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For a positive integer n ≥ 2, define tn to be the smallest number such that the
additive energy E(A) of any subset A ⊂ {0, 1, · · · , n− 1}d and any d is at most
|A|tn . Trivially, we have tn ≤ 3 and

tn ≥ 3− logn
3n3

2n3 + n

by considering A = {0, 1, · · · , n− 1}d. In this note, we investigate the behaviour
of tn for large n and obtain the following non-trivial bounds:

3− (1 + on→∞(1)) logn
3
√
3

4
≤ tn ≤ 3− logn(1 + c),

where c> 0 is an absolute constant.

1. Introduction

Let A ⊂ G be a finite subset of an abelian group G. The additive energy E (A) of
A is defined to be the number of additive quadruples in A:

E(A) = #{(a1, a2, a3, a4) ∈ A4 : a1 + a2 = a3 + a4}.

Trivially, we have |A|2 ≤ E(A) ≤ |A|3. A central theme in additive combinatorics
is to understand the structure of those sets A whose additive energy E (A) is close
to its trivial upper bound |A|3. The famous Balog–Szemeredi–Gowers theorem and
Freiman’s theorem are both results in this direction. See [15] for precise statements
of these results and their proofs.

In this article, we study upper bounds for E (A) when A lies in certain subsets of
Zd for potentially large d. For a positive integer n ≥ 2, define tn to be the smallest
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2 Additive energies of subsets of discrete cubes

number such that E(A) ≤ |A|tn for all subsets A ⊂ {0, 1, · · · , n − 1}d and all
positive integers d. One can calculate that

E({0, 1, · · · , n− 1}) =
∑
s∈Z

|{(a, b) : s = a+ b, 0 ≤ a, b ≤ n− 1}|2

= 12 + 22 + · · ·+ n2 + (n− 1)2 + · · ·+ 12 =
2n3 + n

3

and that

E({0, 1, · · · , n− 1}d) = E({0, 1, · · · , n− 1})d =

(
2n3 + n

3

)d

.

Thus, we have the trivial bounds

3 ≥ tn ≥ logn
2n3 + n

3
= 3− logn

3n3

2n3 + n
. (1.1)

It is known [9, theorem 7] that t2 = log2 6 so that the lower bound in (1.1) for t2
is sharp. For n =3, it was proved in [6] that

t3 ≥ 2 log2 2.5664 ≥ 2.71949.

See [6, proposition 6] and its proof in [6, § 4.3]. In particular, this implies that the
trivial lower bound t3 ≥ log3 19 ≈ 2.68 in (1.1) is not sharp. Our main goal is to
explore the behaviour of tn for large n.

Theorem 1.1 Let n ≥ 2 be a positive integer. Then, for some absolute constant
c> 0, we have

3− (1 + on→∞(1)) logn
3
√
3

4
≤ tn ≤ 3− logn(1 + c),

where on→∞(1) denotes a quantity that tends to 0 as n→ ∞.

Unfortunately, the lower bound in theorem 1.1 is only meaningful for n suffi-
ciently large. To complement that, we also prove the following result, which is valid
for every n ≥ 3.

Theorem 1.2 For any positive integer n ≥ 3, we have

tn > lognE({0, 1, · · · , n− 1}) = logn
2n3 + n

3
.

A key tool for the proof of both theorems comes from [6], which allows us to pass
from studying subsets in Zd to studying functions on Z. In § 2, we will describe
this tool, outline the proofs, and make some remarks on further directions. The
lower bound and the upper bound in theorem 1.1 will be proved in § 3 and § 4,
respectively. Theorem 1.2 will be proved in § 5.

https://doi.org/10.1017/prm.2024.126 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.126


X. Shao 3

2. Proof outline

For a finitely supported function f : Z → C, we define its Fourier transform f̂ :
R/Z → C by the formula

f̂(θ) =
∑
a∈Z

f(a)e(−aθ),

where e(x) = e2πix. For p, q ≥ 1, the Lp-norm of f̂ and the `q-norm of f are defined
by

‖f̂‖p =

(∫ 1

0

|f̂(θ)|pdθ
)1/p

, ‖f‖q =

(∑
a∈Z

|f(a)|q
)1/q

.

For two finitely supported functions f, g : Z → C, their convolution f ∗ g : Z → C
is defined by

f ∗ g(s) =
∑
a∈Z

f(a)g(s− a).

We have the identities

‖f̂‖44 = ‖f ∗ f‖22 =
∑

a,b,c∈Z

f(a)f(b)f(c)f(a+ b− c).

Thus, if f = 1A is the indicator function of a finite subset A ⊂ Z, then

E(A) = ‖1A ∗ 1A‖22 = ‖1̂A‖44.

In § 3, we will also need to utilize Fourier transforms of functions on R. For a
piecewise continuous function g : R → C, which has bounded support, we define
its Fourier transform ĝ : R → C by the formula

ĝ(y) =

∫ +∞

−∞
f(x)e(−xy)dx.

For two such functions g, h, we define their convolution g ∗ h : R → C by

g ∗ h(z) =
∫ +∞

−∞
g(x)h(z − x)dx.

