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SUMMARY

The model of random selection coefficients is considered in the context
of a finite population of diploids. The selection coefficients of the homo-
zygotes are allowed to vary with equal variance while the fitness of the
heterozygote is kept fixed. Steady-state solutions are found in the case of
equal two-way mutation rates with particular reference to the expected
heterozygosity. Increasing the variance of the selection coefficients of the
homozygotes is found to uniformly increase the heterozygosity for all
values of the average selection coefficients and its effect is largest when
the selection coefficients of the homozygotes are fully correlated. The fate
of mutant genes is also considered in the case of random selection coeffi-
cients by looking at the probability of ultimate fixation and the mean
times to fixation and extinction. The errors in previous calculations
(e.g. Kimura, 1954; Ohta, 1972) are pointed out. It is found that a small
average heterozygote advantage together with a reasonable degree of
variance in the coefficients can cause an unexpectedly large amount of
heterozygosity to be maintained. It is also seen that probabilities of fixation
and mean times to boundaries are usually increased by increasing the
variance showing that it in fact helps to keep the population heterozygous
for much longer than the non-random case. Thisis in contradiction to some
conclusions of Karlin & Levikson (1974) because their haploid results
are not easily extendable to the consideration of this sort of diploid model.

1. INTRODUCTION AND BASIC MODEL

Fluctuation of selection coefficients at a locus can be caused by random environ-
mental changes. Most species inhabit an environment which is subject to change,
sometimes very drastic change, and thus for an understanding of the effect of this
variability, the model of random selection coefficients seems to be an important one.
Kimura first worked on this topic some time ago (e.g. Kimura, 1954, 1964). How-
ever, it has been pointed out recently that his results, and later works based upon
them, are in fact, incorrect. Jensen (1973) and Gillespie (1973) examined simple
haploid models to exemplify the error, and Karlin & Levikson (1974) gave a general
review of the effects of variability, concentrating more or less entirely on haploid
models. Hartl & Cook (1973, 1975, 1976) have also examined this topic, particularly
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concentrating on the case when the alleles are on average neutral, which they call
‘ quasi-neutrality’. They have, however, ignored the effects of mutation and finite
population size which are considered here. Takahata, Ishii & Matsuda (1975)
attempt to extend the analysis of selection coefficients to include a correlation from
generation to generation. However, the method in which they do so seems somewhat
obscure. By mathematics, which this author finds difficult to follow, they produce
a Diffusion Equation in which the term, due to the variance of selection coefficients,
in the infinitesimal variance term, ¥}, is double that found with the independence
approach (i.e. Karlin & Levikson, 1974). Otherwise the equation is unchanged. This
seems to be a rather unexpected result and is not discussed by them.

Most species have diploid loci, rather than haploid ones. Thus the haploid results
have been extended in this paper to diploids. With all selection schemes, one is
predominantly concerned with relative fitnesses. This is particularly true if a diffu-
sion equation approach is to be used as the selection coeflicients are by necessity
considered to be small. Thus, in this paper, the heterozygote fitness will be con-
sidered to be fixed. The inclusion of variability for all fitnesses as suggested by
Karlin & Levikson (1974) seems an unnecessary complication. Because of this
set-up of genotypic fitnesses, the results from haploid models cannot be easily
extended to diploid models and thus a new appraisal is needed. In this paper,
models of average heterozygote superiority (and inferiority) and average no-
dominance selection will be considered. In the analysis of this paper, the magnitude
of the errors of Ohta & Kimura (1972) and Ohta (1972) are pointed out. The number
of quantities considered for the models is extended so that a greater appreciation
of the effect of variability of selection coefficients can be obtained.

Two lines of approach will be taken. In both, a colony of finite size will be con-
sidered. First, equal forward and backward mutation rates will be allowed and the
steady-state gene frequency distribution and the steady-state heterozygosity will
be calculated. The aim of this approach is to see how the parameters of this model
affect the genetic variability maintained in a population. Secondly, in order to see
how random selection coefficients affect the rate of change of populations, the fate
of a small number of mutant genes will be examined by considering the probabilities
of ultimate fixation and extinction, and the mean times to each of these events,
assuming that they will happen.

