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ON SUBCLASSES OF INFINITELY DIVISIBLE
DISTRIBUTIONS ON R RELATED TO HITTING
TIME DISTRIBUTIONS OF 1-DIMENSIONAL
GENERALIZED DIFFUSION PROCESSES

MAKOTO YAMAZATO

1. Introduction

A distribution ¢ on Ry = [0, o) is said to be a CME{ distribution if there
are an increasing (in the strict sense) sequence of positive real numbers
{afoyand 0 =0y < by <+ < by <bpyy=0 (0=m < £< ) such that,
for each § = 0, ..., m, there is at least one @ satisfying b; < a; < bj4; and the

Laplace transform Lu(s) = fR e Fu(dx) of p is represented as

Lu(s) = Mz ai(s + a)™ it m=0,
=ML ais + a) /M1 bj(s + b)) ifm=1.

The author [8] shows that the upward first passage time distributions of birth
and death processes belong to the class CMEZ. He [9] also shows that the class of
distributions of hitting times of single points of generalized diffusion processes is
a proper subclass of the closure CME,, in the weak convergence sense, of CMEY.
Let CMEZ be the class of distributions on R = (— 0, 0] whose mirror images
belong to CME. That is, ¢ € CMEZ if and only if i(du) = u(— du) belongs to
CMEL. Let CME’ be the class of £ = p1 % yz with s € CMEY and y, € CMEZ.
Sato [4] shows that the distributions of sojourn times of birth and death processes
with weight not necessarily positive belong to CME”.

We denote the class of infinitely divisible distributions on R (or Ry) by $(R)
(or $(RL)). The classes CME{ and CME, are contained in $(R,). The class
CME’ is contained in #(R). Some interesting classes of infinitely divisible
distributions on R, (for example, BO, CE,, ME,, CME,, . . .) are introduced
in [1] and [8] and representations of their Laplace transforms, compactness
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conditions and convergence conditions are investigated. Sato’s result [4] suggests
that it is natural to extend those classes to classes on R. We denote by B, the
class BO in this paper.

The main purpose of this paper is to define classes B, CE, ME, CME on R,
obtain representations of their characteristic functions or Laplace transforms, and
express convergence conditions by their characteristics. This will be done in Sec-
tions 2 ~ 5. Thorin [6] extended the notion of generalized [-convolutions on the
half real line, which is a natural subclass of By and class L containing the class of
stable distributions and the class CE+, to those on the whole real line and gets a
convergence condition (parallel to our Theorem 2.1). In Section 6, we define and -
study a subclass ME? of ME. and a subclass CME% of CME.. It is shown in [9]
that hitting time distributions of one dimensional generalized diffusion processes
with non-natural boundaries belong to the class CME?.

In the naming of the classes, C, M, and E suggest convolution, mixture, and
exponential distributions, respectively. The superscripts f and d suggest finite and
discrete, respectively.

Necessary and sufficient condition for strong unimodality for a subclass of
CME., is given in [7]. An extension of the result to CME will be given in [10].

Acknowledgement. The author would like to express his hearty thanks to the
referee for his valuable comments. He also thanks Ken-iti Sato for his useful
advices.

2. Class B

For a topological space A, we denote by #(A) the totality of Borel probability
measures on A. For u;, u; € P (R), we denote by p; %y, the convolution of y; and
tz. For A, B C #(R), we denote by A * B the totality of = py ¥ yp with 1, €
A and p, € B. The characteristic function of ¢ € #(R) is denoted by Fu(s).

We define the bilateral Laplace transform Lu(s) = fR ¢~5*(dx) if the integral is

finite. A representation of the characteristic functions of infinitely divisible
distributions is well known. Namely, a distribution g € #?(R) is infinitely divisi-
ble if and only if there are y € R, ¢ > 0 and a measure v on Ry = R\ {0} satis-
fying

@2.1) fR (2 A 1) (dz) <
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such that
(2.2) Fuz)

= exp {iyz — 0%2%/2 + fRo (e —1— f_xxz)v(dx)}.

1
Here, a A b = min{a, b}. This representation is unique. We call (2.2) the canoni-
cal representation [y, 0% v] of ¢ € $(R). The measure v is called Lévy measure
of u. The following theorem is well known.

THEOREM A. Let u, € $(R) with canonical representation [7,, On, Ynl and let
u € PR). Then the following (i) and (i) are equivalent:
(1)  pn converges weakly to (t as n— oco.
(i) p is infinitely divisible. Let [, o, v] be its canonical representation.
(@) For every bounded continuous function f which vanishes near the origin,

[ fataw — [ favidu) as n— oo.

(b) Fore > 0 set

Ane = 02 + .ﬁy|<e y2vn(du).

Then
lim lim sup A, = lim lim inf A, = 0%
elo nmoe elo n—e
(© limy, = 7.
N—00

We say that a distribution g on R is a B distribution if £ € $(R) and its
Lévy measure v is absolutely continuous with density £ represented as

ped —yu

«y) f«m eQ(du) for y >0,
= [ emuw for y<o,

where, @ is a measure on Ry satisfying

(2.3) fR %] A | %|™2Q (du) < oo.

