1] with Lg,,, (@) = m > 251 Then «a is
equal to a product of an m-element sequence of elements from S;.;, and,
since m > 2%1 by the induction hypothesis, there are at least two occurrences
of x; 41 1n this m-element sequence. Thus a = x4 cxy1 d, where b, ¢, d € [Sii1]
and

Ly (0) + Ly (c) + Ly (d) + 2 = m.
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(Or @ = bxyy1 cxXpp1 OF @ = X1 cxpr1d; but these cases can be treated in the
same way as the first.) Since for all x; € Sgy1, X511 %5 < x5 Xz41, it follows that

bxk+1 cx,z+1d < bcx;%“ d = bcxk+1d.

But bexp1d < bxgy1 cxpy1 d since G is positively ordered, and hence a = bcxyy1d.
This implies that

LSIc+1(a) < LSk+1(b) + LSk+1(C) + LSk+1(d) + l=m-—1 < m,

and this contradicts the assumption that Lg, ,, (¢) = m. Hence forall a € [Si,4],
Lgjn(a) <291 — 1.
In particular, for all x € G, Lg(x) < 2" — 1; hence G is finite.

It may be noted at this point that if x and y are idempotent elements in
a positively ordered semigroup G, then x < y implies yx < xy, since then
xy <yy=y<«xy and yx < yy =y < yx, so that xy =y = yx.

2. Semigroups of operators in a universal algebra. A universal
algebra is a set together with a family of finitary operations defined on that
set. Two universal algebras are of the same type if their families of operations
have the same indexing set and, if the two families are (fi)xez and (g2 )rer
and if fy is an n-ary operation, then g, is also n-ary. All algebras under con-
sideration will be of the same type. We assume that the reader is familiar
with the notion of subalgebra, homomorphic image, isomorphic image, direct
product, congruence relation, and quotient of universal algebras; see (1, 2).

A universal algebra U is a subdirect product of the family (4;);¢; of uni-
versal algebras if it is a subalgebra of the direct product [[4; (i € I) and if,
for each i, the restriction to U of the natural projection P;: ][4, — 4; maps
onto 4 ;.

If (4;)¢; is any family of universal algebras and if § is a filter on I, then
the relation =g defined on [[4; (i € I) by f =g g if and only if

{i]f@) =g} €3

(where the elements of a direct product HAi are denoted by choice functions
on (A4.);) is a congruence relation. The quotient algebra [ [4,/§ of []4,
modulo this congruence relation is called a filter product of the family
(A)ier. If § is an ultrafilter, [14./% is called an ultraproduct; see (1 ). Note
that if § = {[}, the filter product reduces to an ordinary product.

A universal algebra U is called a cover of the family (4,):; of universal
algebras if, for each 7, 4, is a subalgebra of U, and if U = U4, (1 € I).

It may be noted at this point that all these operators are invariant under
isomorphism, i.e., if (4;):; and (B;)i; are families of universal algebras
such that 4, is isomorphic to B; for each 7 € I, and if one of the above opera-
tions is applied to both of these families of algebras, the two resulting algebras
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will be isomorphic. For example, if § is a filter on I, then the filter products
[1icr 4:/§ and [[ie; Bi/§ are isomorphic.

A class of universal algebras will be called algebraic if it contains all iso-
morphic copies of the algebras contained in it.

For an arbitrary class K of universal algebras we define S(K) to be the
smallest algebraic class containing all subalgebras of algebras in K. Then S
is an operator on classes of universal algebras. Similarly the operators H, P,
Pg, Py, Py, and C are defined, to correspond to homomorphic images, direct
products, subdirect products, filter products, ultraproducts, and covers
respectively.

For two operators X, ¥ we define XY by XV(K) = X(YV(K)) for an
arbitrary algebraic class K of universal algebras. This defines an associative
binary operation and so we can consider the semigroup G generated by these
operators. The relation < isdefined on Gby: X < Yifand onlyif X (K)CV(K)
for all algebraic classes K of universal algebras. Then (G, <) is a partially
ordered semigroup. Moreover, since if X is any one of S, H, P, Ps, Py, Py,
or C, then X (K) D K for all algebraic classes K of universal algebras, (G, <)
is a positively ordered semigroup.

LemMA 1. The operators S, H, P, Ps, Pr, Py, and C are idempolent.
Proof. The proof that S? =S, H? = H, P?*= P, Py = Ps, C>=C is

trivial.

