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Abstract

We study the space of slice torus invariants. In particular we characterise the set of values
that slice torus invariants may take on a given knot in terms of the stable smooth slice genus.
Our study reveals that the resolution of the local Thom conjecture implies the existence
of slice torus invariants without having to appeal to any explicit construction from a knot
homology theory.

2020 Mathematics Subject Classification: 57K10, 57K18

1. Introduction

A fruitful approach to understanding a group is to construct homomorphisms on it; the
group of interest in this paper is the smooth concordance group C of knots. A classical
example of such homomorphisms is given by the Levine–Tristram signatures C →R, which
were used in Litherland’s proof that positive non-trivial torus knots Tp,q are linearly inde-
pendent in C [Lit79]. Signatures also provide lower bounds for the smooth slice genus
g4(K) ∈Z�0 of a knot K but, in the case of torus knots, these bounds are not sufficient
to determine g4(Tp,q). In fact, that we have g4(Tp,q) = (|p| − 1)(|q| − 1)/2, which is known
as the local Thom conjecture, was first shown by Kronheimer and Mrowka, as a conse-
quence of their resolution of the Thom conjecture [KM93] using gauge theory. This article
is concerned with a class of homomorphisms C →R that is much younger than signatures,
namely slice torus invariants, whose definition goes back to Livingston [Liv04] (see also
[Lew14]).
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Definition 1. A slice torus invariant is a homomorphism φ : C →R satisfying two
conditions:

SLICE: φ(K) � g4(K) for all knots K and
TORUS: φ(Tp,q) = g4(Tp,q) for all positive coprime integers p, q.

Note that it is quite non-trivial that such invariants do exist. Using suitable normali-
sations, the first slice torus invariant to be constructed was the τ invariant coming from
knot Floer homology [OSz03, Ras03], followed by the Rasmussen invariant s coming from
Khovanov homology [Ras10], and the sn invariants coming from sln Khovanov–Rozansky
homologies [Wu09, Lob09, Lob12]. We study the set V ⊂ Hom(C, R) of all slice torus
invariants. Note that V is non-empty and convex. It follows that for each K ∈ C, the set
V(K) := {φ(K) | φ ∈ V} ⊂R is a nonempty interval. The main result of this note provides a
description of these intervals, in terms of the stable smooth slice genus (compare [Liv10])
ĝ4(K) := lim

n→∞ g4(K#n)/n.

PROPOSITION 2. For every knot K, the sequence t1(K), t2(K), . . . defined as

tp(K) := ĝ4(Tp,p+1#K) − ĝ4(Tp,p+1)

is decreasing and convergent. Its limit �(K) satisfies −�(−K) � �(K).

THEOREM 3. For every knot K, the set V(K) = {φ(K) | φ ∈ V} ⊂R of values taken by all
slice torus invariants on K equals [−�(−K), �(K)].

Remark 4. Our proof of Theorem 3 uses the fact that g4(Tp,p+1) = p(p − 1)/2 for all integers
p � 1 [KM93], but we do not use the a priori existence of any slice torus invariant. Thus,
it follows from our proof that the local Thom conjecture implies the existence of slice torus
invariants without the need of any explicit construction of a slice torus invariant. However,
we note that from our proof it is not clear that there exist integer valued slice torus invariants
such as s or τ (suitably normalised), or even that [−�(K), �(−K)] contains an integer for all
knots K.

Example 5. Let us explicitly calculate V(K) for K the (2, −3, 5) pretzel knot, which is 10125

in the knot table. As above, let sn be the concordance invariant coming from sln Khovanov–
Rozansky homology. Then s̃n := sn/2(n − 1) is a slice torus invariant, and s2 is equal to the
original Rasmussen invariant s2 = s. One may calculate that s̃2(K) = 1 and furthermore, for
all n � 3, that s̃n(K) ∈ {0, 1/(n − 1)}; see [Lew14]. Since limn→∞ s̃n(K) = 0, it follows from
Theorem 3 that [0, 1] ⊂ V(K).

