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Abstract

Let U be a unipotent group which is graded in the sense that it has an extension H by the
multiplicative group of the complex numbers such that all the weights of the adjoint action on
the Lie algebra of U are strictly positive. We study embeddings of H in a general linear group G
which possess Grosshans-like properties. More precisely, suppose H acts on a projective variety X
and its action extends to an action of G which is linear with respect to an ample line bundle on
X . Then, provided that we are willing to twist the linearization of the action of H by a suitable
(rational) character of H , we find that the H -invariants form a finitely generated algebra and hence
define a projective variety X//H ; moreover, the natural morphism from the semistable locus in X
to X//H is surjective, and semistable points in X are identified in X//H if and only if the closures
of their H -orbits meet in the semistable locus. A similar result applies when we replace X by its
product with the projective line; this gives us a projective completion of a geometric quotient of a
U -invariant open subset of X by the action of the unipotent group U .

2010 Mathematics Subject Classification: 14L24 (primary); 13A50 (secondary)

1. Introduction

Quotients of complex projective or affine varieties by linear actions of complex
reductive groups can be constructed and studied using Mumford’s geometric
invariant theory (GIT) [17, 36, 38]. Given a linear action on a complex projective
variety X of a linear algebraic group G which is not reductive, the graded
algebra of invariants is not necessarily finitely generated, and even if it is finitely
generated, so that there is a GIT quotient X//G given by the associated projective
variety, the geometry of this GIT quotient is hard to describe. When G is reductive
then X//G is the image of a surjective morphism φ : X ss

→ X//G from an open
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subset X ss of X (consisting of the semistable points for the linear action), and
φ(x) = φ(y) if and only if the closures of the G-orbits of x and y meet in X ss .
When G is not reductive φ : X ss

→ X//G can still be defined in a natural way but
it is not in general surjective, and indeed its image is not in general an algebraic
variety, even when the algebra of invariants is finitely generated [18].

One situation in which the algebra of invariants for a nonreductive linear
algebraic group action on a projective variety X with respect to an ample line
bundle L is guaranteed to be finitely generated is when the group H is a Grosshans
subgroup of a reductive group G and the linear action of H extends to G. Recall
that a closed subgroup H of G is a Grosshans subgroup [25, 26] if and only
if the algebra of invariants O(G)H is finitely generated and H is an observable
subgroup of G in the sense that

H = {g ∈ G : f (gx) = f (x) for all x ∈ X and f ∈ O(G)H
}

(see Section 3). In this case G/H is quasi-affine, and the finite generation of
O(G)H is equivalent to the existence of a finite-dimensional G-module V and
some v ∈ V such that H = Gv is the stabilizer of v and dim(G · v\G · v) 6
dim(G · v) − 2. Then we find that the nonreductive GIT quotient X//H (the
projective variety associated to the algebra of invariants for the linear action of
H ) is given by the classical GIT quotient

X//H = (X × Spec(O(G)H ))//G

of X × Spec(O(G)H ) by the diagonal action of G. Here Spec(O(G)H ) ∼= G · v
is the canonical affine completion of the quasi-affine variety G/H . The fact that
the embedding

G/H → G//H = Spec(O(G)H )

is not in general an isomorphism means that the natural map X ss
→ X//H is not

in general surjective and X//H cannot be described as X ss modulo an equivalence
relation, in contrast to classical GIT.

When H is a unipotent subgroup of a reductive group G then G/H is quasi-
affine. In general, if H is a closed subgroup of a reductive group G then G/H
is quasiprojective but not necessarily quasi-affine, so that Grosshans theory does
not apply directly. In this paper we study families of subgroups H of reductive
groups G, where H is neither reductive nor unipotent, which possess a property
related to the Grosshans property. That is, given any action of H on a projective
variety X extending to an action of G which is linear with respect to an ample line
bundle on X , then provided that we are willing to twist the linearization of the
action of H by a suitable (rational) character of H we find that the H -invariants
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form a finitely generated algebra; moreover, the natural morphism φ : X ss
→

X//H is surjective and satisfies φ(x) = φ(y) if and only if the closures of the
H -orbits of x and y meet in X ss . This property is weaker than the Grosshans
property in that we are only guaranteed finitely generated invariants when we twist
the linearization by suitable rational characters of H (though of course unipotent
groups have no nontrivial characters). However, it is stronger in the sense that we
obtain a surjective morphism from X ss to X//H and a geometric description of
X//H as X ss modulo the equivalence relation given by x ∼ y if and only if the
closures of the H -orbits of x and y meet in X ss .