We denote by B, the class of B distributions on R;. The class B, here was
denoted by BO in [8] and called g.c.m.e.d. (generalized convolutions of mixtures
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of exponential distributions) in [1]. The above integrability condition (2.3) for @ is
equivalent to the condition (2.1) for v. We call @ the @Q-measure of
¢ € B. A B distribution g is uniquely represented by the triplet (7, 0%, Q). We
describe a necessary and sufficient condition for weak convergence in B in terms
of this triplet.

THEOREM 2.1. Let tn € B and let (yn, 0%, Qu) be its triplet. In ovder that uy
converges to (t € P(R) as n— oo, it is necessary and sufficient that p € B with
triplet (1, 0%, @) and the following conditions ave satisfied.

()  For any function f with compact support in R such that | w |f (u) is continuous,

[ @uaw — [ fwQn as n—o.
m)umm=ﬁ+2f W~ Q, (). Then
lul>M
lim lim sup Any = lim lim inf A,y = o°.
M- N—oc0 M- -

(iti) limy, =7.

#N—r00

Proof. We prove the theorem checking the conditions of Theorem A.
Sufficiency. Assume that ¢ € B and (i) ~ (iii) hold. Let v, and v be the
Lévy measures of y, and y, respectively. By (i) and (ii), we have

ff(u) (ulA] u|‘3)Qn(du)—>ff(u) Jul"'Alul")Q(du)

as #n— oo for every continuous function f on R vanishing at infinity. Hence for
0<a<b

b o
[ vt = [ um e = e Qutauy
— j:o u (e — e~ Q (du)
b
= ["v@dy) as n—oo.
In the same manner,

flm vn(dy) = j;w u'e™Qu(du) —»flw v(dy),

https://doi.org/10.1017/50027763000004165 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004165

ON SUBCLASSES OF INFINITELY DIVISIBLE DISTRIBUTIONS 179

[ vt = [ vy,

f_—l V"(dy)_’f_—: v(dy) as n— oco.

o0

Hence we get the condition (a) in Theorem A. Note that
2 — ¢ 2 ~luly
(2.4) fm“y Va(dy) fRo (j; yie™"“dy) Q,(du)
lule
— 2,1 -3
j;h(fo y2e~vdy) | u|2Qu(du)

= 211 Fie)

where, for € > 0,
Fi@ = [ 2lul@w,
Fre) =~ [ (7 yrerdy) | ulQuau),
lulze~2 lule
F@ = [ ([ gy Quiau.
By (ii), we have that {F(e)} is bounded in # and
I F2 < l 1 ® 2,-y
w (€) I =7 F;(e) E_ly e dy—0asn—0and e— 0.

In the following, we may assume that ¢% is a continuity point of . By (i), we
have, for fixed ¢ > 0,

lim Fi(e) = [

N0 |u|se~2?

" e ndy) Q).

By (2.3) and by bounded convergence theorem,

fmlse—z (j;e ye™"dy) Q (du)

€ lule
N mm(ﬁyze_'"'"dym(d““ [ ey |ul7Q @) — 0ase—o0.

Slulse~2
Thus, we have

lim lim F2(e) = 0.

Elon—»oo
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Hence, we have

(2.5) lim lim sup [o? + fmq y*v,(dy)]

510 N—00

= lim lim sup [0,%+fml>M2|ul"3Q(du)]

Mleo R

and

2.6) lim lim inf [0? + fI )]
Y &

Elo =00

lim lim inf [o? + fl 2wl

M1ow n—ow

Thus the condition (b) of Theorem A holds. The condition (c) is trivial.
Necessity. Let gn— . Then ¢ € $(R) by Theorem A. By Theorem A(a),
we have, for any continuity point @ > 0 of v.

j:o Va(du) —*j:o v(du) as n— co.
Hence we have, for ae. a > 0,
2.7 j:o ule=™Q,(du) —->f: v(du) as n— oo.
Similarly we have, for ae. a <0,
(2.8) [ Tulea@uan = [ vidu) as n co.
By (2.4) we have,
[ vwan 2 R0 -2 [ yeray).

Thus {F;(e)} is bounded in #. Then we see, by (2.7) and (2.8), that there is a fi-
nite measure @ on R such that for @ > 0

j:o ule™Q,(du) ——>f01 e~ *Q(du) + j:w ue~"*Q(du),
ji | u| e~ Q,(du) —-'f_ol e~ Q(du) + f_: u?e=" Q (du)

as #— oo. Note that @ does not have a point mass at {0} since lim f‘ N v(dy)
yi>a

a—~

=0. Set Qdu) = (|u|V | u|)Q (du). Then, @ is a measure on Ry satisfying
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(2.3). We have

(29) S lul @@ — [ |ul"Q@w) as n— oo,

for every finite interval I in R both end points of which are continuity points
of Q. Thus, (i) holds. We have, by (i),

lim lim F3(e) = 0.

el 0nme
Since {F;{e)} is bounded in #,

lim lim sup | F2(e) | = 0.

elo n—e

We have (2.5) and (2.6). Hence (ii) holds. The proof is complete.
CoROLLARY. The class B is closed under convolution and weak convergence.
THEOREM 2.2. The class B coincides with the closure of By % B_.

