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Abstract

The special Denjoy-Bochner integral (the D*B-integral) which are generalisations of Lebesgue-Bochner
integral are discussed in {7, 6, 5]. Just as the concept of numerical almost periodicity was extended by
Burkill [3] to numerically valued D*- or D-integrable function, we extend the concept of almost
periodicity for Banach valued function to Banach valued D*B-integrable function. For this purpose
we introduce as in [3] a distance in the space of all D*B-integrable functions with respect to which the
D*B-almost periodicity is defined. It is shown that the D*B-almost periodicity shares many of the
known properties of the almost periodic Banach valued function (1, 4].

1980 Mathematics subject classification (Amer. Math. Soc.): 26 A 99, 43 A 60.
1. Definitions and terminology

For the definition of almost periodicity for numerical valued and Banach valued
functions we refer to [2] and {1, 4] respectively. Throughout the paper R and C
will denote the real line and the complex plane and X will denote a fixed complex
Banach space with norm || - ||. For a function f defined on R, f, will denote the
translation of f by the number n; that is, f,(x) = f(x + 7).

DEFINITION 1.1 [3]. Let 9* be the class of all functions f: R — C such that f is
D*-integrable on each closed interval [a, b] C R. For f, g € ®* the D* distance
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between f and g is defined to be

po(fo8) = swp |9 [ (A0) — g(0)) ]

0<h<1

A function f € 0* is almost periodic in the sense of the D* distance (or simply
D* a.p.) if, given € > 0 there is a relatively dense set {7} such that
pD"( fr’ f) <&
forallT € {r}.

DeriNiTION 1.2 (7, 6, S]. A function f: [a,b] = X is said to be special
Denjoy-Bochner integrable or D*B-integrable in [a, b] if there is a function F:
{a, b} — X such that F is strongly ACG, on {a, b} and ADF = f almost every-
where in [a, b] where AD,F stands for the strong approximate derivative of F.
The function F is then called an indefinite D*B-integral of f on [a, b} and
F(b) — F(a) is called its definite D*B-integral on [a, b] and is denoted by

(0*B) [ "1(¢) dt.

DEFINITION 1.3. Let 9D*% be the class of all functions f: R — X such that f is
D*B-integrable on each closed interval [a, b] C R. For f, g € *% the D*B
distance between f and g is defined to be

ot fr8) = swp 0B [0 = st a,

0<h<]
X <X< o

A function f € D*%D is said to be almost periodic in the sense of the D*B-dis-
tance (or, simply D*B a.p.) if, given &£ > 0 there is a relatively dense set
{r} = {r; f, €} such that

pD"B(f'r’ f) <€
for all € {r}. Clearly every almost periodic function f: R — X is D*B a.p.

REMARK. This definition of the D*B-distance, of course, does not guarantee
that

pD‘B(f’ g) < ®

for all f, g € D*®B. We shall, however, prove that every D*B a.p. function f is
D*B-bounded, that is

ol f] = ppep(f.0) < o0
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from which it will follow that for all D*B a.p. functions f and g
pD‘B(fa g) < .

DEFINITION 14. A continuous function ¢: R X [0,1] - X is called almost
periodic in x € R uniformly with respect to h € [0, 1] if to arbitrary € > 0 corre-
sponds a relatively dense set {7} such that

sup flo(x + 7, k) — o(x, k)| <e

0sh=<l]
—00 <X< 00

forallT € {7}.
The following result for integration by parts for the D*B-integral, which will be
needed later, is proved in [5].

THEOREM 1.5. Let f: [a, b} - X be D*B-integrable and
§
F(¢) = [*(r) d.
a
Let g: [a, b] - R be L-integrable and let
t3
G(¢) = [g(r) ar.

a

Then fG is D*B-integrable over [a, b] and
['f6=1Fc1;— ['Fg.
a a

2. Properties of D*B a.p. functions
THEOREM 2.1. If a function f is D*B a.p. then
X
F(x) = [ f(e) dt
0
is uniformly continuous.
Since the D*B-integral,
F(x) = [ f(t) a,
0

is continuous and since a continuous Banach valued function is uniformly
continuous on a closed interval the theorem can be proved by the usual process.