To show the converse inclusion V(K) ⊂ [0, 1], let us use the sharpened slice-Bennequin
inequalities [Lob11, Lew14]. We will only need the braid version of the inequalities as
stated in (∗) below. Denote by σ1, . . . , σk−1 the standard generators of the braid group Bk on
k strands. For β a word in these generators, let

O±(β) = #{i ∈ {1, . . . , k − 1} | σ±1
i does not appear in β}.

Then for all slice torus invariants φ ∈ V , we have that the value taken on the closure cl(β)
satisfies
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2φ(cl(β)) ∈ [1 + w(β) − k + 2O+(β), −1 + w(β) + k − 2O−(β)], (∗)

where w(β) denotes the writhe of β. The knot K = 10125 is the closure of β =
σ 5

1 σ−1
2 σ−3

1 σ−1
2 ∈ B3. Since w(β) = 0, O+(β) = 1 and O−(β) = 0, (∗) implies that φ(K) ∈

[0, 1] for all φ ∈ V , and thus V(K) ⊂ [0, 1]. All in all, we have shown that V(K) = [0, 1].
This computation of V(K) yields further examples. Namely, for all a, b ∈Z with a � 0 it

immediately follows that

V(K#a#T#b
2,3) = [b, a + b].

Hence we have the following result.

PROPOSITION 6. Every nonempty compact interval with integral endpoints is realised as
V(J) for some knot J.

Beyond Proposition 6, we do not know if any further intervals can be realised. The
following geography question thus remains open.

Question 7. Which nonempty compact intervals arise as V(J) for some knot J?

2. Squeezed knots

Slice torus invariants all agree on the following class of knots.

Definition 8 ([FLL22]). A knot K is called squeezed if and only if there exists a smooth
oriented connected cobordism C+ between a positive torus knot T+ and K, and a smooth ori-
ented connected cobordism C− between K and a negative torus knot T− such that C+ ∪ C−
is a smooth oriented connected cobordism between T+ and T− that is genus-minimising.

The reader may wish to try to prove the following proposition directly from the defini-
tions. It says, roughly speaking, that squeezed knots are boring from the point of view of
slice torus invariants.

PROPOSITION 9 ([FLL22]). If φ1 and φ2 are slice torus invariants and K is squeezed
then we have that φ1(K) = φ2(K).

By Theorem 3, Proposition 9 also follows from the following.

PROPOSITION 10. If a knot K is squeezed, then −�(−K) = �(K).

Proof. Let C± and T± be chosen as in the definition of squeezedness applied to K. We
may assume that for some large p > 0, the T± satisfy T+ = T := T(p, p + 1) and T− = −T .
This is because for any positive torus knot L there exists a p > 0 such there is a genus-
minimising slice surface for T(p, p + 1) that factors through L (see Lemma 14 (i)). Then, we
have

�(−K) + �(K) � tp(−K) + tp(K)

by the monotonicity of tp(K) shown in Proposition 2. By definition of tp this equals

= ĝ4(T# −K) + ĝ4(T#K) − 2ĝ4(T).
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It is well known (and we provide a proof in Lemma 14 (iv)) that slice genus and stable slice
genus of torus knots agree; therefore we find the equality

= ĝ4(T# −K) + ĝ4(T#K) − g4(T#T).

Since ĝ4 � g4 for all knots,

� g4(T# −K) + g4(T#K) − g4(T#T).

For all J, J′, g4(J# −J′) equals the cobordism distance between J and J′, and so

� g(C+) + g(C−) − g4(T#T),

which equals 0 because of the assumption that C+ ∪ C− is a genus-minimising cobordism
between T and −T .

The proof of Proposition 10 shows that if K is squeezed, then the sequence tp(K) is
constant for sufficiently large p. We do not know whether this is the case for all knots:

Question 11. We ask the following:

(i) is �(K) an integer for all knots K?

(ii) (stronger) Is ĝ4(Tp,p+1#K) an integer for all but finitely many p for every fixed knot K?

(iii) (strongest) Does ĝ4(Tp,p+1#K) = g4(Tp,p+1#K) hold for all but finitely many p for
every fixed knot?

