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Nilpotent signalizer functors

on finite groups

J.N. Ward

In a recent paper Martineau has shown that the study of groups
with a fixed-point-free automorphism group can be applied to
help in the investigation of signalizer functors. We prove

further results about signalizer functors by this method.

Following the idea of Martineau applied in a recent paper [5] we

obtain theorems which have as a consequence the following result.

THEOREM. Let r be a prime, G a finite group and A an abelian
r-subgroup of G with m(4A) =2 3. Suppose that © is an A-signalizer

funetor on G such that B(CG(a)] is nilpotent for each a € A# . Then

8 is complete and 6(G) is nilpotent.

We use the¢ notation of [3] together with the following. Let V¥
denote a class of finite groups. We say that the A-signalizer functor 6
on G (where G denotes a finite group and A is an abelien r-subgroup
of G, r some prime) is a ¥ A-signalizer functor on G if
#

G(CG(a)) €Y for each a € A4 If 6 is a Y A-signalizer functor on

G then we require, in addition to the usual requirements for a subgroup of

G to belong to He(A) , that the elements of He(A) belong to Y .

If we take Y +to be the class of soluble groups then our notation
agrees with that of Goldschmidt. The above theorem may now be stated as a

theorem about nilpotent signalizer functors on finite groups:
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THEOREM 1. Let »r denote a prime, G a finite group and A an
abelian r-subgroup of G with m(A) 2 3 . Suppose that 0 is a

nilpotent A-signalizer functor on G . Then 0 <is complete.
Theorem 1 is an immediate consequence of the following theorem.

THEOREM 2. Let r denote a prime, G a finite group and A an
abelian r-subgrouwp of G with m(A) =2 3. Let p denote some prime
distinet from r and 1N the class of finite groups with a normal Sylow
p-subgroup. Suppose that 6 is a NI A-signalizer functor on G . Then
8 is complete.

We also prove another theorem which includes as special cases both

Theorem 1 and the theorem of Martineau [5].

THEOREM 3. Let r denote a prime, G a finite group and A an
elementary abelian r-subgroup of G with m(A) 2 3. Let 6 denote an

A-gignalizer functor on G . Assume that for each a € A# each element of

G[CG(A)) centralizes any element of S[CG(a)) with relatively prime
order. Then © <is complete.

REMARK. Let r denote a prime, G a finite group and A an abelian

r-subgroup of (G . Suppose that 6 is a supersoluble A-signalizer
functor on G . We may then define a soluble A-signalizer functor on G
- say 6 - by defining g(CG(a)) = G(CG(a)J for each a € 47 . 1Ir

m(A) = 3 then examples exist in which 6 is complete but ® is not

complete. If m(4) > 4 +then both 6 and 0 must be complete.
The reason that this may happen is that He(.ll) may be a proper subset

of Mg(A) in the case m(4) = 3.

Proof of Theorem 2

We assume that G, 4, » and 6 satisfy the hypothesis of Theorem 2.
Hence Op(ﬁ (CG(a))) is a Sylow p-subgroup of G(CG(a)) for each

a € A# . Hence if P ¢ Hé*(A 3 p) , then by [2] Lemma 3.2 we may conclude

that P 2 Op[B[CG(a))) for each a € 4" | It follows that for each
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a € A# we have

Cp(a) = Op(e(CG(a)])

Since A is noncyclic we find

. # #
P= <Cp(a) | a €4 >= (op(e(cc(a))) | a €4 ) .
Thus P is normalized by G[CG(A)) . By [2] Theorem 3.1 we conclude that

Mg(A ; p) = {P} .

In the course of the proof we will need the following result.

LEMMA. Let H denote a finite r'-growp and B an elementary

abelian r-group of operators on H with order r3 where r is some
prime. Assume that for each b € 8" the subgroup CH(b) eontains a

normal Sylow p-subgroup where p is some fixed prime. Then H contains
a normal Sylow p-subgroup.

Proof. We assume that # is a minimal counterexample to the lemma.
Thus B is an elementary sbelian r-group of operators on H with order
r3 . It is immediate from our choice of H that Op(H) =1 .