TaEOREM 2.2. If f is D*B a.p. then the function ¢: R X [0, 1] —» X defined by
x+h
o(x, h) = |~ f(r)dt
X

is almost periodic in x € R, uniformly with respect to h € [0, 1}.
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PrOOF. We first show that the function ¢ is continuous. Let ¢ > 0 be arbitary.
Since by Theorem 2.1 F(x) = [ f(¢) dt is uniformly continuous, there is a § > 0
such that || F(x,) — F(x,)|| < ¢/2 whenever | x, — x,|< § for all x|, x, € R. Now,
let (xq, o) € R X [0, 1] be arbitrary. Then

(o, ko) = oCx W =| [ A0y dt = [*f(e) ar

=[F(xo + ko) — F(xo) = F(x + h) + F(x)|
<IF(xo+ ho) = F(x + )| +[[F(x) — F(xo)|

<e/2+¢/2
=&

whenever jx — x,|<8/2, |h — hy|< 8/2. Hence ¢(x, #) is continuous on R X
[0, 1].

Now, since f is D*B a.p., corresponding to ¢ > 0 there is a relatively dense set
{7} such that pp.5( f,, f) <eforallT € {7}. Hence

fx+hf(t +1)dt — f:Hf(t) dt” <k,

sup

O<h<l x

-0 <X< 00

that is,
+r+h +h

sup fx i f(t)dt—fx f(t)dt”<e
0<sh=] x+T x

-00 <X <00

from which it follows that

sup ”¢(x+7’h) —¢(x,h)”<£,
0
which completes the proof.

LeEMMA 2.3. Let C[0, 1] be the Banach space of all continuous functions y:
{0, 1] = X with norm

I¥lex = sup [ly(A)]
0<h<l
and let ¢: R X [0,1] » X be a continuous function. Then the function ®: R -
Cl0, 1] defined by
" ®(x) = o(x,-)

is almost periodic if and only if the function ¢ is almost periodic in x € R, uniformly
with respect to h € [0, 1].
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PROOF. Since [|®(x)lie, = SuPp<n<ill$(x, #)|| we have
@(x +7) = ®(x)lley = sup llo(x + 7, k) — ¢(x, h)]|
0<h=l

and so the result follows.

LEMMA 2.4, If the continuous functions ¢: R X [0,1] > X and y: R X [0,1] - X
are almost periodic in x € R uniformly with respect to h € [0, 1] then ¢ + y is so.

PrROOF. Let C4[0,1] be as in Lemma 2.3 and let ®: R - C4[0,1] and ¥:
R - C[0, 1] be defined by
(x) = o(x,-), ¥(x)=v(x, ).
Then by Lemma 2.3, ® and ¥ are almost periodic and so is the sum ® + ¥, and

hence by Lemma 2.3, ¢ + ¢ is almost periodic in x € R uniformly with respect to
h 10,1}

THEOREM 2.5. If f and g are D*B a.p. then so is f + g.

PrOOF. By Theorem 2.2, the functions ¢(x, h) = [*T"f(¢)dt and Y(x, h) =
*the(t) dr are almost periodic in x € R uniformly with respect to & € [0, 1].
Hence by Lemma 2.4, ¢(x, h) + Y(x, h) is almost periodic in x € R uniformly
with rspect to & € [0, 1]. So, given € > 0, there is a relatively dense set {7} such

that

sup  f[¢(x + 7, h) +9(x + 7, k) = d(x, h) —d(x, b <e
RS

for all T € {}. Hence

sup [T g0y de— [T + 80} <
that is,
sup | [T+ ) + g0+ 1)) = (7(0) + ()] dt] <
—0S<hx§00 *
that is,

pD‘B((f+ g)n f+ g) <€
for all 7 € {7}. Hence f + g is D*B a.p.