The basic model, used in both approaches is that of two alleles at a diploid locus
with fitnesses at a generation, ¢, given by

Genotype AA Aa aa
Fitness 140 1 147

where the selection intensities (o, T') are assumed to fluctuate over time in a random
manner, with identical distributions in all generations and independence between
generations. In the following sections, the following symbols will be used:

E(oc)=3s E)=t; var(o)=var(Y)=V, and cov(o,Y) =1V,
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2. MODEL WITH TWO-WAY MUTATION RATES
For simplicity, let us assume equal forward and backward mutation rates,
v say. Then from the formulae produced by Karlin & Levikson (1974), we obtain
the following expressions for the moments of the small change in gene frequency, z,
of allele A per generation:

E@lx)y=M,, = —z(1—-a)(t—(s+t)x)+Vx(l—x) (1 —-2z) (1 — (L +7)z(1 —x))
+u(1—-2z), (2.1)
var (8z) =V, = V,a%(1 —2)? (1 —2(1+7) 2(1 —2)) + 2(1 - z)/2N,
under the assumption that s, ¢, V, and » are small and of the same order as (2N,)2.

The steady-state gene frequency distribution ¢(x) is then found by using Wright’s
solution of Kolmogorov’s Forward Diffusion Equation (Wright, 1938, 1949), i.e.

d(z) = % exp(2fl:2: dx) . (2.2)

where C is a normalizing constant such that f § ¢(x) dx = 1. Thus one has to evaluate
I= f (My./Vs,) dz. In order to demonstrate the qualitative effects of the different
parameters, we shall take the simplifying assumption that a = N,¢ = N, (i.e. the
selection coefficients of the homozygotes have, on average, the same value). Later
in this section, it will be shown that similar results are obtained in the non-symmetric
case.

One can simplify the integrand of I by substitution and the subsequent use of
partial fractions. The resultant functions can be integrated easily. Details are given
in Appendix (i). On substituting the answer for I, which one obtains, in equation
(2.2), one finds that forr = —1and ¥V, £ 0

P(z) = Cla; — (1 —2))71 (2(1 — ) — ap)s (2(1 — z))A, (2.3)

where
_ 1 8(1+7) .
e 1259 -1
o (d—ay) B .
re 1788l e,
d=(i—_-—2iv), V=2NJV, and f=4Nv
147
Ifr=-1,
$(x) = Clx(1—z)+ V-1)i-A-tarm (g(1 —x))F-1, (2.4)

Fig. 1 gives the steady state gene frequency distribution for some values of the
parameters. One sees that, as V increases, a peak is produced around z = 0-5,
which is typical of systems which maintain a high degree of heterozygosity. One
further sees that the peak is most pronounced if 7 = 1, i.e. the two sets of random
selection coefficients are completely correlated.

The moments of ¢(x), and in particular H, the steady state heterozygosity, can
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be found by use of numerical integration. In order to evaluate C accurately, a few
manipulations need to be done (see Appendix (ii)). Having found C-1, H is easily
found by using

1
H =f 2z(1 — z) p(x) dz.
0

Figs. 2 and 3 show the effect of the different parameters on the steady-state hetero-
zygosity. Fig. 2 gives the effect of », when s is zero, and one sees that, as one would

0-16

$(x)

0-08

0-04

0-00 i $ 1 i
00 0-2 04 06 08 1-0
X

Fig. 1. The steady-state gene frequency distribution, ¢(x), is plotted against the
gene frequency, z, in the case of quasi-neutrality for various values of the variance
and the correlation coefficient of the fitnesses. 8 = 0, f = 4N, v = 0-01, V = 2N, V_.

expect from Fig. 1, that H increases quite substantially with ¥V, the effect being
largest when r is 1, and decreasing with r for fixed values of V. The graphs marked
‘UC’ are the results which one obtains if one neglects the variance term in M, as
was done by Kimura (1954) and in other later papers. The solutions are very similar
algebraically but, as can be seen from the graphs, are very different when actual
parameter values are inserted. For example, if r € (— 1, 1], the uncorrected formulais

