
Can. J. Math., Vol. XXV, No. 2, 1973, pp. 353-359 

ON THE STRUCTURE OF Q2(G) FOR FINITELY 
GENERATED GROUPS 

GERALD LOSEY 

1. Introduction. Let G be a group, ZG its integral group ring and A = A(G) 
the augmentation ideal of ZG. Denote by Gt the ith term of the lower central 
series of G. Following Passi [3], we set Qn(G) = Aw/Aw+1. It is well-known that 
Qi(G) ^ G/G2 (see, for example [1]). In [3] Passi shows that if G is an abelian 
group then Qz(G) ~ Sp2(G), the second symmetric power of G. What is 
<22(G) in general? We find a clue in [4] where Sandling shows that if G is any 
finite group then the canonical homomorphism <p: G2/G3 —* A2/A3 given by 
gGz —» (g — 1) + A3 is a split monomorphism; thus Q2(G) ~ G2/G3 © M for 
some abelian group M. Comparing this with Passi's result it is tempting to 
conjecture that for any group G, 

Q2(G)^G2/G, ®Sp2(G/G2). 

The object of this paper is, first, to extend Sandling's result to finitely generated 
groups and, secondly, to verify the above conjecture for such groups. 

In § 2, we develop the necessary machinery for handling the problem. This 
is an extension to finitely generated groups of tools developed in fl] for finite 
groups. Some of these ideas have previously appeared in [2]. In § 3, we prove 
the results mentioned above. 

2. Definitions and preliminary results. Let A be an abelian group. 
Then Sp2(A) = A (x)2 A/J, where / is the subgroup of A ®z A generated by 
all elements x ® y — y ® x, x, y £ A, is called the second symmetric power 
of A. The image of x ® y in Sp2 (A ) will be denoted by x V y. The mapping 
A X A -+Sp2(A) given by (x, y) —> x V y is bilinear and symmetric and is 
universal with respect to these properties. 

Let G be a finitely generated nilpotent group of class c. For each g Ç G, g 9e 1, 
set w{g) = k if and only if g G Gk, g $ G&+1; wig) is called the weight of g. For 
convenience set wil) = co. Since [GuGj] ^ Gi+j for all i and j we have 
w([&i h]) ^ wig) + w(h) for all g, h G G. For each g G G define o*ig) to be 
the order of the coset gG^M+i, that is, 0*(g) is the order of the image of g in 
the quotient Gw{g)/Gw^)+i. 

Each quotient Gk/Gk+i is a finitely generated abelian group and thus there 
exist elements xki, xk2, . . • , xk^k) (where xkt = xkiGk+i) such that each element 
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354 GERALD LOSEY 

g ê Gk/Gk+i can be written uniquely in the form 

g = xkl
e(1)xk2

e^ . . . **„(»«<"<*» 

where 0 ^ e(i) < o*(xki) if 0*(x^) < oo. 

Set 

$o = {xki : k = 1, 2, . . . , c\ i = 1, 2, . . . , /*(*)}• 

Order <ï>0 by putting x.j < xkî if i < k or i = k and j < I. Enlarge $0 to a 
set $ by adjoining to $0 all x 0

_ 1 for which 0*(xi;) = oo ; extend the order 
on <£0 to $ by putting x^ _ 1 immediately after xtj. Let | $ | = m. Reindex 3> 
by the integers 1, 2, . . . , m so that x* < Xj if and only if i < j . Then every 
element g (z G can be written uniquely in the form 

(1) g = xie(%2
e(2) . • . x™e(m) 

where 
(i) 0 ^ e(i) < o*(xi) for a l i i , 

(ii) if xi+\ = xf1 then e{i)e(i + 1) = 0. 
The set $ will be called a positive uniqueness basis for G. For each x* £ <£>, set 
d(i) = o*(xi). 

Let G be a finitely generated nilpotent group, $ a positive uniqueness basis 
for G and |3>| = m. By an m-sequence a = (e(l), e(2), . . . , e{m)) we mean an 
ordered m-tuple of non-negative integers. The set Sm of all m-sequences is 
ordered lexicographically; Sm is then well ordered. An m-sequence 
a = (e(l), e(2), . . . , e(m)) is frasic (with respect to 3>) if (i) 0 ^ e{i) < d(i) 
for all i and (ii) if x i + i = x~l then e(i)e{i + 1) = 0 . It follows from the 
uniqueness of the expression (1) above that there is a one-one correspondence 
between the elements of G and the basic m-sequences. 