THEOREM 2.6. If f is D*B a.p. then f is D*B bounded, that is,
pp-sl f1=pp-s(f,0) < 0.
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PROOF. Letting ¢(x, h) = [**"f(¢) dt and constructing the function ®: R >
C[0,1) as in Lemma 2.3 we see ® is almost periodic. Then by [1, page 5,
property 1V}, the range of ® is relatively compact and hence

sup [ @(x)ley < co.
—00 <x <00

Hence by the definition of || - ||¢,

sup  flo(x, B)] < oo,

O0shs<]
—oC <X< oo
that is,
x+h
sup f f(¢) dtll< o0,
O0<h<l X
-0 <X< 00
that is,

pD"B(f’a) < .

THEOREM 2.7. If f is D*B a.p. then f is uniformly continuous with respect to the
metric pp.p; that is, for every € > 0 there is § > 0 such that

pD‘B(fn’ f) <e&
for all q satisfying jm|< 8.

PROOF. Since f is D*B a.p. by Theorem 2.2 and Lemma 2.3 the function ®:
R — [0, 1] defined by ®(x) = ¢(x, -) is almost periodic, where ¢(x, h) =
x*hf(t)dr. By [1, page 5, property III], ® is uniformly continuous. So, for
arbitrary ¢ > 0 there is § > 0 such that

sup [ @(x + 1) — ®(x)fe, <e

-0 <X< oo
for all i satisfying |n|< 8. That is,
sup [|lp(x +m, k) — ¢(x, h)| <e,

0<h<]
-0 <x<oe

that is,

sup

0<h=<]
-0 <x<oc

/x+h{f(t +17) ‘f(t)} dtl' <e,

X
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that is,
pD‘B(fn’ f) <€

whenever |7 |< 8.

THEOREM 2.8. If {f,} is a sequence of D*B a.p. functions such that f, — f with
respect to the metric pp.g then [ is D*B a.p.

PROOF. Let € > 0 be arbitrary. Then there is N such that pp.g( £, f) < ¢&/3 for
all n = N. Since fy is D*B a.p. so there is a relatively dense set {7} for which
pp-8((fv)r fv) < e&/3. Hence

poes( S /) < ppes( fis (fn):) + 0on((fa)rs fv) T 0pen(fys f)
= ppelfs fy) + pD‘B((fN)-r’ fzv) + pD*B(fN’ f)

< €.

Thus fis D*B a.p.

THEOREM 2.9. If f is D*B a.p. and u(x) is almost periodic numerical valued
function with its derivative w'(x) uniformly continuous then f(x)u(x) is D*B a.p.

The proof of the theorem is similar to that of the corresponding theorem of [3].
In fact all the arguments of [3] will apply in this case taking into account the fact
that the integration by parts formula for integral is given in Theorem 1.5.

LEMMA 2.10. If f is D*B a.p. then x*f is D* a.p. for every x* € X*, where X* is
the conjugate space of the Banach space X.

PrOOF. Take any x* € X* and ¢ > 0. Then there corresponds a relatively dense
set {r} = {7; f, &(|x*|| + 1)"'} such that

sup

O0sh<]
—oc<x<oe

[ e+ 1) = 1) d’H< (x4 + 1)

X
for all 7 € {7}. Now since f is D*B a.p., f is D*B-integrable on each closed

interval [a, b] and so by a result of [5] x*f is D*-integrable on each [a, b] and
therefore x*f € )*, Moreover

x*j;”"f(z)dt :fx"”x*f(z) dt
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for all x € R and 4 € [0, 1]. Hence for all 7 € {1}

[ e+ 1) = %2 f(0)) dt‘

x

sup

0<h=<]
-~ <x<oo

[ e+ ) = 1))

X

x*fxﬁh{f(t + 1) — f(1))} dt‘

Osh=<]
-0 <Xx< 00

n

sup  flx*||

o W ) =) o

X< 00 .

[ o =y af

X

= |Ix*|  sup
0<h<]
-0 <x<00

<|lx*felx* + 1) <e.

This completes the proof of the lemma.