P(z) = Clay~z(1 —z))" (2(1 — ) — ay) (x(1 —z))P2,
where

2a B .
‘y‘=—1iV(1+r)(a1—a2)_Vai+2 (=1,2). (2.5)

Fig. 3 gives the effect of a non-zero mean, r being kept constant at one. As one
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Fig. 2. The steady-state heterozygosity, H, is plotted against the variance
factor, V, in the case of quasi-neutrality for various values of the correlation
coefficient, ». The graphs marked ‘UC’ give the uncorrected solutions.
a=Ns=0,8=4N,» = 0-01.
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Fig. 3. The steady-state heterozygosity, H, is plotted against the variance factor, V,
in the case of fully correlated coefficients (i.e. » = 1), for various values of the
average selection factor, « (= N,s8). « = N,8, § = 4N,» = 0.01.
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might expect, increasing the mean, s, uniformly decreases H for all ¥ as it creates
average heterozygote disadvantage. The fact that average heterozygote superiority
and a reasonable amount of variability produce much larger degrees of hetero-
zygosity than one would otherwise expect is certainly important and perhaps
is an explanation to some genetic variability.
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Fig. 4. The steady-state heterozygosity, H, is plotted against the degree of asym-
metry for fixed average selecl;ion in the case of random heterozygote advantage
(r = —1). (N,) (8+8) = 1-0, & = tfs+t.

In order to show that these results are valid, when the heterozygote superiority
is asymmetric, I have taken the case which is simplest, mathematically,i.e. r = — 1.
Already in this section, I have shown that this value of 7 is the least efficient value
for maintaining a high value of H. Thus if we find that variability still leads to
increased heterozygosity in the asymmetric case, r = — 1, we can reasonably assume
that the same is true for other values of .

If r = — 1, then proceeding as we did above, we obtain:

P(x) = Clz(1 —2))f~1 (By — )1 (x— By)e,
where
B, = j1+J(1+47Y] and A= 1-p—20it0%)

vV

(0:—6,)
Vi(1+4V-1)
(i=1,2)

This simplifies to (2.4) if §; = 8, = a as (B, — x) (x — E;) = 2(1 —x)+ V1. The effect
of asymmetry is shown in Fig. 4 by plotting the heterozygosity, H, against

t b _1[%=8;
T s+t &+8, 2[6,+6,

+2
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keeping 3(8,+98,) = $N,(s+t) constant. One can see that V increases H for all
values of 2.

3. FATE OF SMALL NUMBERS OF MUTANT GENES

In this section I shall consider the fate of mutant genes by looking at their
probabilities of ultimate fixation and extinction, and the mean times to these events
assuming that they take place. It is assumed that no further mutation occurs after
the initial production of the mutant. The methodswhich I shall use depend only on p,
the initial frequency of mutants but, in order that the diffusion approximation is
valid, the colony size must not be too small. I shall look here at the fate of single
mutant genes. Similar results are found if larger numbers of initial mutants are
considered.

The formula for u(p), the probability of ultimate fixation is derived from Kolmo-
gorov’s Backward Diffusion Equation (Kimura, 1962, 1964) and is given by

u(p) = f:G(x)dx / f:G(x)dx, (3.1)

o o o[ ]

The mean times to fixation and extinction are given in general form by Kimura &
Ohta (1969a, b). These times are conditional on the particular event happening. The
two equations are:

where

mean time to fixation = #, = j1¢(x) w(z) (1 —u(z)) dz + 1 ;(’;()P)
P

fﬁ(x) [Pz (3.2)

and
. T u(p)
mean time to extinction =7, = | Y(z)u(z) (1 —u(z))dzr————
0 1—u(p)
1
[veru-uera, @3
D
where V@) = 20(0,1)/(3,0() and gla,y) = [ 66 d
I shall now consider two modelling schemes: that introduced above and a model
of no dominance (i.e. T = — o).
(1) Model 1
Genotype AA Aa aa
Fitness 1+s+0" 1 1+84+7Y"

where 0’ =0—-¢, Y ' =Y—¢, E(¢’)=E(Y')=0 and correlation coefficient of
(c', 1) =r.