The weight W(a) of an m-sequence a = (e(l), e(2), . . . , e(m)) is defined 
to be 

v m 

W(a) = J2 w(Xi)e(i). 
i=i 

Given an m-sequence a = (e(l), e(2), . . . , e(m)) we define the proper 
product P(a) £ ZG to be 

p(a) = n (*. - i)e(i) 

where the factors occur in order of increasing i from left to right. If Wipe) — k 
then P(a) Ç A\ If a: is basic then P(a) is called a frasz'c product. Note that if 
a = (0,0, . . . ,0) then P (a) = 1. 

Since 

*/(i) = (1 + (*, - 1))'<0 = 1 + Z (ef ) (*, - 1)', 
3=1 ^ J ' 

https://doi.org/10.4153/CJM-1973-034-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-034-4


STRUCTURE OF Q2(G) 355 

from (1) we obtain 

(2) g = 1 + e{l){xl - 1) + . . . + e(m)(xm - 1) 

+ a Z-linear combination of basic products of higher degree, 

which we can rewrite as 

(20 g - 1 = e(l)(x1 - 1) + . . . + e(m)(xm - 1) 

+ a Z-linear combination of basic products of higher degree. 

LEMMA 1. The basic products form a free Z-basis for ZG. The non-identity 
basic products form a free Z-basis for A. 

Proof. It follows from (2) (respectively (2')) that the basic products (respec­
tively basic products ^ 1 ) span ZG (respectively A). The lemma will follow if 
we can show linear independence. Suppose X) raP(a) = 0 is a non-trivial 
linear relation among the basic products. Among the basic m-sequences a for 
which ra 9

e 0 there is a maximal one, say ft = ( / ( l ) , / ( 2 ) , . . . ,f(m)). If we 
multiply out all the P(a) and collect terms we obtain a linear combination of 
group elements each expressed in its unique form (1). It follows from the 
maximality of ft that the element Xi/(1)x2

/(2) . . . xm
fw occurs with coefficient 

r$ T6- 0. But this contradicts the fact that the elements of G are linearly 
independent in ZG. 

LEMMA 2. Let Xu\), xi^)1 . . . , x^ ) G $ and let k = X);=i ^(^oo)» 
H = m'm{i(j) : 1 S j ^ s}> Then the product 

(Xia) - 1)(X*(2) - 1) . . . (*«„) - 1) 

can be written as a Z-linear combination of proper products P(a) such that for 
each such a = (e(l), e(2), . . . , e(m)) 

(i) W(a) ^ k, 
(ii) j < fx implies e(j) = 0. 

(The process of replacing such a product by a linear combination of proper 
products satisfying (i) and (ii) will be called straightening.) 

COROLLARY. The ideal Ak is spanned over Z by all proper products P{a) with 
W{a) ^ k. 

The proofs of Lemma 2 and its corollary are the same as those given in 
[1, Lemma 4] for the case of a finite group G; we refer the reader to the proofs 
given there. 

LEMMA 3. The ideal A2 has a free Z-basis consisting of the elements. 
(i) d(i)(xi — 1), where wixi) = 1, d(i) < oo ; 

(ii) (xt — 1) + (xi+1 — 1), where w(Xi) = 1, xi+i = xf1 ; 
(iii) P{a), where a is basic, W(a) ^ 2. 

Proof. If w(Xi) = 1 and d(i) < oo then x / ( ï ) G G2 and since 

x*w = (1 + (xt - l ) ) d ( i ) = 1 + d(i)(xt - 1) mod A2 
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we have 

d(i)(Xi - 1) = xd^ - 1 = 0 mod A2. 

If w(Xi) = 1 and d(i) = oo then, if xi+i = x~l, 

(xt - 1) + (Xi+i — 1) = - (Xi — l)(xi+1 — 1) G A2. 