LEMMA 2.11. If x*fis D* a.p. for all x* € X* and if

F(¢) =j0’f(x)dx

is bounded then F is weakly almost periodic (that is, x*F is almost periodic for all
x* € X*).

PrOOF. The function F(z) being bounded x*F(¢) is also bounded for all
x* € X* and since

x*F(t) = (D*) /0 "t f(x) dx,

x*F is almost periodic by [3], that is, F is weakly almost periodic.

THEOREM 2.12. If f is D*B a.p. and if
t
F(1) = ['f(x) dx
0
is such that the range of F is relatively compact then F is almost periodic.
PrROOF. By Lemma 2.10, x*f is D* a.p. for all x* € X*, The range of F being
relatively compact (that is, its closure being compact) F is bounded. Hence by

Lemma 2.11, F is weakly almost periodic. So by [1, page 45, property X] F is
almost periodic.
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THEOREM 2.13. The class of all D*B a.p. functions is identical with the D*B-closure
of the set of all trigonometric polynomials

n
P(1) = X a,e™
r=1
where a, € X, A, €ER.

The theorem can be proved in the same way as the corresponding theorem of D
a.p. functions of [3].

THEOREM 2.14. If f is D*B a.p. and is uniformly continuous then f is almost
periodic.

PrROOF. Let ¢: R — R be a nonnegative function with support [0, 1] having
continuous derivative ¢’ such that [j¢(7) dr = 1. For a fixed n let ¢,(x) = no(nx).
Then ¢, is a nonnegative function with support [0,1/s] having continuous
derivative ¢, and [§/"¢,(1) dt = 1. Let

1/n
Jux) =f0 St + x)e,(¢) dt.
Then we shall show that f, is almost periodic for each n. Let n be fixed and let
€ > 0 be arbitrary. Let
M= sup |¢,(x)|, M = sup |¢,(x)].

Osx<| O=x=<l

Since fis D*B a.p. there is a relatively dense set {7} such that

(2.1) poes( £ ) <e(M+ M)
for all € {r}. Let 7 € {7}. Then writing F(x) = [§f(¢) dt and Y(x) = F(x + 1)
— F(x) we have employing Theorem 1.5

22) If(x +7) = LI
=\ [0 x4 4 00} 4

=G+ x4 1) = R+ )]

= [ R+ x4 1) = B 00)ai(o)]
= [ en()9(x + 0)]}L5 f \P(x+t)¢"(t)dt“
=[x+ ) = 9T = [0l + 1) = w0 ai(0)

=jeula ) el + 2] = w00 = 700+ 0 - wenao
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Now let ¢t € [0, 1/n]. Then from (2.1)
G+ 0) =l = [ e+ 0 - 1)) 4

<ppp(f, f) <e(M+ M')_l~

Hence from (2.2)
(x4 1) = fu(2)| < Me(M + M) + M'e(M+ M) =

Since 7 € {7} is arbitrary, f, is almost periodic for each n.
Now since f is uniformly continuous, for every ¢ > 0 there is § > 0 such that

(e +x) = f(x)] <

whenever | ¢|< §. Choose N such that 1 /N < §. Then when n = N we have

I14C) = FC = | [ A+ )0y de = [ f(x) (o)

:”fol/"{f(’ +x) = f(x)}a,(1) dt”
<[+ x) = A0l (1) de

<e.

Thus { f,} converges uniformly to f. Since each f, is almost periodic, by [1, page 6,
property V] f is almost periodic.

3. Mean values and Fourier series

THEOREM 3.1. If f is D*B a.p. then the mean value

lim leOTf(z)dz:M(f)

T—oc

exists; further

lim -IT—fa"”f(z)dt:M(f)

T—oc

uniformly with respect to a € R.

PROOF. Since

| ifA=20
1 fa+T , ’
/‘; ekld[: {L[ei)\(a-#-T)_ei)‘”] lf)\#o’

~|

iAT
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it is clear that

. l a+tT At _ {l if A :0,
lim o [ eMar= {0 BN

uniformly with respect to a € R and hence for any trigonometric polynomial P,
P(t) = Eae (a, X, A, ER),

lim ?f Tp(t)dr = M(P)

exists uniformly with respect to @ € R. Let € > 0 be arbitrary. By Theorem 2.13
there is a trigonometric polynomial P such that pp.g( f, P) < &. Hence

(3.1 sup Nf:”'{f(z) — P(t)}dt”<s.

