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ON THE STRUCTURE OF Q.(G) FOR FINITELY
GENERATED GROUPS

GERALD LOSEY

1. Introduction. Let G be a group, ZG its integral group ring and A = A(G)
the augmentation ideal of ZG. Denote by G; the 7th term of the lower central
series of G. Following Passi [3], we set 0,(G) = A"/A"!, It is well-known that
01(G) ~ G/G; (see, for example [1]). In [3] Passi shows that if G is an abelian
group then Q.(G) ~ Sp2(G), the second symmetric power of G. What is
Q:2(G) in general? We find a clue in [4] where Sandling shows that if G is any
finite group then the canonical homomorphism ¢: G2/G; — A2/A? given by
gG3 — (g — 1) 4+ A3 is a split monomorphism; thus Q.(G) ~ G,/G3 @ M for
some abelian group M. Comparing this with Passi’s result it is tempting to
conjecture that for any group G,

Q:(G) >~ G2/Gs @ Sp*(G/G,).

The object of this paper is, first, to extend Sandling’s result to finitely generated
groups and, secondly, to verify the above conjecture for such groups.

In § 2, we develop the necessary machinery for handling the problem. This
is an extension to finitely generated groups of tools developed in [1] for finite
groups. Some of these ideas have previously appeared in [2]. In § 3, we prove
the results mentioned above.

2. Definitions and preliminary results. Let 4 be an abelian group.
Then Sp2(4) = A ®.A4/J, where J is the subgroup of 4 ®, 4 generated by
all elements x @ y — ¥y ® x,x,y € A, is called the second symmetric power
of A. The image of x ® y in Sp>(4) will be denoted by x V y. The mapping
A X A — Sp2(4) given by (x,y) — x V ¥ is bilinear and symmetric and is
universal with respect to these properties.

Let G be a finitely generated nilpotent group of class c. Foreach g € G,g # 1,
set w(g) = kif and only if g¢ € Gy, g ¢ Gry1; w(g) is called the weight of g. For
convenience set w(l) = . Since [G4 G;] = G4, for all 7 and j we have
w(g, 1]) = w(g) + w(h) for all g, 2 € G. For each g € G define 0*(g) to be
the order of the coset gG, 41, that is, 0*(g) is the order of the image of g in
the quotient Guy/Guip+1-

Each quotient G;/Gy,1 is a finitely generated abelian group and thus there
exist elements X1, Fx2, - - + , Xruey (Where X, = x4,Gy11) such that each element
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7 € Gi/Gyy1 can be written uniquely in the form
[ LT SO I SNAC)
where 0 < e(1) < 0*(xy;) if 0*(xz,) < 0.
Set
b ={x;;:k=1,2,...,¢;0=12,...,pu(k)}.

Order &, by putting x; < x;; if 2 < k or ¢ = k and j < I. Enlarge &, toa
set & by adjoining to &, all x,;7 for which o*(x;;) = 00; extend the order
on &, to ® by putting x;;7! immediately after x;;. Let |®| = m. Reindex ®
by the integers 1, 2, ..., m so that x; < x; if and only if ¢ < j. Then every
element g € G can be written uniquely in the form

(1) g = xle(l)x2e(2) . xme(m)

where
(i) 0 = e(d) < 0*(x;) for all 7,

(ii) if x441 = %1 then e(?)e(z + 1) = 0.

The set ® will be called a positive uniqueness basis for G. For each x; € &, set
d(r) = o*(x,).

Let G be a finitely generated nilpotent group, ® a positive uniqueness basis
for G and |®| = m. By an m-sequence a = (e(1), ¢(2), ..., e(m)) we mean an
ordered m-tuple of non-negative integers. The set S, of all m-sequences is
ordered lexicographically; S, is then well ordered. An m-sequence
a = (e(l),e2),...,e(m)) is basic (with respect to ®) if (i) 0 = e(?) < d(7)
for all 7 and (ii) if x;41 = x;! then e(?)e( + 1) = 0. It follows from the
uniqueness of the expression (1) above that there is a one-one correspondence
between the elements of G and the basic m-sequences.