Thus the equations for 3,  and V;, are the same as equation (2.1) with s =¢,
except that the term in v(1 — 2z) has been removed from M,,.
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If the selection coefficients are fixed, i.e. ¥, = 0, then one obtains that
G(x) = exp[daz(1 —x)]. (3.4)

IfV, = 0,then I (= f (M,;,/V;,) dx), calculated in section 2, can be used to evaluate
G(x). Thus one finds that, for » = — 1.

G(x) = (1 —2(1 - 2)fo i (1 +2(1 - 2)[( —ap))"%, (3.5)

0-045

0-040

0-035 |-

-3 -2 —1
a=N,S

Fig. 5. The probability of ultimate fixation, u(p), is plotted against the selection

parameter, a, for model (i), with various values of the variance and the correlation

coefficient. The graph, marked ‘UC’, gives the uncorrected solution. ¥V = 2N,V_,
N, = N = 100.

where

(t=1,2) (dandc,’sare as defined in section 2)

_ 1% dafv .
= tTaysaanm O

and for » = — 1, G(z) = (1+ V(1 —2))%7-2. u(p), {, and #, can now be found using
numerical integration. Some values for them are shown in Figs. 5-7. From Fig. 5,
one can see that u(p) is approximately independent of 7 by the two graphsfor ¥ = 10.
Intermediate values of 7 give intermediate graphs. This relative invariance is due to
the fact that G(z) is approxima,tely independent of 7 for small z:

=1,2)

G’(x)=( x(l x)+ x(l x))—1+2V(V—1)x(1-—x) forallr. (3.6)
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Also from Fig. 5, one can see that variability increases the chance of fixation of
a mutant genefor all values of &, as one would expect from the heterozygosity curves,
and that, for all values of V, u(p) increases as a decreases, which again is reasonable
as decreasing a produces heterozygote superiority. The mutant initially, will be
completely in heterozygous form and thus will benefit more from heterozygote
superiority.

1400

200 L

-3 -2 ~1 1 2 3

Fig. 6. The time to fixation, #,, is plotted against the selection parameter, a, for model
(i) for various values of the variance and the correlation coefficient, the dotted graph
being the uncorrected solution. V = 2N,V_,a = N8, N, = N = 100.

From the graphs of #;, one sees that variance uniformly increases the mean time to
fixation, if » = 1. However, if r decreases, , decreases for all « until at r = — 1,7, is
always less than the graph for ¥V = 0 for all the values of « of interest. This trend is
exemplified by the three graphs for ¥ = 5-0. The graphs for , have a similar qualita-
tive form but decreasing 7 has a smaller effect, particularly for positive values of c.
For both 7, and 7, increasing « causes a decrease for all values of V.

The effect of ignoring the variance term in M, is again given by the dotted graphs,
marked ‘UC’, in Figs. 5~-7. V = 5-0 and r = 1 are the parameter values used for
these graphs.

(i) Model 2
Genotype AA Aa aa
Fitness -0 1 1+0

where the o’s obey the same properties as defined previously and a is the mutant
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Fig. 7. The time to extinction, 7,, is plotted against the selection parameter, ¢, for
model (i) for various values of the variance and the correlation coefficient, the
dotted graph being the uncorrected solution. V = N, ¥, a = N,s, N, = N = 100.

Table 1. Mean times to extinction in non-random no dominance model (R = 1)
[

Ao
' A

s(= B(o)) I, 20 N=2 N=50 N=17 N=100 N = 200

0-001 13.2748 13-2891 7-9825 9-2981  10-0765 10-628 11-9273
0-005 10-0560 10-1114 7-9523 9-1758 9-8081 10-1723  10-5667
0-01 8:6697 8-7670 7-86097  8-8367 9-1553 9-2237 9-0561
0-02 7-2834 7-4513 7-5347 7-9105 7-8348 7-7408 7-5856
0-03 6-4724 6-7012 7-0994 7-0858 6-9560 6-8857 6-7888
0-05 5-4508 5.7843 6-2229 6-0120 59297 5-8913 5-8368
0-1 4-0645 4-6061 4-8392 47174 4-6806 4-6627 4-6366
0-2 2-6782 3:-5192 3-6505 3-5953 3-5778 3-5692 3-5664

gene. One can obtain expressions for M,, and ¥}, from (2.1) (x now being the fre-
quency of a) by substituting Y = —candr = —1.
If the o’s are fixed, then substitution of these values in equation (3.1) yields