0<h<l
—oc<x<oc
Now corresponding to ¢ there is 7, which is independent of a, such that
1 a+ T’ 1 a+T"
(3.2). ”?j; P(t)dt—FL P(t)dt“<e
foral 7", 7" > T.,.
Set Ty, = max|T,, 2] and let T}, T, > T,. Then there is a positive integer N such

that N — 1 < T, < N. Putting » = T, /N, since N > 2, we have + < h < 1. Now
by (3.1) we have

a3 | [T~ p) a

:”_lh_/””"{f(z) — P(1)) i

5 [ )

1 N a+nh
7 t)y— P(r)}ar
Nh ,,§1 a+( fl)h{f( ) (1)) “
1
< WNE
< 2e
since 1/h < 2. Similarly for 7, > T,
I a+ T,
3.4) “?/‘ ’ () — P(2)) deff < 2e.
2%a
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Since T, = T we have from (3.2), (3.3)and 34)when T}, T, > T,,

’ri,fam'f(‘)d’ 5 [ a

“-l_ a+T,

1 a+ T,

f(t)dt — = P(1) dt

H 1 fa+T a+T,

P(t)dt— P(r) dr

T

+

Tzfa+T2 ( )d _ 2/;a+T2P(t)dt

< Se.
Thus since X is complete and since T; is independent of a,

prf "f(e) dr = M(f)

exists uniformly with respect to a € R, completing the proof.

Now if f is D*B a.p. then since u(x) = e *** is numerically valued almost
periodic function and u’(x) is uniformly continuous, by Theorem 2.9 f(x)e "** is
D*B a.p. for all A € R and consequently

M{f(x)e ™} = h f f(x)e ™ dx
exists for every A € R. For a D*B a.p. function f we shall write
a(N) = a(A; £) = M{f(x)e™).

THEOREM 3.2. If f is D*B a.p. then a(X; [) differs from the zero element 8 of X
for only an enumerable set of values of A.

PROOF. Let
X
F(x) = / £(2) dr.
0
Then for a given & € [0, 1] we have, by integrating by parts by Theorem 1.5.
1 T —IAXx
(3.5) 7‘[ {(f(x + k) — f(x)}e ™ dx
0
1 _iaxlT
= S[(FGx + h) = F(x))e ™™

+ 3 [T(FG+ 1) = F(x))e ™ ds
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Also

(3.6) leOT{f(x +h) — f(x))e dx

=1T e"“'fh”"f(z)e-'“dz— f()rf(t)e-f*'dt].

Now by Theorem 2.2 the function F(x + h) — F(x) is almost periodic. Let its
Fourier coefficients be a,(A). Then applying Theorem 3.1 we get from (3.5) and
(3.6), by letting T — oo since F(x + h) — F(x) is bounded,

(3.7) (e™ = Da(A; f) = iAey, ().
So,if A #2nm,n=10,*1,*x2,...
iA
a(A; f) = ;;;—*—‘ah(A)-

h—

Since a,(A) # @ for at most enumerable number of A, a(A)# @ for these
enumerable A and probably for A = 2n7, n =0, £1, =2,.... Thus a(A) differs
from @ for at most an enumerable set of values of A. This completes the proof of
the theorem.

Let {A,} be the enumerable set such that a(A,) # 6. Putting a, = a(A,) we say
that Za,e*"* is the Fourier series of f and write

f~ za"eik,,x.
LEMMA 3.3. If fis D*B a.p. and x* € X* then
x*a(N; ) = a(\; x*f).
PrOOF.
x*a(A; f) = x*M{ f(x)e"**}
x* Tlin:o —%(D*B)_/()Tf(x)e“”"‘ dx

: 1 * T —iAx
Tlirr:o ?x*(D B)/(; f(x)e ™ dx

since x* is continuous. Now since a Denjoy-Bochner integrable function is
Denjoy-Pettis integrable with integrals equal [5], we have

x(D*B) [ "f(x)e M dx = (D*) [ Texf(x)e=™ dx
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and hence

x*a(A; f)

lim 1 Tx*f(x)e“""dx
T T 0

M{x*f(x)e-n\x}
a(A; x*f).