The weight W(a) of an m-sequence a = (e(1), e(2), ..., e(m)) is defined
to be
W) = 3 w()e).
Given an m-sequence o = (e(l), e(2),...,e(m)) we define the proper

product P(a) € ZG to be

Pe =TT = )

where the factors occur in order of increasing 7 from left to right. If W(a) = k
then P(a) € A* If « is basic then P(a) is called a basic product. Note that if
a = (0,0,...,0) then P(a) = 1.

Since

xie(i) = A+ @i — 1))e(i) =1 +%i) (e‘(;)) (x; — 1)7,

=1
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from (1) we obtain

2 g=14+e)@i—1)+...4+em)(x, — 1)

4 a Z-linear combination of basic products of higher degree,
which we can rewrite as

2) g—1l=e)@i—1)+...4+e(m)(xy, — 1)

+ a Z-linear combination of basic products of higher degree.

LemMMA 1. The basic products form a free Z-basis for ZG. The non-identity
basic products form a free Z-basis for A.

Proof. 1t follows from (2) (respectively (2')) that the basic products (respec-
tively basic products #1) span ZG (respectively A). The lemma will follow if
we can show linear independence. Suppose Y 7.P(a) = 0 is a non-trivial
linear relation among the basic products. Among the basic m-sequences a for
which 7, # 0 there is a maximal one, say 8 = (f(1),f(2),...,f(m)). If we
multiply out all the P (&) and collect terms we obtain a linear combination of
group elements each expressed in its unique form (1). It follows from the
maximality of 8 that the element x;"Mx,"® | . | x,,/™ occurs with coefficient
rg # 0. But this contradicts the fact that the elements of G are linearly
independent in ZG.

LEMMA 2. Let Xi(1)y Xi(2)y « 1 Xi(s) € P and let k= Z;=1 ’w(x,-(]-)),
p = min{i(j) : 1 < j = s}. Then the product

iy — D(xee — 1) ... (x50 — 1)

can be wrilten as a Z-linear combination of proper products P(a) such that for
each such a = (e(1),e(2),...,e(m))

(i) W) z &,

(i1) 7 < wimplies e(j) = 0.
(The process of replacing such a product by a linear combination of proper
products satisfying (i) and (ii) will be called straightening.)

COROLLARY. The ideal A* is spanned over Z by all proper products P (a) with
W) = k.

The proofs of Lemma 2 and its corollary are the same as those given in
[1, Lemma 4] for the case of a finite group G; we refer the reader to the proofs
given there.

LemMA 3. The ideal A? has a free Z-basts consisting of the elements.

(1) d@)(x; — 1), where w(x;) = 1,d(#) < ©;
(i) (x; —1) + (2541 — 1), wherew(x,) = 1, %1 = x7;
(iii) Pe), where o 1s basic, W(a) = 2.

Proof. If w(x;) =1 and d(¢) < oo then x,4? € G, and since
£80 = (L4 (0 — D) = 1+ d(0) (x, — 1) mod A*
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we have
d@)(x; — 1) = x¥® — 1 = 0 mod A2
If w(x;) = 1and d(?) = © then, if x;41 = %7,
i = 1)+ w1 — 1) = — (x; — 1) (x531 — 1) € A%

Thus elements of types (i), (ii) and (iii) are all in A2

Let ¢ : A — G/G, be the canonical mapping determined by g — 1+ gG,
for all g € G. It is well-known (see [1] for example) that Kery = A% Let
v € A% Then, by Lemma 1, we can write y uniquely in the form

y=a(l)(x — 1)+ ...+ a(k)(x; — 1) + a Z-linear combination of
elements of type (iii),

where w(x;) = ... = w(x,) = 1. Since y € Ker ¢ we have

13
‘/’('Y) = Hlxia(i)Gz = G

and so II}; x,%® = 1 mod G,. By the uniqueness of the expression (1) it
follows that a(3) = b,d(z) for some integer b; if d(#) < « and that a(z) =
a(t+1) if d() =0 and x;1 = x;".. Thus we have a(?)(x; — 1) =
bd(@)(x; — 1) if d(z) < o0 and

a(@)(x; — 1) +a@) (@1 — 1) = a@) ((x, — 1) + (x01 — 1))

if d(¢) = 0 and x,1 = x;~'. It follows then that v can be written uniquely
as a Z-linear combination of elements of types (i), (ii) and (iii).