We have the identities

‖ĝ‖44 = ‖g ∗ g‖22 =

∫ ∫ ∫
g(x1)g(x2)g(x3)g(x1 + x2 − x3)dx1dx2dx3.

The machinery developed in [6, § 4] plays a key role in our proof. We summarize
their result in the following proposition. Recall the definition of tn from § 1.

Proposition 2.1. Let n ≥ 2 be a positive integer. We have tn = 4/qn, where qn
is the largest value of q such that the inequality ‖f̂‖4 ≤ ‖f‖q holds for any function
f : Z → R, which is supported on an interval of length n.
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4 Additive energies of subsets of discrete cubes

Proof. This is essentially [6, proposition 21]. First, observe that by translation, we
may restrict to those functions f : Z → R supported on A = {0, 1, · · · , n − 1} in
the definition of qn. Then, in the language of [6, Definition 14], qn is the largest
value of q such that

DE`q→L4(A) ≤ 1, (2.1)

where DE`q→L4(A) is the operator norm of the linear map `q(A) → L4(R/Z)
defined by the Fourier transform f 7→ f̂ . By [6, proposition 21], (2.1) is equivalent
to the statement that an inequality of the form

E(X) ≤ |X|4/q

holds for all subsets X ⊂ Ad and d ≥ 1. It follows that tn = 4/qn by the definition
of tn. �

We remark that, by the Hausdorff–Young inequality, we always have

‖f̂‖4 ≤ ‖f‖4/3.

Hence, qn ≥ 4/3, and this recovers the trivial bound tn ≤ 3. Moreover, the `4/3-
norm and the `q-norm for q > 4/3 are related by the inequalities

‖f‖q ≤ ‖f‖4/3 ≤ | supp f |3/4−1/q · ‖f‖q, (2.2)

where | supp f | denotes the size of the support of f.
In view of proposition 2.1, the lower and upper bounds in theorem 1.1 follow

from propositions 2.2 and 2.3, respectively. In the remainder of this section, we
discuss the main ideas behind the proofs of these two propositions and make some
remarks about the quality of our bounds.

2.1. Lower bound for tn

In view of proposition 2.1, the lower bound for tn in theorem 1.1 is equivalent to
the following proposition.

Proposition 2.2. Let ε> 0 and let n be sufficiently large in terms of ε. Let

q =
4

3− (1 + ε) logn
3
√
3

4

.

There exists a function f : Z → R, which is supported on an interval of length n
such that ‖f̂‖4 > ‖f‖q.

Our motivation for the construction of f in proposition 2.2 comes from the
Babenko–Beckner inequality [1, 2.3], a sharpened form of the Hausdorff–Young
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inequality for functions on R (and more generally on Rd). It asserts that for any
function g : R → R, we have

‖ĝ‖4 ≤

(
4
√
3

9

)1/4

‖g‖4/3. (2.3)

Moreover, equality is achieved when g is the Gaussian function g(x) = e−x2 .
In other words, Gaussian functions (and similarly their dilated versions) maxi-

mize the L̂4-norm if we hold the `4/3-norm fixed. If we take g(x) = e−x2/A with
A ≈ n2 (so that g is essentially supported on an interval of length ≈n), then direct
computations show that

‖g‖4/3
‖g‖q

= cA
1
2 (

3
4−

1
q ),

where c is an explicit constant depending on q and c≈ 1 when q ≈ 4/3. By our
choice of A and q, we have

A
1
2 (

3
4−

1
q ) ≈ n

3
4−

1
q = n

1
4 (1+ε) logn

3
√
3

4 ≈

(
3
√
3

4
+ c

)1/4

for some constant c = c(ε) > 0. Hence, this function g(x ) satisfies

‖ĝ‖4 =

(
4
√
3

9

)1/4

‖g‖4/3 ≈

(
4
√
3

9

)1/4(
3
√
3

4
+ c

)1/4

‖g‖q > ‖g‖q.

If we define f : Z → R by sampling the values of g(x ) at integral points, then we
may expect that

‖f̂‖4 ≈ ‖ĝ‖4, ‖f‖q ≈ ‖g‖q,

and thus, we should also have ‖f̂‖4 > ‖f‖q. The details are worked out in § 3.

2.2. Upper bound for tn

In view of proposition 2.1, the upper bound for tn in theorem 1.1 is equivalent to
the following proposition.

Proposition 2.3. Let n ≥ 2 be a positive integer and let f : Z → R be a function,
which is supported on a set of size n. Let

q =
4

3− logn(1 + c)

for some sufficiently small absolute constant c> 0. Then, ‖f̂‖4 ≤ ‖f‖q.

https://doi.org/10.1017/prm.2024.126 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.126


6 Additive energies of subsets of discrete cubes

The starting point of our proof of proposition 2.3 is the inequality

‖f̂‖4 ≤ ‖f‖4/3, (2.4)

which follows from the Hausdorff–Young inequality or Young’s convolution inequal-
ity. By Hölder’s inequality (see (2.2)) and the definition of q, we have

‖f‖4/3 ≤ n3/4−1/q‖f‖q = (1 + c)1/4‖f‖q.