A(z) = e,

up) = o, (3.7
and
N Gt Y o
Ve = - i
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t, and?, are again then found by numerical integration using equations(3.2) and (3.3).
The effect of @ on u(p), , and #, for ¥ = 0 is given in Figures 8, 9 and 10. One finds
that?, and #, are independent of the sign of s which can easily be proved algebraically
using the above formulae for u(p) and y¥(x). Changing N, or R (the original number
of mutants) merely shifts the graphs up and down, and does not alter the qualitative
trends. In producing these graphs, I have assumed that N, =N. If N,=cN
(0 < ¢ < 1), then the results obtained for the mean times to extinction and fixation
would be cZ, and cZ, for all fixed values of c.

0-09
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0-07

0-06

0-05

u(p)

0-04

0-03
/

0-02

1
0-01

-3 -2 ~1 0 1 2 3

Fig. 8. The probability of ultimate fixation, «(p), is plotted against the selection
parameter, a, for model (ii) for various values of the variance. The graph, marked
‘UC’ gives the uncorrected solution. « = N,s, V = 2N,V,, N[N = 1, N = 100,
R = 1.

Nei (1971) put forward two approximations for Z, in this model. In deriving both,
he assumes that « > 1. From Table 1, one can see that the approximation is reason-
able as long as a is not too small. However, the numerical integrations can be done
easily by use of a computer and thus an approximate solution is not necessary.
The two approximations of Nei are:

T = 2% log, (N/2N,6)~y+1] (B =1only) (3.8)

and

fo = (et [ 25 = (00 1) (g, () +) [, (39)

where v = Euler’s constant.
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If V # 0, one obtains that,

My, o _ [ 20+ V(1—22)

I{,x Ve(l—z)+1 (3.10)

where @ = N,sand V = 2NV,.

400
P\
So
k§
350 |- 4
res
Ve
300 | 19
P
250+
e 3 (UC)
e e
150 |
100 1 | 1 1 1
0 05 10 15 2.0 25 30

fa

Fig. 9. The time to fixation, 7, is plotted against the selection parameter, a, fo
model (ii), for various values of the variance, ‘UC’ being the uncorrected solution.
a = .N,8, V = 2N,Vo,, Na =N=100,R=1,ca.

This integral is again easily evaluated by use of partial fractions and one thus

obtains: A
__(d—zfay)s
) = Taa=agr
where
A= \/(1‘*_;“—/:;,_1):»2 and a; =}/ +4VY) (= 1,2).

u(p), I, and 7, are then found from equations (3.1)-(3.3) by use of numerical integra-
tion, as before, and some results for them are shown in Figs. 8-10. As in model (i),
increasing the variance increases u(p) for all values of «. Also in a similar manner to
the results of model (i) with » = — 1, #, decreases uniformly with ¥, and 7, increases
uniformly with V. #, maintains its independence from the sign of s for non-zero ¥,
but £, shifts its maximum towards negative values of « as ¥V increases, the value of «
giving maximum #, decreasing as V increases. In both Figs. 9 and 10, one sees that,
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as o becomes large, the effect of variability of o becomes negligible. As previously
in this paper, the dotted curves give the uncorrected results, where the variance has
been neglected from M, (e.g. Ohta, 1972).

0
s\ 15

25

! ! 0 L 1
-3 -2 -1 0 1 2 3
a

Fig. 10. The time to extinction, I, is plotted against the selection parameter, ,
for model (ii), for various values of the variance, ‘UC’ being the uncorrected
solution. « = N,s, V = 2N,V,,N, = N = 100, R = 1.