Py = Pp: Let K be an arbitrary algebraic class of universal algebras and
let 4 € P3(K). Since Py is invariant under isomorphism, it is enough to
consider 4 = HiEIAi/{E where § is a filteron I, 4; = H,-EJI. B.;/§: for each
1, §; a filter on J,;, and B;; € K. Let

S=Ilati={Gj)|i€1j€ T
The filtered sum A of the family ()i, of filters is defined as follows:
A={MCSS|{i| MG € F} €T},
where M () = {j|j € J;and (4,j) € M}. For more details on “filtered sums”
see (4, pp. 330ff.). For each f € [[By; ((4,7) € S), and each 7 € I, define
fG, ) € 4. by f(4, )(G) = f@,4) for j € J,. Define ¢: H(i,j)es B;;— A by

o(f) = [([fG, )Is) werls

where square brackets denote congruence classes, and subscripts the filters
giving the congruence relations. For f, g € [[B.; ((4,7) € 9),

o(f) = ¢(g) if and only if {i[[f(, )5 = [g(G, )5} € &
if and only if {i[{j € Ji{f(;, )(4J) = ¢(&, )N} € &} € §
if and only if {(,7)|f(G,7) = g(, 7))} € A
if and only if f =gg.
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This, together with the fact that ¢ is an epimorphism, yields that

H(t,j)es Bij/g[

is isomorphic to 4. Thus 4 € Pz(K). Hence Py < Py and thus Ps = Pj.
If §, §. are all ultrafilters, then ¥ is also an ultrafilter; see (4, p. 335). This,
together with the above, yields Py < Py, and hence Pp = Py.

LEMMA 2. PrS <SPy, PyS < SPy, PS < SP.

Proof. Let K be an arbitrary class of universal algebras and let 4 € Pz S(K).
It is enough to consider 4 = Hie,Ai/{’; where §§ is a filter on I, and for
each 7, 4; is a subalgebra of B,, and B; € K. Then the canonical homomor-
phism from Hie, A/F to HigBi/% is a monomorphism, and hence
A € SP(K). Thus PrS < SPjy. The same argument shows that P, S < SPy
and, if § = {I}, that PS < SP.

Lemma 3. Pr H < HPy, Py H < HPy, PH £ HP.

Proof. Let K be an arbitrary algebraic class of universal algebras and let
A € Pp H(K). Since Py is invariant under isomorphism, it is enough to con-
sider 4 = Hig A;/F where § is a filter on I and, for each 7, thereisa B; € K
and an epimorphism ¢;: B, — 4, Let B = Hig B;/§, and define

¢: [T B =] Lier 4,

by (¢(f)) (@) = ¢:(f(2)).
It is then obvious that, forany f, g € [[B; (i € I), f =5 ¢ (in 11B.) implies
that ¢(f) =5 ¢(g) (in [14.). Hence ¢ induces an epimorphism ¢’ of

Hi€1Bi/%

onto H,-E,Ai/%. Hence 4 € HPy(K), and thus Py H < HPp.
The same argument shows that Py H < HPy and, if § = {I}, that
PH < HP.

LemmA 4. P C L CPy, Py C L CPy, PC L CP.

Proof. Let K be an arbitrary algebraic class of universal algebras and let
A4 € Py C(K). We may consider 4 =H1€IA7;/{§, where § is a filter on [
and, for each %, A, = \UBy; (j € J;), where the B,; are subalgebras of 4,
and B;; € K. For each v € [[ie; J: = J, let A, = [[ier Bircy/§. Then the
canonical homomorphism ¢,: 4,— A is a monomorphism. Moreover,
A =\U,s¢,(4,). Hence A € CPr(K), and so Pr C < CPy. The same argu-
ment shows that Py C < CPy and, in the special case where § = {I}, that
PC < CP. (PS <SP, PH < HP can be found in (2, p. 252); PC < CP
in (3, p. 1).)
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THEOREM 2. The partially ordered semigroups gemerated by the following
sets of operators are finite:

1. {H,S, P, Pg}.
2. (C,H,S, P, Pg}.
3. {C,H,S, Py, Py}.

Proof. These sets of operators generate positively ordered semigroups, and,
by Lemma 1, each of the operators in these sets is idempotent. We apply
Theorem 1:

1. It is sufficient to show that SH < HS, PH < HP, PSSP,
PsH < HPg, PsS < SPg, and Pg P < PPg. The first, fourth, and fifth of
these inequalities are proved in (5, pp. 44ff.); PH < HP and PS < SP are
proved above. Since P < Pg, Pg P < PP Hence the semigroup generated
by H, S, P, Py is finite.

2. In addition to what has already been shown it is sufficient to show
that Pr H < HPy, Pz S <SPy, Py C < CPp, Py P < PPy, PC< CP,
HC < CH, and SC < CS. The first three and the fifth inequalities are proved
in the lemmas above; HC < CH and SC < CS can be found in (3), and,
since P < Py, Pr P < PPy. Hence the semigroup generated by H, S, P, P,,
C is finite.

3. In addition to what is shown above, it is sufficient to show that
Py H < HPy, Py S < SPy, Py C < CPy, and Py Pr < Pp Py. The proofs
of the first three inequalities are in the lemmas above, and since P, < Py,
Py Pp < Pp Py. Hence the semigroup generated by H, S, Pz, Py, and C
is finite.

The fact that H, S, and P generate a finite semigroup is stated in (6).
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