Remark 12. If (i) can be answered positively, then Question 7 is resolved: the intervals that
occur as V(J) for some knot are [a,b] with a � b integers.

If (iii) can be answered positively, then K satisfying −�(−K) = �(K) implies that K is
squeezed. This is seen as follows. If a knot K satisfies −�(−K) = �(K), then we have for
some p > 0

g4(Tp,p+1#K) − g4(Tp,p+1) = �(K) = −�(−K) = g4(Tp,p+1) − g4(Tp,p+1# −K)

and hence

g4(Tp,p+1#K) + g4(Tp,p+1# −K) = 2g4(Tp,p+1).

The left-hand side of the equation is the genus of a cobordism from Tp,p+1 to −Tp,p+1

that factors through K. On the other hand, the right-hand side is the minimal genus of a
cobordism from Tp,p+1 to −Tp,p+1. Thus we see that K must be squeezed.

In light of this, we conjecture the converse of Proposition 10.

CONJECTURE 13. For all knots K, K is squeezed if and only if −�(K) = �(−K).

3. Proof of the main theorem

The stable 4-genus ĝ4 induces a seminorm on the vector space C ⊗R, as discussed
by Livingston [Liv10] (Livingston states the result for the vector space C ⊗Q, but it
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easily extends to C ⊗R). Moreover, every slice torus invariant y gives rise to a homomor-
phism y : C ⊗R→R, with y � ĝ4. Here, our slightly abusive notation does not differentiate
between ĝ4 and the induced seminorm, y and the induced homomorphism, nor between knots
and the vectors they represent in C ⊗R.

In what follows, let T be the real subspace of C ⊗R generated by torus knots, and let
T+ ⊂ T be the closed convex cone consisting of linear combinations of positive torus knots
with non-negative coefficients.

Let us emphasize, as mentioned in Lemma 4, that we only use the fact that g4(Tp,p+1) =
p(p − 1)/2. The realization that this fact is enough to determine g4 for much larger classes
of knots is due to Rudolph [Rud93]. For the sake of self-containedness, we include a short
proof.

LEMMA 14. We have the following.

(i) For all knots K ∈ T+, there is an integer p � 1 and a smooth cobordism C between K
and Tp,p+1 such that g(C) = g4(Tp,p+1) − g4(K).

(ii) For all integers p � 2, there is a smooth cobordism C between Tp−1,p and Tp,p+1 of
genus p − 1.

(iii) For all knots K, K′ ∈ T+, we have g4(K#K′) = g4(K) + g4(K′).
(iv) For all knots K ∈ T+, we have ĝ4(K) = g4(K).

Proof.

(i) Since K is a connected sum of positive torus knots, it may in particular be written as
closure of a positive braid word β ∈ Bk for some k. Assume that β is the product
of l generators. Replace each σi in β with σ1 · · · σk−1 to find a cobordism (con-
sisting of l(k − 2) 1-handles) from K to the torus link T(k,l). Set p = max{k, l − 1}.
Compose this first cobordism with a cobordism from T(k,l) to T(k, p + 1) given by
(p + 1 − l)(k − 1) 1-handles, and then with a further cobordism from T(k, p + 1)
to T(p, p + 1) given by (p − k)p 1-handles. In total, this yields a cobordism C of
genus g(C) = p(p − 1)/2 − (1 + l − k)/2. The triangle inequality implies g4(K) �
g4(Tp,p+1) − g(C) = (1 + l − k)/2. On the other hand, Seifert’s algorithm applied to β

results in a Seifert surface of genus (1 + l − k)/2 for K. Thus, g4(K) = (1 + l − k)/2,
and g(C) = g4(Tp,p+1) − g4(K) as desired.

(ii) Note that Tp−1,p is the closure of the braid β = (σ1 · · · σp−1)p−1 ∈ Bp. The desired
cobordism C consists of 2(p − 1) 1-handles and may be constructed by appending
(σ1 · · · σp−1)2 to β, thus obtaining the braid (σ1 · · · σp−1)p+1, whose closure is Tp,p+1.
The existence of C is also implicit in [Baa12, proof of theorem 2], [Fel16, example
20], or follows from [Fel14, theorem 2].