Our first motivation for this investigation was the reparametrization group
Gn consisting of n-jets of germs of biholomorphisms of (C, 0), which acts on
the jet bundle Jn(Y ) over a complex manifold Y (for some positive integer n).
The fibre of Jn(Y ) over x ∈ Y is the space of n-jets of germs at the origin of
holomorphic curves f : (C, 0) → (Y, x), and polynomial functions on Jn(Y )
are algebraic differential operators Q( f ′, . . . , f (n)), called jet differentials. The
reparametrization group Gn acts fibrewise on the bundle En(Y ) of jet differentials.
This action has played a central role in the history of hyperbolic varieties and
the Kobayashi conjecture on the nonexistence of holomorphic curves in compact
complex manifolds of generic type (see for example [14, 15, 34, 35]).

The reparametrization group Gn is the semidirect product Un o C∗ of its
unipotent radical Un with C∗. It is a subgroup of GL(n) with the upper triangular
form

Gn
∼=




α1 α2 α3 · · · αn

0 α2
1 · · ·

0 0 α3
1 · · ·

· · · · ·

0 0 0 · · · αn
1

 : α1 ∈ C∗, α2, . . . , αn ∈ C


where the entries above the leading diagonal are polynomials in α1, . . . , αn , and
Un is the subgroup consisting of matrices of this form with α1 = 1. Notice that
if n is odd then the embedding of Gn in GL(n) can be modified by multiplying
a matrix in Gn with first row (α1, . . . , αn) by the scalar (α1)

−(n+1)/2. The image
of this modified embedding is a subgroup G̃n of SL(n); if n is even then the
corresponding subgroup G̃n of SL(n) is a double cover of Gn .

This paper studies more generally actions of groups U , Û and Ũ of a similar
form to those of Un , Gn and G̃n . Let U be a unipotent subgroup of SL(n) with a
semidirect product

Û = U oC∗

where C∗ acts on the Lie algebra of U with all its weights strictly positive; we
call such groups graded unipotent groups. We assume that U and Û are upper
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triangular subgroups of GL(n) which are ‘generated along the first row’ in the
sense that there are integers 1 = ω1 < ω2 6 ω3 6 · · · 6 ωn and polynomials
pi, j(α1, . . . , αn) in α1, . . . , αn with complex coefficients for 1 < i < j 6 n such
that

Û =




α1 α2 α3 . . . αn

0 α
ω2
1 p2,3(α) . . . p2,n(α)

0 0 α
ω3
1 . . . p3,n(α)

· · · · ·

0 0 0 0 α
ωn
1

 : α = (α1, . . . , αn) ∈ C∗ × Cn−1


(1)

and U is the unipotent radical of Û ; that is, U is the subgroup of Û where α1 = 1.
Now we consider the subgroup Ũ of SL(n) which is the intersection of SL(n)

with the product Û Z(GL(n)) of Û with the central one-parameter subgroup
Z(GL(n)) ∼= C∗ of GL(n). Like Û , the subgroup Ũ of GL(n) is a semidirect
product

Ũ = U oC∗

where C∗ acts on the Lie algebra of U with all weights strictly positive.
Let Ũ = U o C∗ ⊆ SL(n) act linearly on a projective variety X with respect

to an ample line bundle L on X and assume that the action extends to a linear
action of SL(n). Let χ : Ũ → C∗ be a character of Ũ with kernel containing U ;
we identify χ with the integer rχ such that

χ


tnω1−(ω1+···+ωn) 0 0 . . . 0

0 tnω2−(ω1+···+ωn) 0 . . . 0
0 0 tnω3−(ω1+···+ωn) . . . 0
· · · · ·

0 0 0 0 tnωn−(ω1+···+ωn)

 = t rχ .