The argument given above shows that H possesses a unique
B-invariant Sylow p-subgroup T . By [3] Theorem 6.2.2 (iii) and our
hypothesis, CT(b) is the normal Sylow p-subgroup of CH(b) for each

b ¢B" .

Now [2] Lemma 2.1 shows that 7T = (CT(Bl) I B/Bl is cyclie?) . By our
choice of H we have T # 1 so that CT(BlJ # 1 for some subgroup Bl
of index r in B .

Let K denote a maximal B-invariant subgroup of H which contains
CH(b) for some b € Bi . Then by our choice of H and B, , we have
1 # CT(Bl) =T nK . Since Op(H) = 1 we conclude that K = NH(TnK)
Since T is a p-group and T nK = IVT(TnK) we must have T < X . Hence

#

K = IVH(T) . We conclude that CH(b) < IVH(T) for each b € B, .
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Since Bl is a noncyclic abelian group of operators on H it follows

that H = <CH(b) | b ¢ Bi> = Ny(T) . This is a contradiction and completes
the proof of the lemma.
We now complete the proof of Theorem 2.

By the lemma Jjust proved if # is an A-invariant »'-subgroup of G
such that Cy(a) = G(CG(a)) for each a €A then P NH 9H . Hence

H € He(A) . This implies that if H € HS(A) and P NnH #1 then

The same argument as is given in the proof of the lemma shows that

there exists some subgroup B of index r in A such that CP(B) £ 1

Again by an argument given in the proof of the lemma we can conclude that

NG(P) contains G(CG(b)] for each b € B# .

We now complete the proof by making two applications of Lemma 2.6 of
[2]. Ve suppose that the theorem is true for groups of order less than
|G| . If P is normal in G then we may apply part 2 of the lemma
mentioned, taking X = P , and easily conclude that 6 is complete.

Otherwise N = NG(P) is a proper subgroup of G and part 1 of the lemma

is applicable. This completes the proof.

Proof of Theorem 3

Let G, A, r and © be as given in the hypothesis of the theorem.

We prove the theorem by means of a sequence of lemmas.
LEMMA 1. © <s soluble.

Proof. Let H €H_.(4) so that CH(A) b G(CG(A)) and, for each

8
a ¢ A# , we have Cd(a) < S(CG(a)) . It follows that the group H and the

operator group induced on H by conjugation by elements of A satisfy the
hypothesis of the main theorem of [6]. Hence H 1is soluble. Thus 0 1is
soluble.

LEMMA 2. If p denotes aprime then ME(A ; p) is a singleton.
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Proof. Since 6(CG(A)) < S(Cc(a)) for each a € A# , we conclude
from our hypothesis that S(CG(A)) is nilpotent. Let  p denote some
prime. Write B[CG(A)) =P, x D vhere P, 1is the Sylov p-subgroup of
G(CG(A)] and D is a p':group. Choose P ¢ MS(A ; p) such that
P> Pl . By [2] Theorem 3.1, if P ¢ Mé(A ; p) then P =PF for some
x € S[CG(A)) - Since P, =P , ve may assume that z €D . But

P = <CP(a) | a € A#> = <Pn6(CG(a)] | a ¢ A#>,
so by our hypothesis P is centralized by D . In particular P is
centralized by x so that P =P . This proves the lemma.
COROLLARY. If H# ¢ He(A) then H contains a wiique A-invariant
Hall m-subgroup for any set of primes T .

We may now suppose, in addition to the existing assumptions, that G
is a counterexample of minimum order to Theorem 3. In the end we will

derive & contradiction and the theorem will be proved.
LEMMA 3. 6 s locally complete.
Proof. This is Lemma 5.1 of [2].
Now let p, g € m(8) , let Hgm ; p) = {P} and let

a4 5 q) = 1@}

Suppose that & € Hg(A 3 Ps» g) « We will prove that H = PQ

Suppose that H # P . If H =2 P then we may write H = PX where X is
characterized as the largest subgroup of Q which is normalized by 4 and
is permutable (setwise) with P . Similarly if H =2 @ +then H = QY where
Y 1is the largest subgroup of P which is normalized by A4 and is
permutable with @ .