Thus elements of types (i), (ii) and (iii) are all in A2. 
Let y\f : A —•> G/G2 be the canonical mapping determined by g — 1 *—> gG2 

for all g G G. It is well-known (see [1] for example) that Ker \f/ = A2. Let 
7 Ç A2. Then, by Lemma 1, we can write y uniquely in the form 

7 = a(l)(xi — 1) + . . . + a(k)(xk — 1) + a Z-linear combination of 

elements of type (iii), 

where w(x\) = . . . = w(xk) = 1. Since 7 £ Ker ^ we have 

and so r i f= ix t
a ( i ) = 1 mod G2. By the uniqueness of the expression (1) it 

follows that a(i) = btd{i) for some integer bt if d(i) < 00 and that a(i) = 
a(i + 1) if ^(i) = °o and x i + i = x*-1- Thus we have a(i)(xt — 1) = 
bid(i)(Xi — 1) if d(i) < 00 and 

a(i)(xt — 1) + a(i)(xi+1 — 1) = a(i)((xt — 1) + (x î+i — 1)) 

if d(i) = 00 and xi+i = x*-1- It follows then that 7 can be written uniquely 
as a Z-linear combination of elements of types (i), (ii) and (iii). 

3. The main results. We are now in position to prove 

THEOREM 1. Let G be any finitely generated group. Then the canonical homo-
morphism 

V : G2/G3 -> A2/A3 

defined by gG% •—> (g — 1) + A3 is a split monomorphism. 

THEOREM 2. If G is any finitely generated group then 

<22(G)~G2 /G3 ®Sp*(G/G2). 

Proof of Theorem 1. By passing to quotients by G3 we may assume G3 = 1. 
Then G2 is abelian and <p : g »—» (g — 1) + A3. We define a homomorphism 
a : A2 —-> G2 by defining it on the basis given in Lemma 3 as follows: 

d(i)(xt - 1) h->x/(*) w(xl) = l,d(i) < 00 

(xt — 1) + (xi+i — 1) •—> 1 w(xt) = 1, xi+i = xfl 

xt — 1 ^ X i w(Xi) = 2 
P(a) • — > 1 other basic a, w(a) ^ 2, 
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where $ = {xt} is a fixed positive uniqueness basis for the finitely generated 
ni lpotent group G. 

If g € G2 then we can write g in its unique form 

(1) g = ^i(i)6(1)^t(2)e(2) . . . xi(s)
e(s) with each w(xlU)) = 2. 

Hence, from (2') , 

g - 1 = e(l)(xm) - 1) + . . . + e(s)(xi(s) - 1) 

+ basic products of weight ^ 3. 

T h u s from the definition of o-, 

'(g ~ 1) =** (D e ( 1 ) . . . ** ( s ) e ( s ) = g-

Therefore o-(g — 1) = g for all g £ G2. 
We claim t h a t a vanishes on A3. In view of the Corollary to Lemma 2, it 

suffices to show tha t a vanishes on all proper products P{a) with W(a) ^ 3. 
We show this by induction over the well ordered set Sm of ra-sequences. Suppose 
W(a) è 3 and <r(P(fi)) = 1 for all 0 < a with W(fi) è 3. If a is basic then a 
vanishes on P(a) by definition. So assume a is not basic. Then P(a) is either 
of the form 

(I) P(a1)(x- l)(x~i - l)P(a2) 

or 

( I I ) P(a1)(x- l)dP(a2) 

for some x = xt Ç <ï>, d = d(i), and suitable products P(ai) and P(a2). 
Case ( I ) : In this case we have 

P(a) = - P ( « i ) ( * - l)P(a2) - P ( « i ) ( ^ 1 - l ) P ( a 2 ) . 

If W(ai ) + PF(a2) ^ 2 then both terms on the right are proper products 
P(P), P < a and W(0) è 3 and, by the induction hypothesis, we are done. 
So we may assume W(ai) + W(a2) ^ 1. Suppose Wipn) + W(a2) = 0, t h a t 
is, Pia) = (* - l ) ^ " 1 - 1) = - ( ( x - 1) + (x-1 - 1)) . If w{x) = 1 then 
a(P(a)) = 1 by definition; if w(x) = 2 then <r(P(a)) = x~l • ( a r 1 ) " 1 = 1. 
Suppose W(ai) + W(a2) = 1, say P ( « i ) = y — 1, P ( a 2 ) = 1, w(y) = 1. 
Then 