Assume that the maximum

max{ω1 + · · · + ωn − ωi+1 + ωi : ωi−1 < ωi , 1 6 i 6 n − 1}

is taken at i = i0. Let c be a positive integer such that

ω1 + · · · + ωn − ωi0+1 + ωi0 − n <
χ

c(ω1 + · · · + ωn)
< ω1 + · · · + ωn − n;

we call rational characters χ/c with this property well-adapted to the linear action.
The linearization of the action of Ũ on X with respect to the ample line bundle
L⊗c can be twisted by the character χ ; let L⊗c

χ denote this twisted linearization.
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The main theorem of this paper is

THEOREM 1.1. Let Û = U o C∗ be a subgroup of GL(n) which is generated
along its first row with positive weights 1 = ω1 < ω2 6 · · · 6 ωn as at (1)
above, and let Ũ = U o C∗ be the intersection of SL(n) with the product
Û Z(GL(n)). Suppose that Ũ acts linearly on a projective variety X with respect
to an ample line bundle L and the action extends to a linear action of SL(n).
Then the algebra of invariants

⊕
∞

m=0 H 0(X, L⊗cm
χ )Ũ is finitely generated for any

well-adapted rational character χ/c of Ũ .
In addition the projective variety X//Ũ associated to this algebra of invariants

is a categorical quotient of an open subset X ss,Ũ of X by Ũ and contains as an
open subset a geometric quotient of an open subset X s,Ũ of X.

Applying a similar argument after replacing X with X × P1 we can obtain
geometric information on the action of the unipotent group U on X :

THEOREM 1.2. In the situation above let Ũ act diagonally on X × P1 and
linearize this action using the tensor product of Lχ with OP1(M) for suitable
M > 1. Then (X × P1)//Ũ is a projective variety which is a categorical quotient
by Ũ of a Ũ -invariant open subset of X × C and contains as an open subset a
geometric quotient of a U-invariant open subset X ŝ,U of X by U.

REMARK 1.3. This theorem’s proof also shows that the algebra
⊕
∞

m=0 H 0

(X×P1, L⊗cm
χ ⊗OP1(M))Ũ of Ũ -invariants is finitely generated for a well-adapted

rational character χ/c of Ũ when c is a sufficiently divisible positive integer.
This graded algebra can be identified with the subalgebra of the algebra of U -
invariants

⊕
∞

m=0 H 0(X, L⊗cm)U generated by those weight vectors for the action
of C∗ 6 Ũ on

⊕
∞

m=0 H 0(X, L⊗cm)U with nonpositive weights after twisting by
the well-adapted character χ .

Note that if U is any unipotent complex linear algebraic group which has an
action of C∗ with all weights strictly positive (that is, U is graded unipotent),
then U can be embedded in GL(Lie(U o C∗)) via its adjoint action on the Lie
algebra Lie(U oC∗) as the unipotent radical of a subgroup Û of this form which
is generated along the first row, and as the unipotent radical of the associated
subgroup Ũ of SL(n). We call this the adjoint form of U . However, there are
many examples (including the reparametrization groups for jet differentials) of
subgroups of GL(n) of the form (1) where the action of U is not equivalent to its
adjoint action on LieÛ . Theorem 1.1 gives us the following result for the adjoint
form of a graded unipotent group:
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COROLLARY 1.4. Let U be any unipotent complex linear algebraic group with
an action of C∗ with strictly positive weights and associated C∗ extension Û and
adjoint embedding in GL(Lie(Û )) . If U acts linearly on a projective variety X
and the action extends to a linear action of GL(LieÛ ) then the conclusions of
Theorem 1.2 hold.