THEOREM 3.4 (Uniqueness Theorem). If two D*B a.p. functions f and g have
same Fourier series then

ppes(f g) =0.

PROOF. Let x* € X* be arbitrarily chosen. By Lemma 2.10 x*f and x*g are D*
a.p. scalar functions and by Lemma 3.3 they have same Fourier series. As the
corresponding theorem of [3] it can be shown that p.(x*f, x*g) = 0, that is,

wp |09 100~ sten) a0

Now by our previous remark

x(0B) [ (1) — g(D)}y de = () [ e (1) = ()}

and hence
sup *(D*B)fx+h{f(t) — g(1)) dt' = 0.
IO
Therefore,
x*(0°B) [T (A1) — g(0)) de =

for all x € R and /& € [0, 1]. Since x* is arbitrary, by Hahn-Banach Theorem
(©B) [ ()~ g(0)} =0

for all x € R and h € [0, 1]. Therefore

() = g0y d] = 0,

sup

Oshsl
-0 <Xx<00

that is,
pD‘B(f’ g) =0.
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4. Bochner-Fejer summability of Fourier series

We shall show that if f be D*B a.p. then the Fourier series of fis Bochner-Fejer
summable to f with respect to the metric p .5 defined on the space of all D*B a.p.
functions. For this purpose we shall use the ‘Bochner-Fejer Kernel’ and the
‘Bochner-Fejer Polynomials’ the details of which are discussed in [2, pages 46-50],
[1, page 26] and [4, page 153}.

Let f be D*B a.p. and let f(¢) ~ Sa, e Let B,, B,,... be a basis of the
sequence {A,} of the Fourier exponents of f. For each positive integer m we
consider the Bochner-Fejer Kernel

(4.1) Km(t)zz(l—ﬂ‘—l—)---(l— LY )exp( i §Vk,8k)

" m!

(m1)? (m?)? k=1
and the Bochner-Fejer polynomial for f
4.2) 0,(t) = 0,(t; f)

3l ) (-

Xa(;l!‘ 2 viBis f)eXP(%;Vkﬁk),

where the first summations in (4.1) and (42) extend to all », |v;|< (m!),
J=1,2,...,m, and a(A; f)in (4.2) is defined by

a(X; f) = M{fe"™*}.

If, however, the basis contains a finite number of elements B, 8,,...,8, then we
take
¥ | ) ( %! )
0,(t) = l——] - {1
2 ( (m!)? (m1)?
1 & _ it &
X a m 2 VkBk’ f exp 7n_| 2 Vkﬁk )
* k=1 C k=1

the summation being extended to |7;|< (m"?,j = 1,2 --- p with similar modifi-
cation for K, (). It can be verified that

o.(t; f) = lim fTKm(u)f(u + 1) du.
T-0 Y0
In what follows we need the function

é(x, k) =fx+hf(t)dt, xER,KE[0,1].
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For fixed h € [0,1] this is a function of x alone which is almost periodic by
Theorem 2.2. Therefore for arbitrary but fixed & € [0, 1], the 0,,(x; ¢) will have
the same meaning as given in (4.2).

THEOREM 4.1. Let f be D*B a.p. and let
f(t) ~Zae.

Then the sequence of trigonometric polynomials {o,(t; f)} converges to f with
respect to the metric ppsg as m - oo.

We shall complete the proof of the theorem in three lemmas.

LeEMMA 4.2. If fis D*B a.p. then
0,(x; ¢) - ¢(x, )
as m — oo uniformly with respect to x €R and h €[0,1] where ¢(x, h) =

[ () dr.

