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Nilpotent signalizer functors

on finite groups

J.N. Ward

In a recent paper Martineau has shown that the study of groups

with a fixed-point-free automorphism group can be applied to

help in the investigation of signalizer functors. We prove

further results about signalizer functors by this method.

Following the idea of Martineau applied in a recent paper [5] we

obtain theorems which have as a consequence the following result.

THEOREM. Let r be a prime, G a finite group and A an abelian

IP-subgroup of G with m(A) > 3 . Suppose that 6 is an A-signalizer

functor on G such that B[cAa)) is nilpotent for each a £ A . Then

6 is complete and Q(G) is nilpotent.

We use thf notation of [3] together with the following. Let V

denote a class of f in i te groups. We say that the /1-signalizer functor 6

on G (where G denotes a f ini te group and A is an abelian r-subgroup

of G , r some prime) i s a ¥ 4-signalizer functor on G i f

Q[cAa)) € V for each a € Aff . If 6 is a V 4-signalizer functor on

G then we require, in addition to the usual requirements for a subgroup of

G to belong to MAA) , that the elements of MgU) belong to V .

If we take V to be the class of soluble groups then our notation

agrees with that of Gol dschmi dt . The above theorem may now be stated as a

theorem about nilpotent signalizer functors on f in i te groups:
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368 J . N . Ward

THEOREM ] . Let r denote a prime, G a finite group and A an

abelian r-subgroup of G with m(A) > 3 . Suppose that 6 is a

nilpotent A-signalizer functor on G . Then 8 is complete.

Theorem 1 is an immediate consequence of the following theorem.

THEOREM 2. Let r denote a prime, G a finite group and A an

abelian r-subgroup of G with m(A) > 3 . Let p denote some prime

distinct from r and II the class of finite groups with, a normal Sylow

p-subgroup. Suppose that 8 is a II A-signalizer functor on G . Then

8 is comp le te.

We also prove another theorem which includes as special cases both

Theorem 1 and the theorem of Martineau [5 ] .

THEOREM 3. Let r denote a prime, G a finite group and A an

elementary abelian r-subgroup of G with m{A) > 3 . Let 8 denote an

§A-signalizer functor on G . Assume that for each a € A each element of

B[Cr{A)) centralizes any element of 8(c (a)J with relatively prime

order. Then 8 is complete.

REMARK. Let r denote a prime, G a f in i te group and A an abelian

r-subgroup of G . Suppose that 6 is a supersoluble ^-signal izer

functor on G . We may then define a soluble .d-signalizer functor on G
— a

- say 6 - by defining 6 (C {a)) = Q[CQ{a)) for each a i A . If

m{A) = 3 then examples exis t in which 6 is complete but 9 i s not

complete. If m(A) > k then both 6 and 8 must be complete.

The reason that th i s may happen is that Mg(^) may be a proper subset

of W^U) in the case m{A) = 3 .

Proof of Theorem 2

We assume t h a t G, A, r and 6 s a t i s f y the hypothes is of Theorem 2 .

Hence 0 [e[C (a))) i s a Sylow p-subgroup of 6(C (<z)) for each

u
a € A . Hence i f P € M*(A ; p) , t h e n by [ 2 ] Lemma 3-2 we may c o n c l u d e

v
n

that P > 0 (8(C (a)}) for each a € A . It follows that for each
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a € A we have

Cp(a) = Op{Q(CG(a))) .

Since A is noncyclic we find

P = (Cp(a) | f l U ' ) = (op(6(Cc(a))) | a € / ) .

Thus P is normalized by Q[cAA)) . By [Z] Theorem 3.1 we conclude that

In the course of the proof we will need the following result.

LEMMA. Let H denote a finite r'-group and B an elementary

abelian r-group of operators on B with order r where r is some
u

prime. Assume that for each b £ B the subgroup CAb) contains a

normal Sylow p-subgroup where p is some fixed prime. Then H contains

a normal Sylow p-subgroup.

Proof. We assume that H is a minimal counterexample to the lemma.

Thus B is an elementary abelian r-group of operators on B with order

r . I t i s immediate from our choice of H that 0 {H) = 1 .