4. DISCUSSION

In the previous sections, it has been shown that, under this diploid model,
variability of selection coefficients can, generally, markedly increase the genetic
variability of the population, expressed either by the steady-state heterozygosity,
or by the times to fixation and extinction of a small number of mutant genes. Thus
the comment of Karlin & Levikson (1974), that one can easily conclude diploid
trends from haploid ones, appears to be untrue, as most of the results contradict the
trends advocated by Karlin & Levikson (1974), which are mostly based on haploid
results. (Karlin & Levikson use the time to absorption 7'(x) which can be expressed
thus: T'(x) = u(x)#,+ (1 —u(z)),.) The results of this paper show that increasing the
variance of the homozygote selection coefficient decreases the spread of the steady-
state gene frequency distribution and increases the steady-state heterozygosity.
Also, if  is not near minus one, it is found that the probabilities of ultimate fixation
and mean times to fixation and extinction are increased by increasing variability.
The figures, for all the models, also clearly show that the uncorrected solutions
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based upon Kimura (1954) give results which are both qualitatively and quantita-
tively very different.

In this paper the variance of the selection coefficients of the two homozygotes has
been kept equal. One could relatively easily change this but it would increase the
mathematical complexity. In the asymmetric case, trends are likely to change but
not overconsiderably. It seems likely, following Karlin & Levikson (1974), that,
for example, if only the fitness of the homozygotic mutant fluctuates, increasing
variance will reduce the probability of ultimate fixation. However, in my opinion
the assumption of equal variance is not an unreasonable one.

The limitation of the present paper to two allelesis a distinct drawback. However,
the more likely situation in which only two alleles are viable, all others being highly
deleterious, is likely to give similar qualitative answers. Extensions to include a time
autocorrelation, attempted by Takahata et al. (1975), would be instructive and
desirable also. However, the complexity of the mathematics seems, at present, to
be prohibitive.

Proof of the validity of random selection coefficients as a force maintaining
genetic variability is as yet relatively small, though claims have been made of its
importance in some insect populations (e.g. Fisher & Ford, 1947; Powell, 1971;
Smith, 1975). Most species, however, live in environments which are subject to
considerable fluctuations, and thus it seems very reasonable that we should take
this into account in our calculations.

I would like to thank Dr M. G. Bulmer for helpful comments and encouragement during the
work for this paper. Many thanks also to Prof. M. 8. Bartlett for his help, while I was in
Oxford, to Dr W. G. Hill and Prof. A. Robertson for their many useful comments upon this
paper, and to the referees for their very helpful advice.

APPENDIX
(1) Derivation of equation (2.3)
On substitution of the expressions for M, and V. (2.1) in the expression
I= f]ll,z/V,z dz, one obtains:

_ (Va(1l —z) (1 — (1 +7r)2(1 —2))+ £/2) (1 — 2x) — 2x(1 — z) (82—(81+82)x)dz

1 Var(l—x)2(1-2(1+7)z(1 —=x)) +2(1 —x)

(A1)

where V = 2N,V,, 8, = N,s, 6, = Nt and f = 4N,v. Taking the case §, =0, = a,
and substituting y = z(1 —x), (4 1) simplifies to

_ [ Vy(1—(1+7)y)—2ay+ ]2
1= Vyr(l—-2(1+n)y)+y dy. (42)

The denominator can now be easily factorized, if » + — 1, to

2V(1+r)y(e,—y) (¥ —ap) (A 3)
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et (5] 6o

As 0<y<i, ¢y >4 and a, < 0 for all values of re(—1,1], for ¥V % 0, the de-
nominator is always non zero. The integrand of (A 2) can now be easily broken up
into partial fractions, all of which can be integrated easily. Thus

A (d-a . B d—ay B )iogtu-
- §|: - (acl— oy + Va,+ 2)log (2 —9) + (al —a, Va,+2 log (y —az,)
+ﬂlog¢y] (A 4)

where

which on substitution in equation (2.2), yields (2.3).