Proof. Since the class B is closed, it is enough to show that the normal
distributions and B distributions without Gaussian components are approximated
by B, % B_ distributions. For 62 > 0, set a, = (2n/6%)"? and let

(@) =0 for|x| < am
=n fora, S|zl

Then p, = (0, 0, go(x)dx) € B, % B_. We have, for M < a,
-3 - 2
2f lulPaGdu=0o
and for every finite interval I in R,
1wl gnydu—o
as #— co. Hence pu,— (0, 0% 0) as #— co by Theorem 2.1. Now, let (0,0,Q)

€ B. Define Q, by @ = Qli—nm.Then (0, 0, @,) € B, *B_.
Since

[ el @ = [ a2

https://doi.org/10.1017/50027763000004165 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004165

182 MAKOTO YAMAZATO

as #— oo and
f | #|7°Q (du) — 0
lul>M

as M — oo, (0, 0, @,) — (0, 0, @). The proof is complete.

3. Class ME

We say that a probability distribution ¢ on R, is an ME, distribution if
there is a probability measure G on (0, ©] such that

©l0, x] = G ({0}) if =0,
=fw 1 — e ™Gdu) if x>0,

where the value of the integrand 1 — e¢™* at infinity for £ > 0 is defined by its
limit 1 as # — oo. We call G the mixing distribution of ¢#. We denote by ME, the
class of ME, distributions. It is easy to see that the Laplace transform of
1 € ME, is represented by its mixing distribution G as:

(3.1) Pu(s) = G({eo)) + f( e f( WG (du)

_ u
_j:o,w] G (du).

Define ME_ by the mirror image of ME,. That is, ME_ if and only if y €
P(R-) and

plz, 0] = G({—oo}) if x=0

= [ _a-emGaw it 2<0
with G € P([— o0, 0)). Let ME = ME, % ME_. A representation of the Laplace
transform of ¢ € ME, is obtained by Steutel [5]. We state here his representa-

tion.

THEOREM B. A probability measure 1t on Ry is an ME. distribution if and only
if there is a nonmegative and absolutely continuous measure Q on R. with density

1
bounded by 1 a.e. satisfying j; u'Q (du) < o such that, for z € R,

Fu@ =exp [ (@= =1 ([ e Qdu)dal.
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By this theorem, we easily get the representation of the characteristic func-
tion of 4 € ME:

(3.2) Fu(z) = exp | fR (e — 1)(z) dz]
where

Uz) = fR e=Q(du) for x>0,

+

- fR e-Q (du) for z < 0

and @ is an absolutely continuous measure on R with density bounded by 1 a.e.
satisfying

f | %]7'Q (du) < oo,
lul<1
Hence ME C B and the above @ is the @-measure of .

Remark 3.1. Let ¢ € ME, and let G be its mixing distribution. Let £ be the
density of the Lévy measure of ¢ and let @ be the @-measure of g Then

G({o}) = exp {— fo‘” ox)dz)

= exp {— J;m %Q(du)}.

Proof. It is easy to see that

G ({0} = lim Lu(s) = exp (— j;mé(x)dx}.

§~00

Since

f: Uz)dr = f: (f: e~ dx) Q (du)

_ [~1
= [" Lo,
we get the conclusion.
THEOREM 3.1. Let ttn € ME, and p € P(Ry). Let G, be the mixing distribu-
tion of n. Then ta converges weakly to pt if and only if £ € ME, and G, converges

weakly to G, the mixing distribution of y, as a sequence of distributions on (0, 0]

as B — 0o,
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Proof. Let F, and F be the distribution functions of g, and g, respectiveiy.
Assume that ¢ € ME, and G,— G weakly on (0, ®] as # — co. Then, obviously
we have, for x > 0,

F@) = [ (=™ 6w

— F(z) = f«,,m, (1~ ™) G (du) as n— oo.

This shows that g, — p. Conversely, we assume that pg, — g weakly as #— co.
Then we have F,(x) — F (x) as n— oo for all continuity point x > 0. For ¢ > 0,
we can choose x > 0 sufficiently large so that 1 — F,(x) < ¢ for all ». Hence,

e *G,(0, 6) = fm) e Gp(du) <e,

ie.

G (0, 0) < ee™.

This means that {G,} is a conditionally compact sequence as measures on (0, %°].
Choosing subsequence {#’} of {n} so that G, converges to a distribution G on
(0, o], we have

Fe@ = [ (1= e™Gudw
= [ A=e™G6@w asn— oo
for x > 0. Hence
Foy=[ (a-e™6@w
for continuity point £ of F. Since the right hand side is continuous for x > 0 and
since F is right continuous, the equality holds for all x > 0. Letting £— 0, we get

F(0) = G ({0}). Hence

Fa@y=1- [

(0,00

, e ™G (du).