The argument given above shows that H possesses a unique

B-invariant Sylow p-subgroup T . By [3] Theorem 6.2.2 ( i i i ) and our

hypothesis, CT(b) i s the normal Sylow p-subgroup of ^Ab) for each

b I B# .

Now [2] Lemma 2.1 shows that T = < CAB ) | B/B i s cycl ic) . By our

choice of B we have T t 1 so that CAB ) * 1 for some subgroup B

of index r in B .

Let K denote a maximal B-invariant subgroup of B which contains

Cfjib) for some b € B . Then by our choice of B and B , we have

1 # c
TiB-i) - T n K • Since 0 (B) = 1 we conclude that K = N

H

Since T i s a p-group and T n K = N (TnK) we must have T 5 .

K = NAT) . We conclude that CAb) 5 NAT) for each b I B .
ti it ti -L
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Since B is a noncyclic abelian group of operators on H it follows

that H = \CH(b) | b € B*\ 5 HR(T) . This is a contradiction and completes

the proof of the lemma.

We now complete the proof of Theorem 2.

By the lemma Just proved if H is an /4-invariant r '-subgroup of G

such that CH(a) 5 d[CG(a)) for each a € A then P n H < H . Hence

H € M - U ) . This implies that if H € M*(i4) and P n H ? 1 then

# = NH(P) .

The same argument as is given in the proof of the lemma shows that

there exists some subgroup B of index v in A such that Cp(B) f 1 .

Again by an argument given in the proof of the lemma we can conclude that

NG{P) contains Q[CG(b)) for each b Z B# .

We now complete the proof by making two applications of Lemma 2.6 of

[2], We suppose that the theorem is true for groups of order less than

|G| . If P is normal in G then we may apply part 2 of the lemma

mentioned, taking X = P , and easily conclude that 9 is complete.

Otherwise N = N-(P) is a proper subgroup of G and part 1 of the lemma

is applicable. This completes the proof.

Proof of Theorem 3

Let G, A, r and 9 be as given in the hypothesis of the theorem.

We prove the theorem by means of a sequence of lemmas.

LEMMA 1 . 9 i s soluble.

Proof. Let ff € MQ(/1) so that CR{A) 5 Q[CQ{A)) and, for each

a (. A , we have CJ(a) 5 6{CG(a)) . I t follows that the group H and the

operator group induced on H by conjugation by elements of A satisfy the

hypothesis of the main theorem of [6] . Hence H is soluble. Thus 8 is

soluble.

LEMMA 2 . If p denotes a prime then H * U ; p ) is a singleton.
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Proof. Since 8(cffU)) 5 &[CG(a)) for each a d A , we conclude

from our hypothesis that Q[C^(A)) i s ni lpotent . Let p denote some

prime. Write 6(C.-,(.d)) = P x D where P. i s the Sylow p-subgroup of

&[CJA)) and 5 i s a p'-group. Choose P € M*U ; p) such that

P > Px . By [2] Theorem 3 .1 , i f P € M*{A ; p) then P = PX for some

x € 6(C,,U)) . Since P 5 P , we may assume that x £ D . But

P = (cp{a) | a € A*} = (iVie(cc(a)) | a € / } ,

so "by our hypothesis P is centralized by D . In particular P is

centralized by x so that P = P . This proves the lemma.

COROLLARY. If fl € H.(i4) tfiew # contains a unique A-invariant

Hall it-subgroup for any set of primes IT .

We may now suppose, in addition to the existing assumptions, that G

is a counterexample of minimum order to Theorem 3. In the end we wi l l

derive a contradiction and the theorem wi l l be proved.

LEMMA 3. Q is locally complete.

Proof. This is Lemma 5.1 of [2 ] .

Now le t p , q € TT(6) , l e t H*(4 ; p) = {p} and l e t

M*U ; q) = {Q} .

Suppose that B € H*(4 ; p , q) . We wil l prove that H = PQ .

Suppose that H t PQ . If U > P then we may write H = PX where X i s

characterized as the largest subgroup of Q which is normalized by A and

is permutable (setwise) with P . Similarly i f H 2 Q then H = QY where

I i s the largest subgroup of P which is normalized by A and is

permutable with Q .