3. The main results. We are now in position to prove

THEOREM 1. Let G be any finitely generated group. Then the canonical homo-
morphism
¢ : Gy/Gs — A2/AP

defined by gGs— (g — 1) + A% is a split monomorphism.
THEOREM 2. If G s any finitely generated group then
0:(G) >~ G2/Gs @ Sp*(G/G»).

Proof of Theorem 1. By passing to quotients by G; we may assume G; = 1.
Then G, is abelian and ¢: g+ (g — 1) + A% We define a homomorphism
o : A2 — G, by defining it on the basis given in Lemma 3 as follows:

d@)(x, — 1) — x40 wx,) =1,d0) < ©
@i = 1)+ (g1 — 1) —1 w(x;) =1, %41 = 2,7}
x; — 1 — X w(x;) =2

Pa) — 1 other basic a, w(a) = 2,
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where & = {x;} is a fixed positive uniqueness basis for the finitely generated
nilpotent group G.
If ¢ € G» then we can write g in its unique form

(1) g = X1 PVay0°@ . .. x5 with each w(xi(,)) = 2.
Hence, from (2'),

g—1=e)(@iwm — 1)+ ...+ e(s)(xi — 1)
+ basic products of weight = 3.

Thus from the definition of o,
ogl\g — 1) = xi(l)“(l) P xi(s>e(s’ = g.

Therefore a(g — 1) = gforall g € G,.

We claim that ¢ vanishes on A% In view of the Corollary to Lemma 2, it
suffices to show that ¢ vanishes on all proper products P(a) with W(a) = 3.
We show this by induction over the well ordered set S,, of m-sequences. Suppose
W) = 83and ¢(P(B)) = 1 for all 8 < a with W(8) = 3. If a is basic then ¢
vanishes on P (a) by definition. So assume « is not basic. Then P(a) is either

of the form
(1) Pla) (@ — 1)@t — 1)P(as)

or
(II)  Pa)(x — 1)?P(a2)
for some x = x; € ®, d = d(z), and suitable products P (a;) and P (as).
Case (I): In this case we have
Pla) = —P(ar)(x — 1)P(az) — Plea) (x™' — 1)P(a2).

If W(ai1) + W(az) = 2 then both terms on the right are proper products
P(B),8 < a and W(B) = 3 and, by the induction hypothesis, we are done.
So we may assume W(a1) + Wi(as) < 1. Suppose W(a1) + W(as) = 0, that
is, Pl@) = (x — 1) (x 1 —1) = —((x — 1) + (x* = 1)). If w(x) = 1 then
o(P(a)) = 1 by definition; if w(x) = 2 then c(P(a)) =« 1. (x~1)~1 = 1.
Suppose W(a1) + W(az) =1, say Pla1) =y — 1, Pa) =1, w(y) = L
Then

Pl) = (-1 - Dt —1)
=~ -DE-1)— -1 —1).