Thus, the proof is already complete unless

‖f̂‖4 ≥ (1 + c)−1/4‖f‖4/3,

and thus, a key part of our argument is to analyse when equality almost holds
in (2.4). Note that equality holds exactly in (2.4) when f is supported on a singleton
set. We prove in proposition 4.5 that if equality almost holds in (2.4), then f is well
approximated by a function f 0, which is supported on a singleton set, up to an error
g, which is small in `4/3-norm. Clearly, the function f 0 satisfies ‖f̂0‖4 = ‖f0‖q. The
remaining task is then to show that the error g can only swing the inequality in
the desired direction. The details are carried out in § 4.

We remark that proposition 4.5 is not new. In fact, it is a special case of [4,
theorem 1.2] (see also [5] for an analogous result in Euclidean spaces) and of [7,
proposition 5.4]. As it turns out, our proof idea is the same as that in [7], which, in
turn, has its origin from [8]. For completeness, we still give a self-contained proof
of it in § 4.

2.3. Questions and speculations

Our proof of the lower bounds for tn is not constructive, which motivates the
question of constructing explicit subsets of {0, 1, · · · , n − 1}d with large additive
energies.

Questiona 2.4. For sufficiently large n, construct a subset A ⊂ {0, 1, · · · , n− 1}d
for some d such that E(A) ≥ |A|t, where

t = 3− (1 + on→∞(1)) logn
3
√
3

4
.

A possible candidate for such a set A is the set of lattice points in a d -dimensional
ball Bd ⊂ Rd (with an appropriate choice of d and an appropriate centre and
radius). This choice is motivated by results in [12], which implies, roughly speaking,
that such a set A maximizes the additive energy among all genuinely d -dimensional
subsets of Zd of a given cardinality. Moreover, E(A) ≈ E(Bd), and it follows from
the computations in [11, § 3.1] that

E(Bd) =

(
4
√
3

9
+ od→∞(1)

)d

|Bd|3,

where |Bd| denotes the Lebesgue measure of Bd.
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Next we speculate the asymptotic behaviour of tn as n → ∞. Note that if g :
R → R is a (continuous) function supported on an interval of length n and

q =
4

3− logn
3
√
3

4

,

then

‖ĝ‖4 ≤

(
4
√
3

9

)1/4

‖g‖4/3 ≤

(
4
√
3

9

)1/4

n3/4−1/q‖g‖q = ‖g‖q,

where the first inequality follows from the Babenko–Beckner inequality (2.3)
and the second inequality follows from Hölder’s inequality (a continuous version
of (2.2)). Based on this, it is perhaps reasonable to conjecture that a similar bound
holds for discrete functions.

Conjecture 2.5. Let ε> 0 and let n be sufficiently large in terms of ε. Let

q =
4

3− (1− ε) logn
3
√
3

4

.

Then, for any function f : Z → R, which is supported on an interval of length n,
we have ‖f̂‖4 ≤ ‖f‖q.

In particular, the conjecture would imply that

tn = 3− (1 + on→∞(1)) logn
3
√
3

4
.

So perhaps the lower bound in theorem 1.1 is sharp up to the error in o(1).

3. Lower bound for tn

In this section, we prove proposition 2.2. Throughout this section, let ε> 0 be small
and let n = 2k + 1 be sufficiently large in terms of ε. We will construct a function
f : Z → R supported on {−k, · · · , k} such that ‖f̂‖4 > ‖f‖q, where

q =
4

3− (1 + ε) logn
3
√
3

4

.

Define g : R → R by g(x) = exp(−x2/A), where A = k2−ε/10.

Lemma 3.1. We have ‖ĝ‖4 ≥ (1 + cε)‖g‖q for some absolute constant c> 0.
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8 Additive energies of subsets of discrete cubes

Proof. One can compute that

ĝ(y) = (πA)1/2e−π2Ay2 ,

and hence,

‖ĝ‖44 = (πA)2
∫ ∞

−∞
e−4π2Ay2dy =

1

2
(πA)3/2.

On the other hand, we have

‖g‖qq =

∫ ∞

−∞
e−qx2/Adx =

(
πA

q

)1/2

.

It follows that

‖ĝ‖4
‖g‖q

=

(
1

4
q4/qπ3−4/qA3−4/q

)1/8

.

By our choice of A, we have

A3−4/q = exp

((
2− ε

10

)
(log k)(1 + ε) logn

3
√
3

4

)

≥ exp

(
(2 + ε) log

3
√
3

4

)
≥ (1 + cε)

27

16

for some absolute constant c> 0. By choosing k to be sufficiently large in terms of
ε, we may ensure that q is sufficiently close to 4/3 so that

1

4
q4/qπ3−4/q ≥

(
1− cε

2

) 1

4

(
4

3

)3

=
(
1− cε

2

) 16

27
.

Combining the two inequalities above, we conclude that

‖ĝ‖4
‖g‖q

≥
[
(1 + cε)

(
1− cε

2

)]1/8
≥ 1 +

cε

100
.

�

Now we truncate g to have bounded support. SetM = bk1−ε/100c. Let gM : R →
R be the truncation of g defined by

gM (x) =

g(x) if −M ≤ x < M,

0 otherwise.