PrOOF. By Theorem 2.2 ¢(x, &) is almost periodic in x € R uniformly with
respect to h €[0,1]. Hence by Lemma 2.3 the Banach valued function ®:
R - C[0, 1] defined by ®(¢) = ¢(¢, -) is almost periodic. If

D(1) ~ D be™
then b, € C[0, 1] and

g l a+T SiRg
(4.3) b, = lim Tfa D(1)e ™M dr

uniformly with respect to a (see [4, page 146]). By the definition of ® we can write
@(t)e-ix,,r — (P(t, . )e-i)\,,t
and so

1 qatrT —ikt a+T N o-iAgt
'Tf,, O(1)e- M dr = f o(1, -)e ™ dr.

a

Hence from (4.3)

l a+T “iAgt g
lim ‘T./; O(1)e " "dr — b,

T-o00

X

uniformly with respect to a. That is

sup Tf"”¢(z h)e Pl dt — b(h)“=

T—'oo 0=<h<l
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uniformly with respect to a. Hence

: l a+T ) W P
Tlgr;ona (1, h)e ™t dt = b,(h)

uniformly with respect to a and 4. So, b,(h) are the Fourier coefficients of ¢(¢, /)
and the Fourier exponents of ®(¢) and ¢(z, #) will remain the same. Now it is
proved in [1, page 26] that

4.4) lim o,(t; ®) = ®(1)
m— o0
uniformly with respect to ¢, where o,(t; ®) is defined as in (4.2) and the limit in

(4.4) is taken with respect to the Banach space in which ®(¢) lies and so (4.4)
becomes

"om(t; (I)) - Q(’)”Gx -0
as m - oo uniformly with respect to 7. That is

sup |, (1; ) — ¢(t, h)|— 0
0=<h=l1

as m — oo uniformly with respect to ¢. Thus
o,(t; 9) - o(t, h)
as m — oo uniformly with respect to ¢ and h.

LEMMA 4.3. If fis D*B a.p. then for each h € [0, 1]
fx+hom(t; fldt=oa,(x; ¢).
X

Integrating (4.2) and using (3.7) the proof can be completed.

LEMMA 4.4. If f is D*B a.p. then o,(t; f) — f(t) as m — oo with respect to the
metric ppsy.

PROOF. Let ¢(x, h) = [**"f(¢) dt. Then by Lemma 4.2
0.(x; &) = ¢(x, h)
as m - oo uniformly with respect to x € Rand 4 € [0, 1]. So,
sup o, (x; ¢) — &(x, h)|| >0

O<h=<]
- x<oo

as m — oc. Hence by Lemma 4.3

[ ot 1) —‘/:Hf(t)dt“—»O

X

sup

- Oﬂ'xiloo
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asm — 00. So,

that is,

B. K. Pal and S. N. Mukhopadhyay (18]

[ et 1) = ) | =

O<sh<]

po-p(0n(t; f), f) = 0

as m — oo. This completes the proof of Theorem 4.1.

References

[1}] L. Amerio and G. Prouse, Almost periodic functions and functional equations (VYon Nostrand
Reinhold, New York, 1971).

[2] A.S. Besicovitch, Almost periodic functions (Dover Publications, New York, 1958).

[3] H. Burkill, ‘Almost periodicity and non-absolutely integrable functions’, Proc. London Math.
Soc. (2) 53 (1951), 32-42.

[4] C. Corduneanu, Aimost periodic functions (Interscience, New York, 1968).

[5] B. K. Pal, ‘Integration by parts formulae for Denjoy-Bochner and Denjoy Pettis integrals’, to

appear.

[6] D. W. Solomon, Denjoy integration in abstract spaces (Memoirs of the Amer. Math. Soc. 85,

1969).

[7) B. S. Thomson ,‘Constructive definition for non-absolutely convergent integrals’, Proc. London
Math. Soc. (3) 20 (1970), 699-716.

Department of Mathematics
The University of Burdwan
Burdwan 713104, West Bengal

India

https://doi.org/10.1017/51446788700022047 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700022047