By the uniqueness for Laplace transforms, G, converges weakly to G on (0, ]
as #— oo. The proof is complete.

THEOREM 3.2. Letpus € ME,, u- € ME_ and let p = py % u_ € ME. Then u
is absolutely continuous on Ro and has a point mass p+({0})u-({0}) at the origin.
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Let i be the density of tt on Ro. Let G, and G- be mixing distributions of (. and -,
respectively. Denote P, (s) = Lu(s) and ¢-(s) = Lu_(s). Then the following hold:
(1) h(z) = (hy*h_)(x) + p-({0}) by (x)

= G- (— wue ™G, (du) for x>0,

(0,00)
and
h(x) = (he*h-) () + us (0D h-(x)
= [ 9= lole=6@n o z<0,
where h+ and h- are densities of p+ and p- on (0, oo) and (—oo, 0), respectively.
(1) Denote d_ = supiv < 0;G_([v, 0)) > 0} and d, = inf {v > 0; G.((0, v])

> 0}. If d- < d,, then the Laplace transform Lp(s) of u exists for — d, < s <
— d_ and is represented as

(33w = [ 0.(-0)H5 6@ +

+ d-(— u) ;jf—ua(du) + G+ ({0)) G_({— oo}).

(0,00)

Proof. (1) Let F, F, and F_- be the distribution functions of 4, ¢+ and u-,
respectively. Let x > 0. Then,

F(x)
- f<~w,0) Fi(z — y)F-(dy) + Fi(x)p-({0})

-y z
= [ hwdy [ h@dz+ (0D ([ he@dz + (01,
By this we get
@ = [ b= ph(@dy+ 1 Ok @) for z>0.
By the definition of the classes ME, and ME_ we have

j:—m,o) hi(z — y)h-(y)dy
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= [, werGiaw) ([ lvleG @v)dy

= [ Gutaw [ _ %G av)

(0,00)

N -[«),oo) (.f(_m,o) G_(dv))ue ™G4 (du).

v—u
Thus,
hixz) = o )¢_(~ wWue G (du) < o,
In the same way we get the representation for z < 0.

(i) If —dy <s< —d-, the right hand side of (3.3) is well defined. Denote
by A(s) the right hand side of (3.3). Set

5 = [ Y G_(dv)

~,00 S + v

and

o) = [ A Guaw).
Note that, by (3.1),

¢-(s) = §-(s) + G-({— *})

and
$+(s) = @uls) + G+ ({— o)),
We have
A(s)
= A1(s) + §-(5) G+ ({20)) + ¢4 (s) G_({— }) + G, ({0}) G_({—00)}),
where

4@ = [ G025 6@+ [ F- w0 6w,

u

The function A;(s) is written as

Ai(s)

- uy 1 1
- fm,m) f(_w,m u—v (s +v s+ u) G-(dv)G.(du)
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B foco) f—w(» (s + u) (s + ) G-(dv) G+ (du)
= ¢.(s) ¢-(5).
Hence we have A(s) =@+ (s)¢-(s) = £pu(s). The proof is complete.

THEOREM 3.3. A sequence in ME is shift compact if and only if it is conditional-
ly compact.

Proof Let {¢s} € ME be a shift compact sequence. That is, there is a se-
quence {7.} € R such that {g. * 8, is conditionally compact, where d,, is the
Dirac measure concentrated at 7, Let £,(y) be that density of the Lévy measure
of 1, Note that since

L(y) = j:o e”dy = | y|"' fory 0,
the sequence {f "—Ll (y)dy} is bounded. We have
L(u¥8,)(@) = explinz + [ (@ = Dl(y)dy]

= expliztrn + [ ;¥ ewan + [ @ = 1= 7 gy,

Hence {7a} must be bounded. It follows that {g,} is conditionally compact. The
converse is obvious.

4. Class CE

Let CE{ be the class of x € P(Ry) such that Lu(s) = [I7iaw(s + an) ™
withlEm<coand 0< g, <a,< '+ <a, and let CE’ be the mirror image
of CE{. Let CE/ = CE{* CE’. We denote by CE the closure of CE’. Let Z be
the set of integers and set Zo = Z\{0}.

THEOREM 4.1, Let u € P(R). Then, n is a CE distribution if and only if
u € SR) and there is an Ro-valued non-decreasing sequence {ay} xezons for an inter-
val I containing O such that

4.1) ar >0 fork >0,
<0 fork <0,
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(4.2) 2 apt < o

and the Lévy measure v of UL is represented as

(4.3) v(dr) = (@ ' 2is0e” ) dx  forx > 0,
= (2| 20 ™) dx  for x < 0.

We call {a:)} the parameter sequence of .