(ii) Evaluation of constant, C, in equation (2.3)
C can be evaluated by using the fact that

1
f d(x)dx = 1 (by the definition of density functions).
0

Let ¢(x) = ¢(x)/C. Then
o= f "B () dz.
0

&(z), however, tends to infinity at z = 0 and 1, and thus numerical integrals are
subject to great inaccuracies due to rounding error. If, however, one substitutes
Z = |2z— 1} and integrates by part one finds that

1
1= 41— f f(Z)(1-2Z2)f1az
1]

~#
- lro- [La-zegraasaraz],  @s

where
f(Z) = (o, — (1= Z3) 4 (1 - Z®)[4—a,)s if r$ —1.

= (1= Z?)/4+ V-1)1=p—tai¥ if r=—1.

The integrand in equation (A 5) is finite at the end points (i.e. Z = 0, 1) and thus
presents no problem when integrated numerically.

REFERENCES

FisuER, R. A. & Forp, E. B. (1947). The spread of a gene in natural conditions in a colony of
the moth Panamizia dominula L. Heredity 1, 143-174.
GrireseiE, J. H. (1973). Natural selection with varying selection coefficients —a haploid
model. Genetical Research 21, 115-120.
Harrr, D. L. & Cooxk, R. D. (1973). Balanced polymorphisms of quasi-neutral alleles. T'heo-
retical Population Biology 4, 163-172.

8 GRH 29

https://doi.org/10.1017/50016672300017171 Published online by Cambridge University Press


https://doi.org/10.1017/S0016672300017171

112 P. J. AvEry

HarrL, D.L. & Coog, R.D. (1974). Stochastic selection in large and small populations.
Theoretical Population Biology 7, 55-64.

HartL, D.L. & Cooxg, R.D. (1975). Stochastic selection and the maintenance of genetic
variation. In Population Genetics and Ecology (ed. S. Karlin and E. Nevo). Academic Press,
London and New York.

JENSEN, L. (1973). Random selection advantages of genes and their probability of fixation.
Genetical Research 21, 215-219.

KaruIN, 8. & LEviksoN, B. (1974). Temporal fluctuations in selection intensities: case of
small population size. Theoretical Population Biology 6, 383-412.

Kimura, M. (1954). Process leading to quasi-fixation of genes in natural populations due to
random fluctuation of selection intensities. Genetics 39, 280-295.

KiMora, M. (1962). On the probability of fixation of mutant genes in a population. Genetics
47, 713-719.

Kmura, M. (1964). Diffusion models in Population Genetics. Journal of Applied Probability 1,
177-232.

KiMura, M. & OHTA, T. (1969a). The average number of generations until fixation of a mutant
gene in a finite population. Genetics 61, 763-771.

Kimura, M. & OnTA, T. (196956). The average number of generations until extinction of an
individual mutant gene in a finite population. Genetics 63, 701-709.

NE1, M. (1971). Extinction times of deleterious mutant genes in large populations. Theoretical
Population Biology 2, 419-425.

OmTA, T. (1972). Fixation probability of a mutant influenced by random fluctuation of
selection intensity. Genetical Research 19, 33-38.

Omnta, T. & KiMUura, M. (1972). Fixation time of overdominant alleles influenced by random
fluctuation of selection intensity. Genetical Research 20, 1-17.

Powerr, J. R. (1971). Genetic polymorphisms in varied environments. Science 174, 1035-
1036.

SMrrH, D. A. S. (1975). Sexual selection in a wild population of the butterfly Danaus chry-
sippus L. Science 187, 664-665.

TARAHATA, N., IsaIr, K. & MaTsupa, H. (1975). Effect of temporal fluctuation of selection
coefficient on gene frequency in a population. Proceedings of the National Academy of
Sciences 72, 4541-4545.

WrigHT, S. (1938). The distribution of gene frequencies under irreversible mutation. Pro-
ceedings of the National Academy of Sciences 24, 253-259.

WrigHT, S. (1949). Adaptation and selection. In Genetics, Palaeontology and Evolution (ed.
Jepson et al.). Princeton University Press, Princeton, New Jersey, U.S.A.

https://doi.org/10.1017/50016672300017171 Published online by Cambridge University Press


https://doi.org/10.1017/S0016672300017171