For the remainder of the proof we wi l l reserve the symbols p , q, P,

Q, X and J for the si tuat ion just described. I t wi l l be some time

before we wil l use the assumption that X / Q (or equivalently Y + P ) .

LEMMA 4 . Suppose H ZHi(A ; p , q) and that M is an A-invariant
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subgroup of F(H) with 0 (M) * 1 * 0 AM) . Then H is the only element

of Mi.(A ; p, q) which contains M .

Proof. (The following proof was obtained by adapting Lemma 1+ of [4] . )

Let Z[F(H)) = Z . We wi l l f i r s t prove the lemma in the special case

tha t M = Z . To th i s end l e t K € M*U ; p, q) satisfy K > Z . Denote

by Z (respectively Z ) the Sylow p-subgroup (respectively

<7~subgroup ) of Z . Then Z (. Hg(.4 ; p) so by Lemma 3 we may form

6(il?G(Z )) . Now Z <i H € M*(i4 ; p , q) so H i s the unique ^-invariant

Hall {p, q}-subgroup of e ( ^ ( z l ) . Since Z .5 0 (H) nK and

NK[Z ) < H we obtain by Lemma 2.3 of [2] that Z < 0 (X) . Hence

0 (K) s 6(CG(Z )) so that 0 (K) 5 H . By symmetry in p and <; ,

0 (K) 2 H . We conclude then that F(K) 5 H .

Since Z £ 0 (K) and Z ;t 1 we have 0 {K) # 1 . Similarly

0 (X) # 1 . We also know that F{K) ± H so in par t icular Z[F(K)) S fl .

Hence we may reverse the roles of H and K above to obtain F(H) £ K .

We now work with F{H) instead of Z . Since 0 (fl) 5 9 ( ^ ( 0 (ff)])

we obtain 0 (fl) < 0 [NK{0 (H))) . Hence 0 (H) < 0 (X) . Similarly

0 (H) < 0 (X) and therefore f(#) S F(X) . Interchanging the roles of H

and K we get the reverse inclusion and so deduce that F(H) = F(K) .

Now we see that K = H since each is the unique 4-invariant subgroup

of Q[NJF(H))) . Hence H i s the unique element of HgU ; p , q) to

contain

We now turn to the general case. Let M (respectively M ) denote

the Sylow p-subgroup (respectively ^-subgroup) of M . By hypothesis

M £ F(H) . Suppose M < K i H*(A ; p , q) . Then 6(Cff(W )) contains Z

so CH[M ) = H n Q[CJM )) i s the unique ^- invariant Hall {p, «?}-

subgroup of Q{CG[M J) . Since K € kL(yi ; p , q) we deduce that

W 5 CX(M ) £ £' and hence M 5 0 ((^(jf)) . By Lemma 2.3 of [2] we find
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that M £ °p(#) • Now the same argument yeilds 0 (K) £ CR[M ) £ H . By

symmetry in p and q we also have 0 (K) £ H and hence F{K) £ H . We

have also shown that M £ F(K) .

Interchanging the roles of H and K in the l as t argument we find

that F{H) £ K . But then Z[F(H)) £ K so we may finally conclude that

H = K . This completes the proof of Lemma h.

LEMMA 5. Let H € HQU ; p , <?) and assume that Z(Q) £ H . Then

H n P = 0 {H){HrS) .

Proof. We have already observed that 6[C^{A)) i s ni lpotent . In

part icular i f a € Hg(/4 ; p , q) then since Cfl(A) = H n ^ ( 4 ) £ 6(Cc(i4))

we deduce that Cfl(/4) is ni lpotent . Thus SL(2, q) i s not involved in

CH{A) .

By Corollary 1 of [7] applied to the group H/0 (H) , the prime q

and the group of operators induced by A on H/0 (//) we have

H n P = O p ( H ) C H r ) p [ Z ( . Q r V ) ) N H r p l J ( Q r H ) ) . N o w 2 ( « ) 5 S n « s o

Z(«) £ Z(flnQ) . Thus CH^[Z{QnH)) £ Cffnp(2(<2)) . But Z(«) i s an

4-invariant subgroup of Q and Q f Mg(yl) so Z(Q) e HQ(J4) . Therefore

d[CG[Z{Q))) i s soluble and 6 is i t s unique 4-invariant Sylow

q-subgroup. Thus P n 9 (c [Z{Q))) is contained in I . Since

CHnp{Z(Q)) £ P n 6(<7c(Z(e))) we have CHhp[z(HrQ)) £ y .