(iii) As in (i), K and K′ may be written as closures of positive braid words β ∈ Bk, β ′ ∈ Bk′
that are the product of l and l′ generators, respectively. Then, K#K′ is the closure of a
positive braid word β ′′ ∈ Bk+k′−1 that is the product of l + l′ generators. As shown in
(i), this implies that

g4(K#K′) = 1 + l + l′ − (k + k′ − 1) − 1

2
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= 1 + l − k

2
+ 1 + l′ − k′

2
= g4(K) + g4(K′).

(iv) This directly follows from (iii) and the definition of ĝ4.

We are now ready to proceed to prove Proposition 2 and Theorem 3.

Proof of Proposition 2. Let us first show that tp(K) is monotonically decreasing. By
Lemma 14 (ii), for p � 2 there exists a smooth cobordism C of genus g4(Tp,p+1) −
g4(Tp−1,p) = p − 1 between Tp−1,p and Tp,p+1. Let F be a genus-minimising slice sur-
face of (Tp−1,p#K)#n. Gluing F to C#n gives a slice surface F′ of (Tp,p+1#K)#n of genus
g(F′) = g(F) + n(p − 1). Thus

g4((Tp,p+1#K)#n) � g4((Tp−1,p#K)#n) + n(p − 1)

=⇒ g4((Tp,p+1#K)#n)

n
− p(p − 1)

2
� g4((Tp−1,p#K)#n)

n
− (p − 1)(p − 2)

2

=⇒ tp(K) � tp−1(K).

Next, we observe that tp(K) is bounded below, and thus converges. Indeed,

tp(K) + tp(−K) = ĝ4(Tp,p+1#K) + ĝ4(Tp,p+1# −K) − 2g4(Tp,p+1)

� ĝ4(Tp,p+1#K#Tp,p+1# −K) − 2g4(Tp,p+1)

= 2ĝ4(Tp,p+1) − 2g4(Tp,p+1),

which is zero by Lemma 14 (iv). Hence we have tp(K) �−tp(−K) �−t1(−K). Finally,
taking the limit p → ∞ of tp(K) + tp(−K) � 0 also yields �(K) + �(−K) � 0, as desired.

Proof of Theorem 3. We first check that φ(K) ∈ [−�(−K), �(K)] for every slice torus
invariant φ. For every p, we have

φ(−K) = φ(Tp,p+1# −K) + φ(−Tp,p+1)

= φ(Tp,p+1# −K) − ĝ4(Tp,p+1)

� ĝ4(Tp,p+1# −K) − ĝ4(Tp,p+1)

= tp(−K),

where we used that φ(J) � ĝ4(J) for all knots J. Taking the limit gives −φ(K) = φ(−K) �
�(−K), and, by replacing K by −K, we find φ(K) � �(K). Hence, we have φ(K) ∈ [−�(−
K), �(K)] as desired.

As last step of the proof, for a given knot K and a given real number λ ∈ [−�(K), �(−K)],
we need to construct a slice torus invariant φ with φ(K) = λ. Positive non-trivial torus
knots have linearly independent Levine–Tristram signatures [Lit79]. Therefore they are lin-
early independent in C ⊗R and form a basis of T . Thus there is a unique homomorphism
φ′′ : T →R with φ′′(Tp,q) = g4(Tp,q) for all coprime positive p, q. We claim that

φ′′(P) = ĝ4(P) (†)

holds for all vectors P ∈ T+. If P is a knot, then (†) is true by Lemma 14 (iii). Since φ′′(ξP) =
ξφ′′(P) = ξ ĝ4(P) = ĝ4(ξP) for all positive rationals ξ , (†) also holds for P equal to a rational
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multiple of a knot. Thus we have that

φ′′|T+∩C⊗Q = ĝ4|T+∩C⊗Q,

but T+ ∩ C ⊗Q is a dense subset of T+ endowed with the subspace topology arising from the
colimit topology of the Euclidean topologies on all finite-dimensional subspaces of T . The
colimit topology is the finest topology such that for all finite-dimensional subspaces of T ,
equipped with the Euclidean topology, the inclusion homomorphism into T is continuous.
Moreover, φ′′ and the restriction of ĝ4 to T are continuous functions with respect to the
colimit topology since their restrictions to all finite dimensional subspaces are continuous.
Thus (†) holds for all P ∈ T+.