REMARK 1.5. In the situation when Û = Gn we cannot apply Theorems 1.1
and 1.2 directly to the action of Gn on the fibre Jn(Y )x of the jet bundle over x ∈
Y , where Y is a k-dimensional complex manifold, as this fibre is not projective.
However, Jn(Y )x can be identified with the set of n × k matrices with nonzero
first column which forms an open subset of the affine space of all n × k matrices,
and we can apply the argument to the associated projective space Pnk−1, on which
Gn acts linearly with respect to the hyperplane line bundle L . When n > 2 the
fibre at x of the bundle En(Y ) of jet differentials can then be identified with the
algebra

⊕
∞

m=0 H 0(Pnk−1, L⊗m) and the Demailly algebra En(Y )Un
x of Un-invariant

jet differentials can be identified with its subalgebra
⊕
∞

m=0 H 0(Pnk−1, L⊗m)Un .

We use a generalization of a criterion in [18] to prove Theorem 1.1 as follows.
In Section 3 we generalize the construction of [9], which was originally motivated
by the test-curve model of Morin singularities [21]. We obtain an explicit GL(n)-
equivariant embedding of the quasi-affine variety GL(n)/Û (which can also be
identified with the quotient of SL(n)/U by a finite central subgroup of Û ∩ Ũ ) in
the Grassmannian Grassn(SymωCn) of n-dimensional linear subspaces of

SymωCn
= Cn

⊕ Symω2(Cn)⊕ · · · ⊕ Symωn (Cn)

where Symk(Cn) is the kth symmetric product of Cn . Using Plücker coordinates
we thus obtain an explicit projective embedding GL(n)/Û ↪→ P(∧nSymωCn). In
fact GL(n)/Û embeds into the open affine subset of P(∧nSymωCn) where the
coordinate corresponding to the one-dimensional summand ∧nCn of ∧nSymωCn

does not vanish.
The advantage of this embedding lies in the fact that we can control the

boundary of the orbit GL(n)/Û in P(∧n(SymωCn)); we prove that

(GL(n)/Û )\(GL(n)/Û )

is contained in the union of two subspaces P(Wv1) and P(Wdet) of P(∧nSymωCn).

In order to prove Theorem 1.1 we show that if X is a nonsingular complex
projective variety on which SL(n) acts linearly with respect to a very ample line
bundle L , and if the linear action of Ũ 6 SL(n) on X is twisted by a well-adapted
rational character χ/c, then P(Wv1) × X and P(Wdet) × X are unstable with
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respect to the induced linear action of SL(n) × C∗ on P(∧nSymωCn) × X for
an appropriate linearization. A similar argument applies when X is replaced with
X × P1 and enables us to prove Theorem 1.2.

The layout of this paper is as follows. Section 2 provides a very brief review
of classical GIT and some nonreductive GIT. In Section 3, we describe our
embedding of GL(n)/Û into Grassn(SymωCn). In Section 4, we recall the original
motivation for this work from global singularity theory and jet differentials and
discuss the link between jet differentials and the curvilinear component of Hilbert
schemes of points. In Section 5, we complete the proofs of Theorems 1.1 and 1.2.
Finally, in Section 6, we consider our results in the cases of jet differentials and
the adjoint forms of graded unipotent groups.

2. Classical and nonreductive geometric invariant theory

Let X be a complex quasiprojective variety on which a complex reductive group
G acts linearly; that is, there is a line bundle L on X (which we assume to be
ample) and a lift L of the action of G to L . Then y ∈ X is said to be semistable for
this linear action if there exists some m > 0 and f ∈ H 0(X, L⊗m)G not vanishing
at y such that the open subset

X f = {x ∈ X | f (x) 6= 0}

is affine (X f is automatically affine if X is projective or affine), and y is stable
if also f can be chosen so that the action of G on X f is closed (that is, all orbits
are closed) with all stabilizers finite. The open subset X ss of X consisting of
semistable points has a quasiprojective categorical quotient X ss

→ X//G, which
restricts to a geometric quotient X s

→ X s/G of the open subset X s of stable
points, which might be empty (see [36, Theorem 1.10]). There is an induced
action of G on the homogeneous coordinate ring

ÔL(X) =
⊕
m>0

H 0(X, L⊗m)

of X . The subring ÔL(X)G consisting of the elements of ÔL(X) left invariant by
G is a finitely generated graded complex algebra because G is reductive, and the
GIT quotient X//G is the associated projective variety Proj(ÔL(X)G) [17, 36, 38].
When X is affine and the linearization of the action of G is trivial then the algebra
O(X)G of G-invariant regular functions on X is finitely generated and X ss

= X
and X//G = Spec(O(X)G) is the affine variety associated to O(X)G .