Lemma 3.2. We have ‖ĝM‖4 ≥ ‖ĝ‖4 − exp(−kε/20) and ‖gM‖q ≤ ‖g‖q.

Proof. The inequality ‖gM‖q ≤ ‖g‖q follows trivially from the definition of gM.
Concerning the L4-norm of their Fourier transforms, we have by the triangle

https://doi.org/10.1017/prm.2024.126 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.126


X. Shao 9

inequality, Hausdorff–Young inequality, and Hölder’s inequality that

‖ĝ‖4 − ‖ĝM‖4 ≤ ‖ĝ − gM‖4 ≤ ‖g − gM‖4/3 ≤ ‖g − gM‖1/4∞ ‖g − gM‖3/41 .

Since

‖g − gM‖∞ ≤ g(M) = exp(−M2/A) ≤ exp(−kε/15)

and

‖g − gM‖1 ≤ ‖g‖1 =

∫ ∞

−∞
e−x2/Adx = (πA)1/2 � k,

it follows that

‖g − gM‖1/4∞ ‖g − gM‖3/41 ≤ exp(−kε/20),

once k is large enough in terms of ε. �

Now we discretize gM. Define f : Z → R by f(m) = gM (m) for m ∈ Z. Then, f
is supported on {−M, · · · ,M} ⊂ {−k, · · · , k}.

Lemma 3.3. For m ∈ Z, let Im = [m,m+ 1). Then,

sup
x∈Im

|gM (x)− f(m)| � k−1/2f(m)

for every m ∈ Z.

Proof. If m ≥M or m ≤ −M − 1, then f(m) = 0 and gM (x) = 0 for every x ∈ Im,
and hence, the conclusion holds trivially. Now assume that m ∈ {−M, · · · ,M −1},
so that Im ⊂ [−M,M), and thus, gM (x) = g(x) for x ∈ Im. Hence, for x ∈ Im, we
have

|gM (x)− f(m)| = |g(x)− g(m)| ≤ sup
y∈[x,m]

|g′(y)| = 2

A
sup
y∈Im

|yg(y)|

≤ 2

A
(1 + |m|) sup

y∈Im

g(y).

Since

g(m+ 1) = g(m)e−(2m+1)/A ≤ g(m)e2M/A ≤ 2g(m),

it follows that

|gM (x)− f(m)| � M

A
g(m) � k−1/2g(m).

�

Lemma 3.4. We have ‖ĝM‖4 ≤ (1 + O(k−1/2))‖f̂‖4 and ‖gM‖q = (1 +
O(k−1/2))‖f‖q.
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10 Additive energies of subsets of discrete cubes

Proof. Note that

‖ĝM‖44 =

∫ ∫ ∫
gM (x1)gM (x2)gM (x3)gM (x1 + x2 − x3)dx1dx2dx3

=
∑

a1,a2,a3,a4∈Z

∫ ∫ ∫
gM |Ia1 (x1)gM |Ia2 (x2)gM |Ia3 (x3)gM |Ia4

× (x1 + x2 − x3)dx1dx2dx3.

By lemma 3.3, we have

gM |Ia(x) = (1 +O(k−1/2))f(a)1Ia(x)

for any a ∈ Z and x ∈ R. Hence,

‖ĝM‖44 =
(
1 +O(k−1/2)

) ∑
a1,a2,a3,a4∈Z

f(a1)f(a2)f(a3)f(a4)I(a1, a2, a3, a4),

where

I(a1, a2, a3, a4) =

∫ ∫ ∫
1Ia1 (x1)1Ia2 (x2)1Ia3 (x3)1Ia4 (x1 + x2 − x3)dx1dx2dx3.

By shifting the variables x1, x2, x3 in the integral above, we see that

I(a1, a2, a3, a4) = I(0, 0, 0, a3 + a4 − a1 − a2).

It follows that

‖ĝM‖44 =
(
1 +O(k−1/2)

)∑
a∈Z

I(0, 0, 0, a)
∑

a1,a2,a3,a4∈Z
a3+a4−a1−a2=a

f(a1)f(a2)f(a3)f(a4)

By Fourier analysis, we have

∑
a1,a2,a3,a4∈Z

a3+a4−a1−a2=a

f(a1)f(a2)f(a3)f(a4) =

∫ 1

0

|f̂(θ)|4e(aθ)dθ ≤ ‖f‖44.

Hence,

‖ĝM‖44 ≤
(
1 +O(k−1/2)

)
‖f‖44

∑
a∈Z

I(0, 0, 0, a) =
(
1 +O(k−1/2)

)
‖f‖44.

This proves the first bound in the lemma. For the second bound concerning the
Lq-norms, note that

‖f‖qq − ‖gM‖qq =
∑
a∈Z

f(a)q −
∫ ∞

−∞
gM (x)qdx =

∑
a∈Z

(
f(a)q −

∫ a+1

a

gM (x)qdx

)
.
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By lemma 3.3, we have∫ a+1

a

gM (x)qdx = (1 +O(k−1/2))f(a)q

for every a ∈ Z. It follows that

‖f‖qq − ‖gM‖qq = O

(
k−1/2

∑
a∈Z

f(a)q

)
= O

(
k−1/2‖f‖qq

)
.