Proof. Denote by CE*? the subclass of $(R) consisting of distributions whose
Lévy measure is of the form (4.3) satisfying conditions (4.1) and (4.2). The
assertion of the theorem is that CE = CE“% Let 4 € CE? and let {a;} be its
parameter sequence. Set

(4.4) q(x) =2 lawe (x) + 2 lcwan (X)),
k>0 k<0

where 14(x) is the indicator function of a set A. Noting that {a:} is a monotone
sequence, we have by (4.2) that fR| u| 3q(u)du < oo It is easy to see that the

Lévy measure v of g is written as
= —zu
v(dr) (fm g (w)du)dz for 1> 0,
= (fR g (uw)duydr for x < 0.

Hence, ¢ is a B distribution with triplet (r, ¢, q(x)dx) with some 7 and ¢% Now
we show that 4 is approximated by CE”-distributions. Let
Gin(2) = 2 lggw @)+ 2 lecwaw (@)g@)
0<ksn 0>ka—n
and

- X ~zu x —zu
nn= fo 7o U e a@dids + [ E ([ e dide

In case 02 > 0, set a, = (2n/6*)Y? and let
Ga(x) =0 for |z|<ay,

=n for |z|2=a,,

and choose B8, > 0 so that
(45) (T - Tl,n)/,Bn__) 0 asmn—

and B» > @y In case 0% = 0, let
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Ga(x) =0

and choose B, > 0 so to satisfy (4.5). Let 8, be the integral part of {| 7 — 71a |/

1 —Bnx
fm T+ 22 e~ #"%dx} and let

gn(x) =0 for x < B,
= 0y for x = f,.
Define
Gn(@) = qu(x) 7> 71
=gu(—x) if 1= 7100
Let
(4.6) Tn = Tim + sign(y = 710) 8 fR+ - ixz —

3
Then, Q.(dx) ={X gj.(x)}dx satisfies (2.3). Let un = (s, 0, Q») € B. Since
j=1

n=f T e + [ i [ e,

U is approximated by CE’-distributions. It is easy to see that @,(]) —

f1 q(z)dzx for every bounded interval I in R. We have by (4.2) that

. -3
lim lim sup 2 s ¥ Qun(u)du

M- n—oo

) 1
=1 — =),
lm & T VD

We see by (4.6) that, for every M,
; -3
lim 2 L 417 Gan ) + gsa0)du
= lim {¢? + 8,/8%) — o°.

N0

We have by (4.6) that

|7’n"'7’| §IR+1_:xze_B”‘”dx—>O as #— oo,

Thus by Theorem 2.1, yu,— ¢ as #— oo . Hence, CEd—distributions can be
approximated by CE/-distributions. Now we show that the class CE? is closed
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under weak convergence. Let u, € CEY and let g,— p € P(R). Then, by
Theorem 2.1, ¢ € B. Let g, be the density of Q-measure of y, Consider the
convergence of the @-measures on (0, ©). Since ¢, is a nondecreasing function,
@-measure of ¢ is absolutely continuous, its density ¢ is nondecreasing. Moreover,
g.(x) converges to q(x) at every continuity point of ¢. Noting that g, is a step
function of step size 1, we have that ¢ is also a step function with step size being
positive integers. The same argument yields that the @-measure of ¢ has a density
q also on (— ©°, 0) and that ¢ is a nonincreasing step function on (— %0, Q) with
step size being negative integers. By (2.3), ¢(x) = 0 near £ = 0. Hence the class
CE‘ is closed. Hence CE* = CE.

Remark 4.1. The condition (4.2) for the parameter sequence {a,} of u € CE
is equivalent to

f r2v(dz) < o
lzl<1

for the Lévy measure v of p.

Remark 4.2. (1) A measure v of the form (4.3) with subsidiary conditions
(4.1) and (4.2) satisfies f’|>l|x'v(dx) < oo . Hence, for a CE distribution,
xz

instead of (2.2) we can use another representation of its characteristic function.
Let # € CE with canonical representation [ 7, 6% v]. Then its characteristic
function is represented as

(4.7) Fu(2)
= expliy’z — 0%2%/2 + fR (e — 1 — izx)v(dx)}.

Here
4.8) =t fR 231 + 2% v(dz).

We call (4.7) the modified representation of ¢ € CE. We denote the modified
representation of u by {7/, % v} or {7/, 6% {a;}}, where {a;} is the parameter
sequence of y¢. Using this representation, as is shown in the next theorem, we can
represent the Laplace transforms of CE distributions as rather simple products.

(i) Let u» € CE and let [7n, 642 val and {7n, 042 val be the canonical and
the modified representations of iy, respectively. If [7,, 0,%, v.] satisfies the condi-
tion of Theorem A with ¢ = [7, 02, v] = {7/, 6% 1}, then
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(4.9) lim lim sup f | 2 Pvn(dz) = 0.
elo nme lxi<e

Hence by Theorem A, 7/ — 77 as #— oo. The converse is also valid. Hence for
CE distributions, the condition (iii) of Theorem 2.1 can be replaced limy,” = 7.