Suppose now that H is any linear algebraic group, with unipotent radical U�H
(so that H/U is reductive), acting linearly on a complex projective variety X
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with respect to an ample line bundle L . Then the scheme Proj(ÔL(X)H ) is not in
general a projective variety, since the graded complex algebra of invariants

ÔL(X)H
=

⊕
m>0

H 0(X, L⊗m)H

is not necessarily finitely generated, and GIT (GIT) cannot be extended
immediately to this situation (cf. [18–20, 23, 24, 29, 49]). However, in some
cases it is known that ÔL(X)U is finitely generated, which implies that

ÔL(X)H
= (ÔL(X)U )H/U

is finitely generated since H/U is reductive, and then the enveloping quotient in
the sense of [7, 18] is given by

X//H = Proj(ÔL(X)H ).

Moreover, there is a morphism

q : X ss
→ X//H,

where X ss is defined as in the reductive case above, which restricts to a geometric
quotient

q : X s
→ X s/H

for an open subset X s
⊂ X ss . In such cases we have a GIT-like quotient X//H

and we would like to understand it geometrically. However, there is a crucial
difference here from the case of reductive group actions, even though we are
assuming that the invariants are finitely generated: the morphism X ss

→ X//H
is not in general surjective, so we cannot describe X//H geometrically as X ss

modulo some equivalence relation, and its image is in general not a subvariety
but only a constructible subset of X//H . Note that in [3] (surjective) categorical
quotients are obtained by working with constructible spaces; see also [11].

In this paper we study the situation when U is a unipotent group with a one-
parameter group of automorphisms λ : C∗→ Aut(U ) such that the weights of the
induced C∗ action on the Lie algebra u of U are all strictly positive. We call such
a group U a graded unipotent group. In this situation we can form the semidirect
product

Û = C∗ n U

given by C∗ ×U with group multiplication

(z1, u1).(z2, u2) = (z1z2, (λ(z−1
2 )(u1))u2).
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Note that the centre of Û is finite and meets U in the trivial subgroup, so we have
an inclusion given by the composition

U ↪→ Û → Aut(Û ) ↪→ GL(Lie(Û )) = GL(C⊕ u)

where Û maps to its group of inner automorphisms and u = Lie(U ). Thus we find
that U is isomorphic to a closed subgroup of the reductive group G = SL(C⊕ u)
of the form

U =




1 α2 α3 . . . αn

0 1 p2,3(α2 . . . , αn) . . . p2,n(α2, . . . , αn)

0 0 1 . . . p3,n(α2, . . . , βn)

· · · · ·

0 0 0 0 1

 : α2, . . . , αn ∈ C


where n = 1 + dim U and pi, j(α2, . . . , αn) is a polynomial in α2, . . . , αn with
complex coefficients for 1 < i < j 6 n. Our aim is to study linear actions of
subgroups U and Û of GL(n) of this form (but with the embedding in GL(n) not
necessarily induced by the adjoint action on the Lie algebra of Û ) which extend to
linear actions of GL(n) itself, by finding explicit affine and projective embeddings
of the quasi-affine varieties GL(n)/Û .

In cases where the action of Û on X extends to an action of GL(n) there is an
isomorphism of GL(n)-varieties

G ×U X ∼= (G/U )× X (2)

given by [g, x] 7→ (gU, gx). Here GL(n)×Û X denotes the quotient of GL(n)×X
by the free action of Û defined by u(g, x) = (gu−1, ux) for u ∈ Û , which is a
quasiprojective variety by [41, Theorem 4.19]. There is an induced GL(n)-action
on GL(n)×Û X given by left multiplication of GL(n) on itself.