For the remainder of the proof we will reserve the symbols p, q, P,
@, X and Y for the situation Just described. It will be some time

before we will use the assumption that X # @ (or equivalently Y # P ).

LEMMA 4. Suppose H €I4§(A 3 P q) and that M is an A-invariant
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subgrowp of F(H) with OP(M) £1¢ Oq(M) . Then H is the only element

of Mé(A : Py q) which contains M .

Proof. (The following proof was obtained by adapting Lemma %4 of [4].)

Let Z(F(H)) = Z . We will first prove the lemma in the special case

that M =2 . To this end let X ¢ H’é(A ; Py q) satisfy K = Z . Denote

by Zp (respectively Zq ) the Sylow p-subgroup (respectively
g-subgroup ) of 2 . Then Zp € He(A ; P) so by Lemma 3 we may form
e(NG(Zp)) .  Now Zp 4 H € l/l‘é(/l ;s P, q) so H is the unique A4-invariant

Hall {p, ql}-subgroup of G(IVG(Z )) . Since Zq = Oq(H) NnK and

p
IVK[Zp) = H we obtain by Lemma 2.3 of [Z] that Zq < Oq(K) . Hence
Op(K) = O[CG(Zq)) so that OP(K) <H . By symmetry in p and q ,

Oq(K) = H . Ve conclude then that F(X) < H .

Since Zq < Oq(K) and Zq # 1 we have Oq(K) # 1 . Similarly

IA

O (K) #1 . We also know that F(K) = H so in particular Z(F(K)) H

p
Hence we may reverse the roles of H and K above to obtain F(H) =K .
We now work with F(H) instead of Z . Since Op(H) = B(NG(Oq(H)))

we obtai 0 (H) =0 _\N, |0 (H . Hen 0 (H) = 0 (K) . Similarl
e obtain p( ) p(K( q( ))) ce p( ) p( ) y
Oq(H) < Oq(K) and therefore F(H) = F(K) . Interchanging the roles of #
and K we get the reverse inclusion and so deduce that F(H) = F(K)

Now we see that K = H since each is the unique A-invariant subgroup

of G(NG(F(H)]) . Hence H 1is the unique element of Ms(A 3 Ps q) to
contain 2 (F(H)) .
We now turn to the general case. Let Mp (respectively Mq ) denote

the Sylow p-subgroup (respectively gq-subgroup) of M . By hypothesis
M < F(H) . Suppose M <K € HS(A 3 P» q) . Then G(CG(Mq)] contains 2

so Gy (Mq) =Hn G(CG(Mq)] is the unique A-invariant Hall {p, q}-
subgroup of G(CG(Mq]) . Since K € HS(A 3 Ps q) we deduce that

Mp = CK[Mq) < E and hence Mp =< Op(CK(Mq)) . By Lemma 2.3 of [Z] we find
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that Mp < Op(K) . Now the same argument yeilds Op(K) < CK(Mp] <H By
symmetry in p and ¢ we also have OP(K) < H and hence F(K) =< H We

have also shown that M =< F(K) .

Interchanging the roles of H and X in the last argument we find
that F(H) <X . But then Z(F(H)) <K so we may finally conclude that
H = K . This completes the proof of Lemma 4.

LEMMA 5. Let H ¢ He(A 3 Py q) and assume that Z(Q) < H . Then

HnP= Op(H)(HnY) .

Proof. We have already observed that G(CG(A)) is nilpotent. 1In
particular if H € He(A 5 Ps q) then since CH(A) =Hn CG(A) =< G[CG(A))
we deduce that CH(A) is nilpotent. Thus SL(2, q) is not involved in

c,(4) .