If y < x < x~! then both terms on the right are basic and ¢ vanishes on both
terms by definition. If y = x < x~! then

P@)=—-—-1 +(x-1+ @' -1))

and again, ¢ vanishes on both terms by definition. The case P(a1) = 1,
P(as) =y — 1, w(y) = 1, is handled similarly.
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Case (II): In this case we have

da—1
P(Ol) = Z:l ((j)P(al) (x - l)jP(az) "|- P(al) (x" - I)P(ag)
=
We replace x? — 1 in the last term by its basic form (2') and straighten the
resulting terms. If W(ai) + Wi(as) = 2 then this expresses P(x) as a linear
combination of proper products P(8) with 8 < a« and W(a) = 3. By the
induction hypothesis ¢ vanishes on each term and so ¢ vanishes on P (a). We
may therefore assume Wi(a;) + Wi(as) = 1. Suppose W(a1) + Wi(as) = 0;
then Pla) = (x — 1) =221 () (x — 1) 4+ (x* — 1). If w(x) =1 then
P) = —d(x — 1) + (x® — 1) + elements of Ker o and so, sinces(g — 1) = ¢
for all g € Gy, 0(P(@)) =x¢-x*=1. If w(x) =2 then x* =1 and so
Pla) = —d(x — 1) + elements of Kero. Therefore o(P(a)) =x% = 1.
Now suppose W(a1) + W(az) = 1,say P(a1) = 1, Plaz) =y — 1, w(y) = 1.
Then Pa) = (x — 1)%(y — 1) and w(x) = 1. We can write this as

d—1

Pa) = *j; (';l-)(x -1y -1D+@-1E"—1)

since x¢ € G: = C(G). If we replace x* — 1 by its basic form (2’) then, by
definition of o,
Pla) = —dx — 1)*'(y — 1) mod Ker o.

If x # y then (x — 1) 1(y — 1) is basic and ¢ also vanishes on this term. If
x =y then P(a) = —d(x — 1) mod Ker . But ¢((x — 1)¢) = 1 as shown
above. Hence ¢(P(a)) = 1. The case Pla1) =y — 1, Plaz) =1, w(y) =1
is handled similarly.

Thus we have shown by induction over the well ordered set .S,, that ¢
vanishes on A? It follows that ¢ induces a homomorphism ¢ : A2/A? — G,
with the property that ¢((g — 1) 4+ A3) = g for all g € Gs. Therefore G¢ is
the identity on G, and, consequently, ¢ is a split monomorphism.

Proof of Theorem 2. 1t follows from Theorem 1 that
Q2(G) >~ G2/G3 @ Coker(p).

Let 7 : G — G/G; be the natural map and let 7: ZG — Z(G/G:) be its
linear extension. Then 7 is a ring homomorphism with kernel I4(Gs), the
(right) ideal of ZG generated by all g — 1, g € Gs. Let

71 ZG/I6(Ge) — Z(G/Gs)

be the induced isomorphism.
The ideal I ¢(G;) is spanned over Z by the elements (g — 1)k, g € G2, k € G.
Now
@—Dh+28=@g—-1D+ -Gk —-1)+ 4= (g—1) + A% € Im(e).
It follows that
Im(p) = I4(G2) + A%/A?
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and, therefore, that
Coker (¢) >~ A2/ 4(G,) + A3.

On the other hand,

7 1(A(G/G,)) = A*(G)/I¢(G2)
and
1A G/Gy)) = A¥NG) + 16(G)/16(Gy).
Thus

Q:(G/G2) >~ A*(G)/A%(G) + I4(Gz) ~ Coker(p).
Combining this with the above we see that
0:(G) ~ G2/Gs @ Q=(G/G2).
By the result of Passi [3] mentioned in § 1,
Q:(G/G2) ~ Sp*(G/G2)

and Theorem 2 follows.
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I wish to thank the referee for pointing out a substantial simplification in

the proof of Theorem 2.
REFERENCES

. G. Losey, N-series and filtrations of the augementation ideal (to appear).

1
2
3
4

University of Manitoba,
Winnipeg, Manitoba

https://doi.org/10.4153/CJM-1973-034-4 Published online by Cambridge University Press

On dimension subgroups, Trans. Amer. Math. Soc. 97 (1960), 474-486.
1. B. S. Passi, Polynomial functors, Proc. Cambridge Philos. Soc. 66 (1969), 505-512.
R. Sandling, The modular group rings of p-groups, Ph.D. thesis, University of Chicago, 1969.


https://doi.org/10.4153/CJM-1973-034-4