GIT for linear actions of a unipotent group U on a projective variety was studied
in [18]. If U is a unipotent subgroup of the reductive group G then U -invariants
on X can be related to G-invariants of appropriate projective compactifications
G ×U X of the quasiprojective variety G ×U X where G ×U X has a suitable
G-linearization extending the linearization for the U action on X .

THEOREM 2.1 [18, Corollary 5.3.19]. Let X be a nonsingular complex projective
variety on which U acts linearly with respect to an ample line bundle L. Let L ′ be
a G-linearization over a projective completion G ×U X of G ×U X extending the
G linearization over G ×U X induced by L. Let D1, . . . , Dr be the codimension
1 components of the boundary of G ×U X in G ×U X and suppose that for all
sufficiently divisible N L ′N = L ′[N

∑r
j=1 D j ] is an ample line bundle on G ×U X.
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Then the algebra of invariants
⊕

k>0 H 0(X, L⊗k)U is finitely generated if and only
if for all sufficiently divisible N any G-invariant section of a positive tensor power
of L ′N vanishes on every codimension-one component D j .

REMARK 2.2. This result appears in [18] as a corollary to a theorem [18,
Theorem 5.3.18] which claims without the additional hypothesis that L ′N is ample
for sufficiently large N , that

⊕
k>0 H 0(X, L⊗k)U is finitely generated if and only

if any G-invariant section of a positive tensor power of L ′N vanishes on every
codimension 1 component D j in boundary of G ×H X in G ×H X .

However, there is an error in the proof of that theorem: it requires the algebra
of G-invariants

⊕
k>0 H 0(G ×H X , (L ′N )

⊗k) to be finitely generated. Since G is
reductive and G ×H X is projective, this is true when L ′N is an ample line bundle
for sufficiently divisible N , but does not follow in general without assuming such
additional hypothesis. Since [18, Corollary 5.3.19] includes the hypothesis that
L ′N is ample line bundle for N sufficiently divisible, its validity is unaffected by
this error.

Theorem 2.1 can be generalized to allow us to study H -invariants for linear
algebraic groups H which are neither unipotent nor reductive. Over C any linear
algebraic group H is a semidirect product H = UH o R where UH ⊂ H is the
unipotent radical of H (its maximal unipotent subgroup) and R ' H/UH is a
reductive subgroup of H . If H is a subgroup of a reductive group G then there
is an induced right action of R on G/UH which commutes with the left action of
G. Similarly if H acts on a projective variety X then there is an induced action of
G × R on G ×UH X with an induced G × R-linearization. The same is true if we
replace the requirement that H is a subgroup of G with the existence of a group
homomorphism H → G whose restriction to UH is injective.

DEFINITION 2.3. A group homomorphism H → G from a linear algebraic group
H to a reductive group G will be called UH -faithful if its restriction to the
unipotent radical UH of H is injective.

DEFINITION 2.4. Let X be a nonsingular complex projective variety acted on by
a linear algebraic group H = UH o R where UH is the unipotent radical of H .
Let H → G be an UH -faithful homomorphism into a reductive subgroup G of
SL(n+ 1) with respect to an ample line bundle L defining an embedding X ⊆ Pn ,
such that the induced action of G on Pn restricts to the given action of H on X .
We use the shorthand notation (X, L , H,G) for this GIT datum.

In this situation the proof of [18, Theorem 5.1.18] gives us
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THEOREM 2.5. Let L ′ be a G × R-linearization over a normal nonsingular
projective completion G ×UH X of G ×UH X extending the G × R linearization
over G×UH X induced by L. Let D1, . . . , Dr be the codimension-one components
of the boundary of G×UH X in G ×UH X, and suppose for all sufficiently divisible
N that L ′N = L ′[N

∑r
j=1 D j ] is an ample line bundle on G ×UH X. Then the

algebra of invariants
⊕

k>0 H 0(X, L⊗k)H is finitely generated if and only if for
all sufficiently divisible N any G× R-invariant section of a positive tensor power
of L ′N vanishes on every codimension-one component D j .