This proves the second bound in the lemma. �

We may now complete the proof of proposition 2.2 by combining the lemmas
above. Indeed, by lemmas 3.2 and 3.4, we have

‖f‖q ≤ (1 +O(k−1/2))‖gM‖q ≤ (1 +O(k−1/2))‖g‖q

and

‖f̂‖4 ≥ (1−O(k−1/2))‖ĝM‖4 ≥ (1−O(k−1/2))
(
‖ĝ‖4 − exp(−kε/20)

)
.

Since ‖ĝ‖4 � A3/8, we have

‖f̂‖4 ≥ (1−O(k−1/2))‖ĝ‖4.

It follows from lemma 3.1 that

‖f̂‖4
‖f‖q

≥ (1−O(k−1/2))
‖ĝ‖4
‖g‖q

≥ (1−O(k−1/2))(1 + cε) > 1,

once k is large enough in terms of ε.

4. Upper bound for tn

In this section, we prove proposition 2.3. As explained in § 2, a key ingredient is an
approximate inverse theorem for Young’s convolution inequality, proposition 4.5,
which is a special case of results in [4, 7]. For completeness, we give a self-contained
proof of it. In preparation for the proof, we start with establishing an approximate
inverse theorem for Hölder’s inequality, lemma 4.3, which is a special case of [7,
lemma 5.1].

4.1. Near equality in Hölder’s inequality

In this section, all implied constants are allowed to depend on the exponents p,q,
and r.
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12 Additive energies of subsets of discrete cubes

Lemma 4.1. Let p, q ∈ (1,+∞) be exponents with 1/p + 1/q = 1. Let a, b be
non-negative reals. Suppose that

ap

p
+
bq

q
≤ (1 + δ)ab

for some sufficiently small constant δ > 0. Then, ap = (1 +O(δ1/2))bq.

Proof. If ab=0, then the conclusion holds trivially. Henceforth, assume that a, b >
0. By Taylor’s theorem applied to the function ψ(x) = log x at the point x0 =
ap/p+ bq/q, we have

ψ(ap) = ψ(x0) + (ap − x0)ψ
′(x0) +

1

2
(ap − x0)

2ψ′′(ξ1)

and

ψ(bq) = ψ(x0) + (bq − x0)ψ
′(x0) +

1

2
(bq − x0)

2ψ′′(ξ2)

for some ξ1, ξ2 lying between ap and bq. Since

ap − x0 =
ap − bq

q
, bq − x0 =

bq − ap

p
,

it follows that

1

p
ψ(ap) +

1

q
ψ(bq) = ψ(x0) +

(ap − bq)2

2pq2
ψ′′(ξ1) +

(ap − bq)2

2p2q
ψ′′(ξ2).

Since ψ′′(x) = −1/x2, we have

ψ′′(ξi) ≤ −min

(
1

a2p
,
1

b2q

)
.

From hypothesis, we have

1

p
ψ(ap) +

1

q
ψ(bq)− ψ(x0) = log a+ log b− log

(
ap

p
+
bq

q

)
≥ − log(1 + δ) ≥ −δ.

Hence, it follows that

−δ ≤ −(ap− bq)2
(

1

2pq2
+

1

2p2q

)
min

(
1

a2p
,
1

b2q

)
= − (ap − bq)2

2pq
min

(
1

a2p
,
1

b2q

)
,

and thus,

(ap − bq)2 � δmax(a2p, b2q).

The desired conclusion follows immediately. �
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Lemma 4.2. Let p, q, r ∈ (1,+∞) be exponents with 1/p+1/q+1/r = 1. Let a, b,
and c be non-negative reals. Suppose that

ap

p
+
bq

q
+
cr

r
≤ (1 + δ)abc

for some sufficiently small constant δ > 0. Then, ap = (1 + O(δ1/2))bq = (1 +
O(δ1/2)cr.

Proof. We may assume that abc> 0, since otherwise the conclusion holds trivially.
Choose exponent p′ ∈ (1,+∞) such that 1/p+ 1/p′ = 1. Let

d =

(
p′

q
bq +

p′

r
cr
)1/p′

.

Then,

ap

p
+
bq

q
+
cr

r
=
ap

p
+
dp

′

p′
≥ ad.

From hypothesis, it follows that d ≤ (1 + δ)bc, which can be rewritten as

xq
′

q′
+
yr

′

r′
≤ (1 + δ)p

′
xy,

where

q′ =
q

p′
, r′ =

r

p′
, x = bp

′
, and y = cq

′
.

Note that 1/q′ + 1/r′ = 1. Hence, by lemma 4.1, it follows that

xq
′
= (1 +O(δ1/2))yr

′
,

which implies that

bq = (1 +O(δ1/2))cr.

Similarly, one can also prove that ap = (1 +O(δ1/2))cr. �

Lemma 4.3. Let p, q, r ∈ (1,+∞) be exponents with 1/p + 1/q + 1/r = 1. Let
a1, · · · , an, b1, · · · , bn, c1, · · · , cn be non-negative reals such that

n∑
i=1

api =
n∑

i=1

bqi =
n∑

i=1

cri = 1.