P{a) = (y - l ) ( x - l ) ( x - i - 1) 

= -Cv - i)(* - l) - (y - i ) ^ - 1 - i). 
If y < x < x" 1 then both terms on the r ight are basic and a vanishes on both 
terms by definition. If y = x < x~1 then 

P(a) = _ ( x _ 1)2 + ( ( x - 1) + (x-i - 1)) 

and again, a vanishes on both terms by definition. The case P(ai) = 1, 
P(a2) = y — 1, w(y) = 1, is handled similarly. 
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Case (II): In this case we have 

P<fl) = E n W i ) ( * - iyP(ai)+P(a1)(x
d - 1)P(«,). 

j=l \J/ 

We replace xd — 1 in the last term by its basic form (2') and straighten the 
resulting terms. If W(a\) + W(a2) ^ 2 then this expresses P(a) as a linear 
combination of proper products P(P) with P < a and PF(o:) ^ 3. By the 
induction hypothesis a vanishes on each term and so a vanishes on P (a ) . We 
may therefore assume W(a\) + W(a2) ^ 1. Suppose Wipn) + W(a2) = 0; 
then P(a) = (x - l)d = L t l (?) (* ~ 1) ' + (*d ~ 1). If w(x) = 1 then 
P(a) = — d(x — 1) + (xd — 1) + elements of Ker a and so, since a(g — 1) = g 
for all g e G2, <r(P(a)) = x~d • xd = 1. If w(x) = 2 then x<* = 1 and so 
P{a) = — d(x — 1) + elements of Ker a. Therefore <j(P(a)) = x~~d — 1. 
Now suppose W(ai) + W(a2) = 1, sayP(«i ) = 1, P(a2) = y — 1, w(y) = 1. 
Then P(a) = (x — l)d(y — 1) and w(x) = 1. We can write this as 

p(«) = - £ M (x - lY(y - 1) + (y - l)(xd - 1) 

since xd G G2 ^ C(G). If we replace xd — 1 by its basic form (2') then, by 
definition of cr, 

P (a ) = -d(x - lY'Hy - 1) mod Ker a. 

If x 5* y then (x — l)d_1(;y — 1) is basic and a also vanishes on this term. If 
x = y then P{a) = —d(x — l)d mod Ker a. But o-((x — l)d) = 1 as shown 
above. Hence <r(P(a)) = 1. The case P(ai) = y — 1, P(a2) = 1, w(;y) = 1 
is handled similarly. 

Thus we have shown by induction over the well ordered set Sm that a 
vanishes on A3. It follows that a induces a homomorphism â : A2/A3 —» G2 

with the property that <j((g — 1) + A3) = g for all g £ G2. Therefore â<p is 
the identity on G2 and, consequently, <p is a split monomorphism. 

Proof of Theorem 2. It follows from Theorem 1 that 

<2 2 (G)-G 2 /G 3 e C o k e r f a ) . 

Let 7] : G-^G/G2 be the natural map and let rj : ZG —» Z(G/G2) be its 
linear extension. Then rj is a ring homomorphism with kernel IG(G2), the 
(right) ideal of ZG generated by all g — 1, g Ç G2. Let 

^:ZC7//G(G2)->Z(G/C72) 

be the induced isomorphism. 
The ideal IG{G2) is spanned over Z by the elements (g - 1)4, g G G2, 4 G G. 

Now 
(g - 1)4 + A3 = (g - 1) + (g - \){h - 1) + A3 = (g - 1) + A3 6 I m W . 
It follows that 

I m W = 7G(G2) + A3/A3 
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and, therefore, that 

C o k e r ( ^ ) ^ A 2 / ^ ( G 2 ) + A3. 

On the other hand, 

rH±HG/G2)) = AHG)/IG(G2) 

and 
rl{^(fi/G2)) = A'(G) + IG(G2)/IG(G2). 

Thus 

Q2(G/G2) ~ A2(G)/A3(G) + /G(G2) ~ Coker(^). 

Combining this with the above we see that 

Q2(G)^G2/Gz@Q2(G/G2). 

By the result of Passi [3] mentioned in § 1, 

Q2(G/G2)^SpHG/G2) 

and Theorem 2 follows. 

I wish to thank the referee for pointing out a substantial simplification in 
the proof of Theorem 2. 
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