By Cofollary 1 of [1] applied to the group H/OP(H) , the prime ¢
and the group of operators induced by 4 on H/Op(H) we have
HnPs= Op(H)CHnP(Z(Qrﬂ))NHnP(J(QnH)] . Now 2(Q) =H n@Q so
z2(Q) = z(H) . Thus Cy ,(2(@n)) =€y 5(2(@)) . But 2(Q) is an
A-invariant subgroup of @ and @ € He(A) so 2(Q) ¢ He(A) . Therefore
S(CG(Z(Q)]) is soluble and @ is its unique A-invariant Sylow

q-subgroup. Thus P n O(CG[Z(Q))) is contained in Y . Since

Cyrp(2(Q)) =P no(c,(2(Q))) we have c, (2(H#rQ)) =¥ .
Suppose that the lemma is false. Then we deduce that
NHnP[J(HnQ)) $Y . Choose @* =@ maximal subject to: Q* is

A-invariant, 2(Q) =@Q* and IVP(J(Q*)) £Y . Since 6 is locally
complete, IVP(J(Q)) =Y so @*# Q.

Let P* and § be respectively the A-invariant Sylow p-subgroup
and Sylow gq-subgroup of O(W(J(Q*))) . Let K = P*Q . Then 2(Q) <@

and @ is A-invariant. Another application of Glauberman's factorization
theorem, this time to K/0,(K) , yields P* = op(K)cP*(z('é))sz* @@) .
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Now Z(€) =@* =@ so that 2Z(Q) = z2(@*) = J(Q*) < Oq(K) . Hence OP(K)
and Z(Q) commute elementwise so that Op(K) <Y . From 2(Q) =9 <q we
have 2(Q) =< 2(Q) which in turn yields CP*(ZCQ-)) <Y . Finally since

Q* = @ we have @Q* < @ , so that maximality of @* yields
(J(Q ) =N (J(é)) =Y . Hence P* =Y , contrary to the assumption that

[J @*)) ¥ Y . This lemma is proved.

We now let w:{yewg(A i D, q) | H#PX or QY}

LEMMA 6. If H €Y then

3 0 _(H H) ,

(i) p();el;eoq()
(i) Z(P) < H and 2(Q) <H , and
11 0 (H) = =Y O (H) .
(iiZ) X n q( ) =1 n p( )

Proof. We first prove (7). Suppose by way of contradiction that

H €Y and Op(H) =1 . Since H is soluble, Oq(H) #1 . Now
H € Hé(A 3 P> q) , so it follows that H contains the unique A-invariant
subgroup of S(IVG(Oq(H))) . Hence H contains IVQ(Oq(H)) and in
particular H contains Z(Q) . Now by Lemma 5,

HnP= Op(H)(HnY) =HnY=1Y.

Since H = (HnQ)(HAP) <= @Y and H € HS(A 3 P» q) we conclude that
= @Y . But this contradicts the choice of H . Hence Op(H) #1 .
Similarly Oq(H) #1 .
Let H €Y . Then H 1is the unique A-invariant Hall {p, gql}-
subgroup of G(IVG(OP(H))) . Hence Z(P) <H . Similarly 2(Q) <H . This
proves (11).

To prove (111) suppose that H € ¥ and, by way of contradiction, that
=Yn Op(H) £#1 . Then M= NOq(H) is contained in both Y@ and H .

On the other hand M and H satisfy the hypotheses of Lemma L4, so
= Y . But this is contrary to the choice of H . Hence N =1 .
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Similarly X n Oq(H) =1 .

LEMMA 7. If H, K€Y and M€ Me(A s P, q) eatisfies
M=<FH)nK then H=K.

Proof. By Lemma 4 we may assume that M is a g-group. Let
Ql = [z2(P), M] . Since 2Z(P) <H by Lemma 6, it follows that Ql is a
g-group. Again by Lemma 6 we have Z(P) < KX so that Z(P) = Z(P KX)

Hence Z{P) = Oq,p(K) . Since M =< K we must have Ql < Oq,p(K) and

hence Ql = 0q(K) .
If Ql # 1 then we may apply Lemma 4 with M = CF(H) (Ql) . This
yields OP(K) < H . Hence QlOp(K) < H and another application of Lemma

L, this time taking M = Qlop(K) , yields H =K .

If Ql 1 then [Z(P), Ml =1 so that ¥ < X . But then

Xn OQ(H) # 1 contradicting Lemma 6. This completes the proof.