Suppose that
n∑

i=1

aibici ≥ 1− δ

for some sufficiently small constant δ > 0. Then, we have

api = (1 +O(δ1/4))bqi = (1 +O(δ1/4))cri
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14 Additive energies of subsets of discrete cubes

for each i outside an exceptional set E satisfying

∑
i∈E

(api + bqi + cri ) � δ1/2.

Proof. For each i, we have

aibici ≤
api
p

+
bqi
q

+
cri
r
.

Let E ⊂ {1, 2, · · · , n} be the exceptional set of indices i such that

api
p

+
bqi
q

+
cri
r

≥ (1 + δ1/2)aibici.

Then,

δ ≥
n∑

i=1

(
api
p

+
bqi
q

+
cri
r

− aibici

)
� δ1/2

∑
i∈E

(
api
p

+
bqi
q

+
cri
r

)
,

and hence,
∑

i∈E(a
p
i + bqi + cri ) � δ1/2. For i /∈ E, lemma 4.2 implies that

api = (1 +O(δ1/4))bqi = (1 +O(δ1/4))cri .

This concludes the proof. �

4.2. Near equality in Young’s inequality

In this section, all implied constants are allowed to depend on the exponents p, q,
and r. Before proving the approximate inverse of Young’s inequality, we need the
following standard result in additive combinatorics.

Lemma 4.4. Let G be an abelian group and let X,Y ⊂ G be finite subsets with
|X| = |Y | = N . Let ε ∈ (0, 1/20) and let δ > 0 be sufficiently small in terms of
ε. Let M ⊂ X × Y be a subset with |M | ≥ (1 − δ)N2. Suppose that the restricted
sumset

X +M Y := {x+ y : (x, y) ∈M}

has size at most (1 + ε)N . Then, there exists a coset x+H of a subgroup H ⊂ G
such that |X \ (x+H)| ≤ εN and |(x+H) \X| ≤ 3εN .

Proof. By an almost-all version of the Balog–Szemeredi–Gowers theorem as in [13,
theorem 1.1] (see also [14, theorem 1.1] for a version with G = Z and [3, theorem
3.3] for an asymmetric version), one can find subsets X ′ ⊂ X and Y ′ ⊂ Y such
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that

|X ′| ≥ (1− ε)N, |Y ′| ≥ (1− ε)N, |X ′ + Y ′| ≤ |X +M Y |+ εN ≤ (1 + 2ε)N.

By Kneser’s theorem [10] (see [15, theorem 5.5]), we have

|X ′ + Y ′| ≥ |X ′|+ |Y ′| − |H|,

where H ⊂ G is the subgroup defined by

H = {h ∈ G : X ′ + Y ′ + h = X ′ + Y ′}.

It follows that |H| ≥ (1 − 4ε)N and hence |X ′ + Y ′| < 2|H|. Since X ′ + Y ′ is the
union of cosets of H, it must be a single coset of H, and thus X

′
is contained in a

single coset x +H of H. Hence,

|X \ (x+H)| ≤ |X \X ′| ≤ εN

and

|(x+H) \X| ≤ |(x+H) \X ′| = |X ′ + Y ′| − |X ′| ≤ 3εN.

�

Proposition 4.5. Let p, q, r ∈ (1,+∞) be exponents with 1/p+1/q = 1+1/r. Let
f, g : Z → C be finitely supported functions such that ‖f‖p = ‖g‖q = 1. Suppose
that

‖f ∗ g‖r ≥ 1− δ

for some sufficiently small constant δ > 0. Then, there exists a singleton set {x0}
for some x0 ∈ Z such that

‖f − f(x0)1{x0}‖
p
p � δ1/8.

Proof. By replacing f, g by |f |, |g|, we may assume that f, g take non-negative real
values. For every x ∈ Z, we have

(f ∗ g)(x) =
∑
y∈Z

f(x− y)g(y) =
∑
y∈Z

f(x− y)p/rg(y)q/r · f(x− y)(r−p)/r · g(y)(r−q)/r.

By Hölder’s inequality, we have

(f∗g)(x) ≤

∑
y∈Z

f(x− y)pg(y)q

 1
r
∑

y∈Z
f(x− y)p


r−p
pr
∑

y∈Z
g(y)q


r−q
qr

. (4.1)

Since ‖f‖p = ‖g‖q = 1, it follows that

(f ∗ g)(x)r ≤
∑
y∈Z

f(x− y)pg(y)q.
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16 Additive energies of subsets of discrete cubes

Let E1 ⊂ Z be the exceptional set of x ∈ Z such that

(f ∗ g)(x)r ≤ (1− δ1/2)
∑
y∈Z

f(x− y)pg(y)q.