700

THEOREM 4.2. A distribution u is a CE distribution if and only if there are
" € R, 0% 2 0 and an Ro-valued non-decreasing sequence {@n} nezons for an interval
I containing O such that (4.1) and (4.2) ave satisfied and the Laplace transform of (L is
vepresented as

(4.10) Pu(s) = exp(— 7's + 022/ 2) 1, an(s + an)e™*

fO?’ —da < Re s< — a_;.

Proof. Let s = x + iy. Note that

a;’

log (1 + s/a)e ™ —1]+1)

S| A+ s/ane ™ —1]

Sle ™ =1+ s/a,| +s/anlle ™ —1|
<|s/a,|PR72(1 + R)e? for|s/a,| <R.

Hence by (4.2), it is easy to see that the right hand side of (4.10) is convergent for
—a,<Res< —a-;.Fors=—1iz z€ R, itis equal to

a5z

exp(iy’z — 0%2%/2) [1n an(— iz + an) e

We can rewrite the above formula as

explir’z — 0%2%/2 + X llogla.(— iz + a.)™ — ia;'2]}

explir’z = 0%2%/2 + Znso f: (e — 1 — izx)x e~ dx +

+ 2o f_ow (e — 1 — izx)| x| Le~**dx}

If

expliy’z — 0%2%/2 + j;m ('™ — 1 — izx) [ 20 x e ]dx +

+ ’ (€% — 1 — i22) [ Do | x| te""*1dx}.

—00
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Here we choose the branch of the logarithm so the argument is between — 7w and
7. On the other hand, fe”u(dx) is finite if — @, < Re s < — g_;. This shows

the validity of Theorem 4.2.

The above representation shows that the class of densities of CE distribu-
tions coincides with the class of PF densities defined in Karlin [2] p. 335.

The quantities 7’ appearing in (4.10) and (4.8) are identical. Write the
closures of CE{ and CEZ as CE, and CE_, respectively. It is easy to show that
the class CE, coincides with the class CE. defined in [8] and the class CE,
(resp. CE_) coincides with the class of CE distributions with supports in R,
(resp. R.).

5. Class CME

In [8], the class CME. is defined by CME, = ME, % CE, and it is proved
that the class CME, is the closure of CMEZL. Let CME_ = ME_ % CE_. Then,
the class CME_ is the closure of CMEL. We denote by CME the closure of
CME’. This class contains both CME, and CME_. Define ME{ as follows: y €
MEY if and only if ¢ € ME. and the mixing distribution G of g is supported on a
finite number of points in (0, ]. Let MEZ be the mirror image of ME{ and let
ME’ = ME{* ME’.

TueoreM 5.1. CME = CE* ME.

Proof. By definition CE is the closure of CE’. It is easy to see that ME is
the closure of ME’. Hence we have CME’ C CE % ME C CME. Now we show
that CE % ME is closed, which will prove the theorem. Let {u,} be a sequence
in CE * ME converging to a distribution g¢. Let 3 € CE and i € ME be such
that gx = ph %k up, for n =1, 2,.... Since the components {¢s} and {z2} are both
shift compact, {¢2} is conditionally compact by Theorem 3.3. Hence {ui} is also
conditionally compact. Now we can choose a subsequence #’ so that pp — p!
€ CE and pi — p® € ME as n’' — oo and we have

u= ptk .
Hence, CE % ME is closed.

Remark 5.1. A distribution ¢ € CME is determined by the modified repre-
sentation {r, 6%, @ = {a;}} of its CE component and the Q-measure @ of its ME
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component. Let us call (7, 02, @, @) the quadruplet of the CME distribution g.
Since there are many ways of decomposing g as ¢ = g, % y, with g, € CE and
ts € ME, there are many quadruplets that determine . But, among them, there is
a unique decomposition which maximizes the density of the @-measure of u;.
Choosing ¢, € CE and y, € ME in this way, the quadruplet (7', 0% a, @) is
uniquely determined by g In the following, by qudruplet of 4, we always mean
this quadruplet.

The parameter sequence @ = {a;} jezons may possibly be empty. In case a; is
not defined, we regard @; = © if j> 0 and g; = — % if j < 0.

6. Representation of Laplace transforms of distributions of classes ME{ and

CME}{

We say that a distribution on (0, o] is discrete if its support is a finite or
countably infinite set which has no accumulation point in [0, ©). A distribution g«
on Ry is said to belong to class ME¢ if 4 belongs to ME, and its mixing distribu-
tion is discrete.

TueoREM 6.1. Let {a;} and {B;} be sequences of positive real numbers such that
0<a<pi<a:<B: < - and aj, B;— © as j— . Then the infinite product
6.1 =T A+ D/a+-=
(6.1) f(s) j=1 ( ,B,-) ( aj)

absolutely and uwiformly converges on each compact set in C \{—a, —a,.. Y and

there is 1 € ME$ such that
Pu(s) = f(s) fors>0.