Now, all T ∈ T can be written as P − P′ with P, P′ ∈ T+. We have

φ′′(T) = ĝ4(P) − ĝ4(P′) � ĝ4(P − P′) = ĝ4(T),

so the homomorphism φ′′ is dominated by ĝ4, i.e. φ′′(T) � ĝ4(T) for all T ∈ T .
We now proceed to construct the desired slice torus invariant φ. Let us first consider the

case that the given knot K lies in T . Then it follows from Lemma 14 (i) that K is squeezed,
and so −�(−K) = �(K) by Proposition 10. Therefore λ = �(K) = φ(K) for all slice torus
invariants φ. So it is enough to show the existence of any slice torus invariant. The Hahn–
Banach theorem implies that φ′′ extends to a homomorphism φ : C ⊗R→R that satisfies
φ � ĝ4 on all of C ⊗R. Precomposing φ with the canonical map C → C ⊗R, K 
→ K ⊗ 1,
gives a slice torus invariant.

Now, let us take care of the case that K �∈ T . Consider the space TK = T + 〈K〉. Set φ′(T +
μK) = φ′′(T) + μ · λ for all vectors T ∈ T and reals μ ∈R. This is clearly a homomorphism
TK →R. Let us check that it is dominated by ĝ4, i.e. φ′(T + μK) � ĝ4(T + μK) for all
T ∈ T and μ ∈R. We claim that the case μ = 1 quickly implies the general case. Indeed, for
μ > 0, assuming the case μ = 1, we have

φ′(T + μK) = μφ′(T/μ + K) �μĝ4(T/μ + K) = ĝ4(T + μK).

The case μ < 0 follows from the case μ > 0 since T + μK = T + (−μ)(−K). So let us now
show the case μ = 1, i.e. that for all T ∈ T we have

φ′(T + K) � ĝ4(T + K). (‡)

Let us first consider the case that T is a knot in T+. Then by Lemma 14 (i), there exists a
cobordism C from T to some Tp,p+1 with genus g(C) = ĝ4(Tp,p+1) − ĝ4(T). We then have

φ′(T + K) = ĝ4(T) + λ

� ĝ4(T) + �(K)

� ĝ4(T) + tp(K)

= ĝ4(T) + ĝ4(Tp,p+1#K) − ĝ4(Tp,p+1)

� ĝ4(T) + ĝ4(Tp,p+1# −T) + ĝ4(T#K) − ĝ4(Tp,p+1)

� ĝ4(T) + g(C) + ĝ4(T#K) − ĝ4(Tp,p+1)

= ĝ4(T#K).
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So, we have shown (‡) in case that T is a knot in T+. If T ∈ T+ such that n T is a knot for
some positive integer n, then

φ′(T + K) = 1
nφ′(nT + K#n) � 1

n ĝ4(nT + K#n) = ĝ4(T + K).

Thus (‡) holds for all T in T+ ∩ C ⊗Q. Similarly as in the proof of (†), the denseness of
T+ ∩ C ⊗Q in T+ and the continuity of φ′ and ĝ4 now imply that (‡) holds for all T ∈ T+.
In the general case that T ∈ T , we may again write T as P − P′ with P, P′ ∈ T+. Applying
linearity of φ′ and the triangle inequality for ĝ4, we find

φ′(T + K) = φ′(−P′) + φ′(P + K)

�−ĝ4(P′) + ĝ4(P + K)

� ĝ4(T + K).

This concludes the proof that φ′ is dominated by ĝ4 on TK . By the Hahn–Banach theorem,
φ′ extends to a homomorphism φ : C ⊗R→R that is dominated on all of its domain by ĝ4.
Precomposing φ with C → C ⊗R gives the desired slice torus invariant.
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