From hypothesis, we have

1− (1− δ)r ≥
∑
x∈Z

∑
y∈Z

f(x− y)pg(y)q − (f ∗ g)(x)r


≥ δ1/2
∑
x∈E1

∑
y∈Z

f(x− y)pg(y)q,

and hence, ∑
(x,y)∈E1×Z

f(x− y)pg(y)q � δ1/2. (4.2)

For each x /∈ E1, we have almost equality in (4.1), and hence, by lemma 4.3 applied
to the three sequences

ax(y) =
f(x− y)p/rg(y)q/r

h(x)1/r
, bx(y) = f(x− y)(r−p)/r, cx(y) = g(y)(r−q)/r,

where

h(x) =
∑
z∈Z

f(x− z)pg(z)q,

we conclude that

f(x− y)pg(y)q

h(x)
= (1 +O(δ1/8))f(x− y)p = (1 +O(δ1/8))g(y)q (4.3)

for each y outside an exceptional set E2(x) satisfying∑
y∈E2(x)

f(x− y)pg(y)q � δ1/4h(x). (4.4)

Define

E = (E1 × Z) ∪ {(x, y) ∈ Z× Z : x /∈ E1, y ∈ E2(x)}.

Then, from (4.2) and (4.4), it follows that∑
(x,y)∈E

f(x− y)pg(y)q � δ1/2 + δ1/4
∑
x∈Z

h(x) � δ1/4,

and (4.3) holds for every (x, y) /∈ E.
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Now make a change of variables and consider

E′ = {(x, y) ∈ Z× Z : (x+ y, y) ∈ E}.

Then, ∑
(x,y)∈E′

f(x)pg(y)q =
∑

(x,y)∈E

f(x− y)pg(y)q � δ1/4, (4.5)

and we have

f(x)pg(y)q

h(x+ y)
= (1 +O(δ1/8))f(x)p = (1 +O(δ1/8))g(y)q (4.6)

for every (x, y) /∈ E′. Let X ⊂ Z be the set of x ∈ Z such that∑
y:(x,y)∈E′

g(y)q ≤ δ1/8.

Then, from (4.5), it follows that

δ1/4 �
∑
x/∈X

f(x)p
∑

y:(x,y)∈E′
g(y)q ≥ δ1/8

∑
x/∈X

f(x)p,

and hence, ∑
x/∈X

f(x)p � δ1/8. (4.7)

For every x1, x2 ∈ X, since∑
y:(x1,y)∈E′

g(y)q +
∑

y:(x2,y)∈E′
g(y)q � δ1/8,

there exists y ∈ Z such that (x1, y) /∈ E′ and (x2, y) /∈ E′. By (4.6), we have

f(x1)
p = (1 +O(δ1/8))g(y)q, f(x2)

p = (1 +O(δ1/8))g(y)q.

We conclude that there exists a constant a ∈ R such that

f(x) = (1 +O(δ1/8))a

for every x ∈ X. Moreover, since

1 =
∑
x∈Z

f(x)p =
∑
x∈X

f(x)p +O(δ1/8) = (1 +O(δ1/8))ap|X|+O(δ1/8),

we have

|X| = (1 +O(δ1/8)a−p.

By symmetry, we may also conclude the existence of a constant b ∈ R such that

g(y) = (1 +O(δ1/8))b
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18 Additive energies of subsets of discrete cubes

for every y ∈ Y , where Y ⊂ Z is a subset satisfying

|Y | = (1 +O(δ1/8)b−q.

We now return to using the first part of (4.6) for (x, y) ∈M := (X × Y ) \E′. First
note from (4.5) that

δ1/4 �
∑

(x,y)∈(X×Y )∩E′
f(x)pg(y)q � apbq·|(X×Y )∩E′| � |X|−1|Y |−1·|(X×Y )∩E′|,

and hence,

|M | ≥ (1−O(δ1/4))|X||Y |.

For (x, y) ∈M , (4.6) implies that

apbq

h(x+ y)
= (1 +O(δ1/8)ap = (1 +O(δ1/8))bq.

In particular, since M is non-empty, we have ap = (1 + O(δ1/8))bq, and hence,
|X| = (1 +O(δ1/8))|Y |. Moreover, for s ∈ X +M Y , we have

h(s) = (1 +O(δ1/8))ap.

Since
∑

s∈Z h(s) = 1, we have

1 ≥
∑

s∈X+MY

h(s) = (1−O(δ1/8))ap · |X +M Y |,

and hence,

|X +M Y | ≤ (1 +O(δ1/8))|X|.

We now apply lemma 4.4 with ε = 1/100 (say), after possibly shrinking one of
X,Y slightly so that |X| = |Y |, to conclude that there exists a coset x0 +H of a
subgroup H ⊂ Z such that

|X \ (x0 +H)| ≤ 1

10
|X|, |(x0 +H) \X| ≤ 1

10
|X|.

The only finite subgroup of Z is H = {0}, and hence, it must be that X = {x0}.
The desired conclusions follow immediately from (4.7). �

4.3. Proof of proposition 2.3

Let f : Z → R be a function that is supported on a set of size n ≥ 2. By replacing
f by |f |, we may assume that f takes non-negative real values. Let δ > 0 be a
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sufficiently small absolute constant and let

q =
4

3− logn(1 + δ)
.

First, consider the case when

‖f̂‖4 ≤ (1− δ)‖f‖4/3.

By Hölder’s inequality (see (2.2)), we have

‖f‖4/3 ≤ n3/4−1/q‖f‖q = (1 + δ)1/4‖f‖q.