Moreover, L (s) is written as
(6.2) Pu(s) = expj;m (e75% — 1){.[:° e~ ™q(u)du}dz,

whevre

qw) =0  0<u<a,
=1 ai<u<Bl'! ]:1’27
=O Bf<u<aj+lyj:1727~--~

Proof. First step. We show the absolute and uniform convergence of f on
each compact set in C\{— a;, — a3, ***}. Set
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ai(s) = (L+ 5/ + )
and ! ’
bj(S) =1- a,-(s).

Then we have
(6.3) bi(s) = s + s/a) (o)™ — B~}

and the inside of the braces in (6.3) is positive. Let Dr = {s;|s| < T}. If there
is 7 such that a; & T < @41, then choose M so that 1/M < 1/T — 1/ai+1. Then
we get that, for s € Dr and for all j 2 i+1,

[ 1s+ 1a; | 2 | 1/s| — | 1/a; |
> 1/T— Va; 2 1/T— Va,, > 1/M.
That is,
(6.4) /1 + s/ap) | < M.

Moreover, | b;(s) | < 1 for large j, since a;, Bj— oo as j — oo. We denote by Ur,s
the set Dy with the J-neighborhoods of — @, ..., — & excluded. Since s/(1 +
s/a;) is bounded in j and s € Uy, there is M > 0 such that

Sl bi(s) | £ T M ey — Vay,) £ M/ay <

for s € Urs. By this we have that 2.5, b;j(s) converges absolutely and uniformly
on any compact set in C\{— a;, — az, . ..}. Hence the infinite product f(s)
converges absolutely and uniformly on any compact set in C\{— a1, — as,...}.

Second step. We show that f is the Laplace transform of the ME{ distribu-
tion y¢ defined by (6.2). Note that

» = " -+ S + S
fs) = e (L )/ + )
is the Laplace transform of an ME{ distribution g, (Steutel [5]). Moreover, fa is
written as
fa(s) = expj; (e — 1){1; e ™q,(u)du}dzx,

where
g(u) =0 u < a

=1 a;<u<pB j=12,...,n

=0 Bi<u<au j=12,...,n
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Here we understand a,+; = . We have
gn(u)du — q(u)du as n—
and

[T gy < 1M 0 a5 M- co.
M U

By the continuity theorem for B, (Bondesson [1]), letting ¢ be the distribution
with Laplace transform of the form (6.2), we have g, —  as #— oo, Hence f,(s)
— Pu(s) for s > 0 as #— oo. On the other hand, f,(s) converges to f(s) as
n — oo absolutely and uniformly on any compact set in C\{—a, —a, ...},
Pu(s) = f(s) should hold for s > 0. By Theorem 3.1, the mixing distribution
Gy of s, converges weakly to the mixing distribution G of g as a distribution
on (0, ] . Since the support of G, is contained in {a;j}%-1 U {00} the support
of G is contained in {a;}jz; U {o0}. Hence ¢ € ME{. The proof is complete.

TaeoreM 6.2. Let {a;} and {B;} be non-decreasing infinite sequences of positive
real numbers satisfying o, ¥ B; for all i, j. Let 4 € ME. such that

(6.5) Cues) =T, a + 738‘;’/(1 + a%)
fors 2 0. Then
(66) O<0(1<Bl<a2<‘32<"‘.

Moreover, if aj, Bj— oo as j— oo, then ut € MEZ.

Proof. By the assumption,
Pu(s) = exp [23, {log sta log - Bj}]

8
= exp [ 252, a,ju(s_iriﬁd“]’ for s 2 0.

Thus the density q(#) of the @-measure of g is written as q(#) = 271 1ia;sn ().
We show (6.6) by induction. Remind that q(#) is nonnegative and bounded by
1 a.e. Hence a; < B;. Assume that

0<a <B<a<B<: - <a<p,

holds for # 2 1. If an = @n+1 < Bu+1, then since Br = Bu+1, ¢(u) = 2 on (An+1,
B.). This can not occur. Hence a, < B, < n+1. Since ¢ is nonnegative, By < Br+1
< @u+1 can not occur. Hence a, < B, < @y41 < Br+1. The proof is complete.
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THEOREM 6.3. Let u € ME$ and let G be its mixing distribution. Suppose that
{a,} 15j<0 = (supp G) \ {0}, where {a;} is an infinite sequence increasing to oo .
Then theve is a sequence of real numbers {B}5-, such that

0<a1<31<a2<ﬁz<-"

and

Pu(s) =12, A+ Bij)/u + —C%), s> 0.

Proof. Let p; = G({a;}) and po = 1 — 2272, p;. We have
(6.7) Lus) = po + i ;—f_"—aj p; fors>0.

Denote by f(s) the right hand side of (6.7). Set P = {— a;};~,. Then the analytic
continuation of f to C\P is unique and f is a meromorphic function. Every pole of
f has degree 1 and the set of poles coincides with P. The function f is term-wise
differentiable in C\P and

a‘

(s) = — 25
f( ) j=1 (S + C(j)z
This shows that f is decreasing in every interval in R\ P and the set of zeros
Z = {— B;};z1 of f in R\P satisfies

bi.