LEMMA 8. Suppose H €Y and y € A are such that

Op(H) n CG(y) #1¢# Oq(H) n cG(y) .

(y) =H and CQ(y) = H . Furthermore if K ¢ ¥ and K # H then

Proof. By Lemma 6 (ii%), CP(y) £Y ana CQ(y) ¥ X . Hence the
A-invariant Hall {p, ql-subgroup, S , of G(CG(y)] is contained in
neither PX nor @Y . Hence there exists X € ¥ such that S =K . DNow

we may apply Lemma 4, taking M = CF(H)(y) , to deduce that K = H .

If CF )(y) #1 for some K € Y then, since CF(K)(y) < H , we may

(kx
apply Lemma 7 with M = CF(K)(y) to deduce that XK = H . This completes
the proof of Lemma 8.

LEMMA 9. |¥] =1 .

Proof. Suppose that this is false and choose two distinct elements,
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Hl and H2 of Y . We may choose noncyclic subgroups, B and C , each
of index r in A such that Cp(B) n Op[Hl] #1 and Cp(C) n oq(H2) #£1
by Lemma 2.1 of [2]. Let 2z € Bn C# . From our choice of B and Lemma

6 (i11) we deduce that CP(B) £Y . In particular CP(z) £Y . Similarly
CQ(z) £ X . Hence the unique A-invariant Hall {p, q}-sﬁbgroup, s,

of 8(C4(2)) is contained in neither PX nor QY . Thus we have S <K
for some K € VY .

Now by Lemma 6 (7%Z) and Lemma 5 we have P nK = Op(K)(YnK) . Hence

» where we have used Lemma 6 (77%) in

lep(z)] = ICYnK(z)Ilcop(K)(z)

addition to the information already mentioned. Now CP(z) fY , sowe must
have Op(K) nCp(z) #1 . Similarly Oq(K) n CQ(z) £1 .
But Lemma 8 now implies that 2z operates without fixed-points on

F(H) for any H € Y which is distinct from X . But this is contrary to

our choice of 2z . The lemma is proved.

LEMMA 10. Ppg = gpP .

Proof. Assume that PQ # P . Then there exists a noncyclic subgroup
C of A such that CQ(C) $ X . Then for each y € C# the unique
A-invariant Hall {p, gl}-subgroup, CP(y)cb(y) , of G(Cc(y)) is not

contained in PX . If Y 1is non-empty let H € ¥ . Then for each y € C
either CP(y)CQ(y) <H or CP(y) =Y . Let Y, Yps »++5 Y, denote
generators for the »r + 1 nonidentity proper subgroups of C and let
Pi = Cb[yi] and Qi = Cb(yi] for 1 =7 <=r . We assume that the Y;
are arranged so that for <7 < g we have Pi <H nP whilst for 1 > s we
have Pi <Y (where s is some integer). Now by Theorem 5.3.16 of [3] it
follows that P = P1P2 e Pr < (HP)Y . But (HP)YC P so P = (HP)Y .
By Letma 5, P = Op(H)Y = Yop(H) . Similarly @ = Oq(H)X = qu(H) .

Now Op(H) and Oq(H) commute elementwise, PX = XP and QY = Y@ .

Hence
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PQ =0 (H)YQ = 0 _(H)QY = 0 ()0 (H)XY = 0 (H)O_(H)XY
Q p()Q p()Q p()q() q()p()
C O (H)PXY = 0 (H)XPY = 0 (H)XP = @P .
- q q q
We obtain in the same way the reverse inequality and hence conclude that
PQ@ = QP . This completes the proof of Lemma 10.

We now complete the proof of Theorem 3 by explicitly exhibiting
8(G) . Let Py» Pps +-+s P, denote the distinct prime divisors of |e|

Let Pi denote the unique element of Me(A H pi) for 1 <% =<t . Then

P, =P.P, ) i -
by Lemma 10 we have Pt F itz for all 7 and ¢ Hence P1P2 Pt

is a group and is clearly the unique maximal element of W,(4) . Hence 8
¢}

is complete and so is the proof.
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