Suppose that the lemma is fa lse . Then we deduce that

NHrp[j(HnQ)) ^ y . Choose Q* £ 5 maximal subject to : 6* i s

4-invariant, Z(Q) £ Q* and il/p(j(Q*)) $ y . Since 6 is locally

complete, flp(«/(«)) £ Y so Q* t Q .

Let P* and <2 be respectively the ^-invariant Sylow p-subgroup

and Sylow ^-subgroup of 8 [N[J(Q* ))) . Let K = P*Q . Then Z(Q) £ «

and Q is i4-invariant. Another application of Glauberman's factorization

theorem, th is time to K/OAK) , yields P* = 0 (K)CpA[Z(Q))Np)t{j(Q)) .
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Now Z{Q) £ Q* £ Q so that Z(Q) £ Z(Q*) £ J{Q*) < 0 (K) . Hence 0 (K)
Q P

and Z{Q) commute elementwise so that 0 (K) £ Y . From Z(Q) S ~Q £ 0 we
P

have Z(«) £ Z{Q) which in turn yields CpA[z(Q)) £ Y . Finally since
Q* £ § we have Q* < Q , so that maximality of Q* yields

/l?pH(j($)) £ Np[j(.Q)) < 7 . Hence P* < Y , contrary to the assumption that

Np[J(Q*)) £ y . This lemma is proved.

We now l e t V = {ff € HgU ; p , <?) | ff jt PJT or QY} .

LEMMA 6. If H t. V then

(i) 0 (H) t 1 t 0 (H) J

r i i ; Z(P) £ ff and 2(«) ± B , and

(Hi) X n 0 (H) = 1 = Y n 0 (H) .

Proof. We f i r s t prove (i) . Suppose by way of contradiction that

H i Y and 0(H) = 1 . Since H is soluble, 0 (H) t.l • Now

H € M (̂4 ; p, q) , so i t follows that H contains the unique ^-invariant

subgroup of 9(flG(0 (fl))) . Hence H contains Ng[o (U)) and in

par t i cu la r H contains Z(Q) . Now by Lemma 5»

H n P = 0 (H)(HnY) = J n I < I .
P

Since H = (HrQ)(HnP) ^ QY and ff t MgU ; p , ?) we conclude that

H = QY . But t h i s contradicts the choice of H . Hence 0 (U) t 1 .

Similarly 0 (H) t 1 .

Let 5 € ¥ . Then // i s the unique ^-invariant Hall {p, q}-

subgroup of &[NG[0 (#))} . Hence Z{P) £ff . Similarly Z{Q) Sfl . This

proves (ii) .

To prove (Hi) suppose that H € f and, by way of contradiction, that

tf = Y n 0 (H) t 1 . Then M = NO (H) i s contained in both YQ and ff .

On the other hand M and H satisfy the hypotheses of Lemma It, so

H = YQ . But th i s i s contrary to the choice of H . Hence N = 1 .
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Similarly X n 0 (H) = 1 .

LEMMA 7. If H, K I V and M t MgU ; p, q) satisfies

M 5 F(H) n K then H = K .

Proof. By Lemma 1+ we may assume that M i s a q-group. Let

Q = [Z(P), M] . Since Z(P) 5 H by Lemma 6, i t follows that Q is a

q-group. Again by Lemma 6 we have Z(P) 5 # so that Z(P) 5 Z(P X) .

Hence Z(P) 5 0 (X) . Since A? 5 K we must have 0 5 0 (K) and

hence ^ 5 0 (K) .

If S-, + 1 then we may apply Lemma It with M = c
FiH\[(i-i) • This

yields 0 (K) 5 H . Hence Q 0 (K) 5 H and another application of Lemma

k, th is time taking M = Q 0 (K) , yields H = K .

If Q = 1 then [Z(P), M] = 1 so that Af 5 J . But then

X n 0 (H) f 1 contradicting Lemma 6. This completes the proof.