It follows that

‖f̂‖4 ≤ (1− δ)(1 + δ)1/4‖f‖q ≤ ‖f‖q.

Now suppose that

‖f̂‖4 ≥ (1− δ)‖f‖4/3.

By normalization, we may assume that ‖f‖4/3 = 1, and thus, ‖f ∗ f‖2 = ‖f̂‖24 ≥
1− 2δ. By proposition 4.5, there exists x0 ∈ Z such that

‖f − f(x0)1{x0}‖4/3 � δ1/20. (4.8)

By translation, we may assume that x0 = 0, and we may write f in the form
f = f(0)δ0+g, where δ0 is the Kronecker delta function and g(0) = 0. Let x = f(0)
and y = ‖g‖4/3. Since ‖f‖4/3 = 1, we have

x4/3 + y4/3 = 1.

From (4.8), we have

y = O(δ1/20), x = 1−O(δ1/20).

In particular, we have y/x ≤ 0.01. Since f ∗ f = x2δ0 + 2xg + g ∗ g, we have

‖f ∗ f‖2 ≤ x‖xδ0 + 2g‖2 + ‖g ∗ g‖2 = x
√
‖xδ0‖22 + ‖2g‖22 + ‖g ∗ g‖2.

Using the inequalities ‖g‖2 ≤ ‖g‖4/3 = y and ‖g ∗ g‖2 ≤ ‖g‖24/3 = y2, we obtain

‖f ∗ f‖2 ≤ x
√
x2 + 4y2 + y2 = x2

√
1 +

4y2

x2
+ y2.

Since
√
1 + λ ≤ 1 + λ/2 for λ ≥ 0, it follows that

‖f ∗ f‖2 ≤ x2
(
1 +

2y2

x2

)
+ y2 = x2 + 3y2.

On the other hand, note that

‖f‖q = (xq + ‖g‖qq)1/q.
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20 Additive energies of subsets of discrete cubes

Since g is supported on a set of size n, by Hölder’s inequality, we have

‖g‖4/3 ≤ n3/4−1/q‖g‖q = (1 + δ)1/4‖g‖q.

By choosing δ > 0 to be small enough, we have ‖g‖qq ≥ 0.9‖g‖q4/3 = 0.9yq, and

hence,

‖f‖2q ≥ (xq + 0.9yq)2/q = x2
(
1 +

0.9yq

xq

)2/q

.

Since 4/3 ≤ q ≤ 3/2, we have (1 + λ)2/q ≥ 1 + λ ≥ 1 + 4λ2/q for 0 ≤ λ ≤ 1/64.
Hence,

‖f‖2q ≥ x2
(
1 + 4 · 0.92/q · y

2

x2

)
≥ x2 + 3y2.

It follows that ‖f ∗ f‖2 ≤ ‖f‖2q, as desired.

5. Proof of theorem 1.2

Let n ≥ 3 be a positive integer and let I be the interval

I =

{
−
⌊n− 1

2

⌋
, · · · ,

⌊n
2

⌋}
,

which has length n. In view of proposition 2.1, it suffices to construct a function
f : I → R such that |f̂‖4 > ‖f‖q, where

q =
4

logn
2n3+n

3

.

We take f = 1I+εδ0 for some small ε> 0, where δ0 is the Kronecker delta function.
Note that ‖1̂I‖4 = ‖1I‖q, and we will show that the small adjustment from 1I to f
swings the inequality in the desired direction.

First note that

‖f‖qq = n− 1 + (1 + ε)q = n+ qε+O(ε2).

Hence,

‖f‖4q = n4/q
(
1 +

qε

n
+O

(
ε2

n

))4/q

= n4/q
(
1 +

4ε

n
+O

(
ε2

n

))
.

Since n4/q = (2n3 + n)/3, it follows that

‖f‖4q =
1

3
(2n3 + n) +

4

3
(2n2 + 1)ε+O(n2ε2). (5.1)

Now consider the convolution

f ∗ f = 1I ∗ 1I + 2ε1I + ε2δ0.
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We have

‖f ∗ f‖22 =
∑
a/∈I

1I ∗ 1I(a)2 +
∑

a∈I\{0}

(1I ∗ 1I(a) + 2ε)2 + (1I ∗ 1I(0) + 2ε+ ε2)2

=
∑
a/∈I

1I ∗ 1I(a)2 +
∑
a∈I

(1I ∗ 1I(a) + 2ε)2 +O(nε2)

=
∑
a∈Z

1I ∗ 1I(a)2 + 4ε
∑
a∈I

1I ∗ 1I(a) +O(nε2).

One can compute that∑
a∈Z

1I ∗ 1I(a)2 = E(I) =
1

3
(2n3 + n)

and ∑
a∈I

1I ∗ 1I(a) =
⌈3n2

4

⌉
≥ 3n2

4
.

Hence,

‖f ∗ f‖22 ≥ 1

3
(2n3 + n) + 3n2ε+O(nε2). (5.2)

Comparing (5.1) with (5.2) and noting that

3n2 >
4

3
(2n2 + 1)

for every n ≥ 3, we conclude that

‖f ∗ f‖22 > ‖f‖4q

for sufficiently small ε> 0. This completes the proof.
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