"'<_‘82<_a2<""31<_a1<0.

Set s = a + bi. Since

= o _ailata) o4 oge  —oab
FO = bt 2 i e R gy g P

the imaginary part of f(s) vanishes if and only if 5 = 0. Hence f does not have
zero points outside R. Set

Ew,n)=1—u for n =0,
k
=(1—u)exp(2ﬁ=1u7} forn=1,2,....

Define a function ¢ by

o(s) = H;‘;IE(—ES;, .

Then, since iy (gf)f < oo for arbitrary T > 0, ¢ is an entire function and the
J

set of zero points of ¢ coincides with P ([3] p. 233). Let
@o(s) = @($)f (s).
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Then @, is an entire function with the set of zero points coinciding with Z. By
Weierstrass’s Factorization Theorem ([3] p. 234), there is an entire function g
such that o can be written as

90(s) = ¥ T2 E(— 3, ).
Hence,
(&) = e M7 E(= 5, )/ T E (= 4 )
This yields
£8) = e Tl (14 $/0 + 2 exp| Zhet 2 (8) = @),

We have, for any positive integer M,

M (@ + 2/ + ) exp| S 525 () — @)

= L (1 + $/0 + D) e[, 2o, S (@) - @),
If | s| < ay and M > N, then
Z£N+1 2 JikE {(a)~* — B~

= 2 Zﬁwﬂl%'f (@) = (aj+1) ™%

< By (shaw* < o,

It follows that

— o i (=9 -k -k
&i(s) = 251 2 k {@B» ()™}
is an entire function. By Theorem 6.2,
w S, S
M7 L+ /0 + )
‘is a meromorphic function. Hence f (s) is written as

fl&) = e T 1+ /A + ),

where g(s) = go(s) + gi(s) is an entire function. For s > 0 let A(s) = log f(s)
and B(s) =log [Tz, (1 + —é—)/(l + ). Since £ (s) = Lu(s) for s > 0, we have
¢l J

A(s) = fom (e —1) {j;m e~™q (u)duldz,
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for s > 0 where 0 < q(#) =1 ae. and -/;1 utqu)du < . Let
¢1(w) =0 for 0 < ay,

=1 fora;<u<p; j=1,2,...,

=0 forBi<u<ajna j=12,....

Since, by Theorem 6.1,

B = [T =~ ([ g dwdz,

for s > 0 we have
g(s) =A(s) = B(s) + C
and

46) =BG = [t @ — gy,

where C is a constant satisfying e = 1. Since (A(s) — B(s))/s is the Stieltjes
transform of (qi1(x) — q(@))x'dx, (q:1(x) — q(x))x ™" is obtained by the inver-
sion formula for Stieltjes transform. Since g(s) is an entire function, (qi(x) —
q(x))x*dx can not have a mass in (0, ©). Hence

@(x) —q(xr) = 0ae.
and g (s) is a constant C. Hence, we have
= [1= + 5 + 3y
Lu(s) i=1 (1 .3:')/(1 aj)

The proof is complete.

Remark 6.1. Let 4 € MEY and let G be its mixing distribution. Let Lu(s)
— [T S R
=1z a4+ .Bj)/(l + 0(,-)’ Then
G({0}) = Il;u1 ai/B;

Proof. Let @ be the @-measure of p. Since, by Remark 3.1,
— _ ("1
G o)) = exp (— 7+ Qawy),

and since — j; ;12 Q(du) = 23, log(a;/B;), we get the conclusion.
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Denote CME¢ = CE, % ME¢.

THEOREM 6.4. Let yt € CME.,. Suppose that its Laplace transform is represented

as
Puts) = T2, A+ ;,f;)/(l + ﬁ;)

where {a;}, (B;} are disjoint divergent non-decreasing sequences of positive reals satis-
fying a; ¥ Bj for all 1, j. Then,

() there is a subsequence {at,} of {@;} such that
0<am <Bi<ay<B,<:-

and

() X 7r i< oo forl'= {a}y\ {lan}o,.

rel’

Hence p € CME?.

Proof. If € CME+, then there is ty € CEy, 2 € ME, such that =
(1%t and there is a finite or infinite sequence 0 < 1 =1, < +++ s
6.8) Cun(s) = T /A + ),

J
> 1y, < oo,
See [8]. Hence,
Lua(s) = M7 A+ /A + D)
] 7

where

{51} = {,B,} U ({Tj}\{aj}), {Tj} = {a,-}\{Tf},
0<n=nps---,
0<0£0, =",

We may assume that {z;} is an infinite sequence. Then §;, 7;— o0 as j— oco. By
Theorems 6.1 and 2, we have

O<T1<51<T2<52<“'

and p; € ME¢. Hence Lu(s) can be analytically continued to C \ {— au,
— a3,...} and zero points of analytic continuation of £u(s) are contained in {5;}.
We have {7} € {«;}, {6;} = {B;} and we have (i) and (ii).
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