LEMMA 8. Suppose H £ Y awd j / € 4 are such that

0AH) n CG(y) # 1 / 0 (fl) n C^Cj/) .

Then Cp{y) < H and CAy) 5 H . Furthermore if K ft and K t H then

cF{K)(y) = i •

Proof. By Lemma 6 (Hi), CAy) £ Y and CAy) $ X . Hence the

4-invariant Hall {p, q}-subgroup, S , of 6[cAy)j i s contained in

neither PX nor Qy . Hence there exists J H such that S 5 X . Now

we may apply Lemma h, taking M = Cp(u)(y) > "to deduce that K = H .

If CF(^)(y) * 1 f ° r some X E t then, since c
f (^)( j / ) - H > w e may

apply Lemma 7 with A/ = (?„,„>(«) to deduce that K = H . This completes

the proof of Lemma 8.

LEMMA 9. | « | < 1 .

Proof. Suppose that this is false and choose two distinct elements,
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H and #2 of V . We may choose noncyclic subgroups, B and C , each

of index r in A such that CAB) n 0 [H ) / 1 and Cn(C) n 0 [H ) t 1

by Lemma 2.1 of [Z]. Let z € B n C . From our choice of B and Lemma

6 f i t i ; we deduce that Cp{B) £ Y . In par t icular CpU) £ * . Similarly

Cg(a) £ * . Hence the unique -4-invariant Hall {p, <?}-subgroup, S ,

of 6 ( ^ ( 3 ) ) i s contained in neither PX nor QY . Thus we have S 5 #

for some # € ¥ .

Now by Lemma 6 (ii) and Lemma 5 we have P n K = 0 (,K)(YrK) . Hence

kP( z) o (
p

, where we have used Lemma 6 (iii) in

addition to the information already mentioned. Now Cp(s) ^ ^ , so we must

have 0 (K) n Cp(z) 4 1 . Similarly 0 (K) n CQ{z) t 1 .

But Lemma 8 now implies that z operates without fixed-points on

F(H) for any H (. V which is dis t inct from K . But th is i s contrary to

our choice of z . The lemma is proved.

LEMMA 1 0 . PQ = QP .

Proof. Assume that PQ ^ QP . Then there exists a noncyclic subgroup

C of A such that CQ{C) £ X . Then for each y Z <J the unique

4-invariant Hall {p, <?}-subgroup, Cp(j/)CQ(j/) , of &{CG(.y)) i s not

contained in PX . I f f i s non-empty l e t # € V . Then for each y € C

ei ther Cp(y)CQ{y) < H or Cp(y) < JT . Let J^, j / 2 > . . . , # r denote

generators for the 2" + 1 nonidentity proper subgroups of C and l e t

P. = Cv[y .) and Q. = Cn{y .) for 1 5 i S r . We assume that the y.

are arranged so tha t for i 5 s we have P. 5 H n P whilst for i > s we

have P. £ Y (where s i s some integer) . Now by Theorem 5-3.16 of [3] i t

follows that P = P1P2 ... Pp c (tfnP)y . But {HhP)Y cP so P =

By Lemma 5, P = 0 (H)Y = yo (H) . Similarly Q = 0 (H)X = XO (fl) .

Now 0 (H) and 0 (ff) commute elementwise, PX = XP and QY = YQ .
P 1

Hence
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PQ = Op(H)XQ = 0 (H)QX = 0 (H)Oq(H)XX = 0 (H)Op(H)XX

c 0 (ffJPXy = 0 (H)XPY = 0 (H)XP = QP .
~ <7 <7 <7

We obtain in the same way the reverse inequality and hence conclude that

PQ = QP . This completes the proof of Lemma 10.

We now complete the proof of Theorem 3 by expl ic i t ly exhibiting

9(G) . Let p . , p_ p , denote the dis t inct prime divisors of \G\ .

Let P. denote the unique element of wAk ; p . ) for 1 5 i 5 t . Then

by Lemma 10 we have P.P. = P.P. for a l l t and 3 . Hence P^^, . . . P
% J 3 "V -L c. V

is a group and is clearly the unique maximal element of Mg(/4) . Hence 6

is complete and so is the proof.
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