Proof. For the forward direction first note that by restriction⊕
k>0

H 0(G ×UH X , (L ′N )
⊗k)G×R

⊆

⊕
k>0

H 0(G ×UH X , (L ′N )
⊗k)G×R

=

(⊕
k>0

H 0(G ×UH X , (L ′N )
⊗k)G

)R
∼=

(⊕
k>0

H 0(X, L⊗k)UH

)R

=

⊕
k>0

H 0(X, L⊗k)H .

We can identify H 0(G ×UH X , L ′n) with a subspace of H 0(G ×UH X , L ′n+1) for
any natural number n, so that a section f of L ′n+1 extends to a section F
of L ′n if and only if it vanishes on each D j as a section of L ′n+1. Any given
G × R-invariant section of L⊗k over G ×UH X extends to a section of (L ′N )

⊗k

over each D j for large enough N and thus by normality extends over G ×UH X
(cf. [36, the proof of Converse 1.13 on page 41]). So if the algebra of invariants⊕

k>0 H 0(X, L⊗k)H is finitely generated, for large enough N the finitely many
generators will all extend over and vanish on every D j as a section of a tensor
power of L ′N , and hence every element of

⊕
k>0 H 0(X, L⊗k)H will have the same

property.
The reverse direction follows by proving that for any such N the ring of

invariants ⊕
k>0

H 0(X, L⊗k)H ∼=

⊕
k>0

H 0(G ×UH X , (L ′N )
⊗k)G×R

is isomorphic to the ring of invariants
⊕

k>0 H 0(G ×UH X , (L ′N )
⊗k)G×R , which

is finitely generated since G ×UH X is a projective variety acted on linearly with
respect to the ample linearization L N by the reductive group G. This isomorphism
arises since any G × R-invariant section s over G ×UH X of L N extends as above
to an invariant section of L ′N over G ×UH X for some N > N . By hypothesis
this section vanishes on each D j and hence defines an invariant section of L ′N ′−1
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extending s. Repeating this argument enough times we find that s extends to a
section of L N . The same argument applies to any invariant section s over G×UH X
of a positive tensor power (L N )

⊗k of L N , so we have⊕
k>0

H 0(X, L⊗k)H ∼=

⊕
k>0

H 0(G ×UH X , (L ′N )
⊗k)G×R

as required.

REMARK 2.6. The proof of Theorem 2.5 tells us that when the hypotheses hold
and the algebra of invariants

⊕
k>0 H 0(X, L⊗k)H is finitely generated then the

enveloping quotient

X//H = Proj
(⊕

k>0

H 0(X, L⊗k)H

)
' G ×UH X//L ′N (G × R) (3)

for sufficiently divisible N .

REMARK 2.7. Note that in this argument there is in fact no requirement for U =
UH to be the full unipotent radical of H ; all we need is that U is a normal subgroup
of H and R = H/U is reductive.

In general, even when the algebra of invariants
⊕

k>0 H 0(X, L⊗k)H on X is
finitely generated and (3) is true, the morphism X → X//e H is not surjective and
in order to study the geometry of X//e H by identifying it with G ×UH X//L ′N (G×
R) we need information about the boundary G ×UH X\G ×UH X of G ×UH X . If,
however, we are lucky enough to find a G × R-equivariant projective completion
G ×UH X with a linearization L such that for sufficiently large N L ′N is an ample
line bundle and the boundary G ×UH X\G ×UH X is unstable for L ′N then we
have a situation which is almost as well behaved as for reductive group actions on
projective varieties with ample linearizations as follows.

DEFINITION 2.8. Let X ss
= X ∩ G ×UH X

ss,G×R
and X s

= X ∩ G ×UH X
s,G×R

where X is embedded in G ×UH X in the obvious way as x 7→ [1, x].

THEOREM 2.9. Let (X, L , H,G) be a GIT datum in the sense of Definition 2.4.
Let L ′ be a G×R-linearization over a projective completion G ×UH X of G×UH X
extending the G × R linearization over G ×UH X induced by L. Let D1, . . . , Dr

be the codimension 1 components of the boundary of G ×UH X in G ×UH X, and
suppose that some integral multiple of each D j is Cartier and for all sufficiently
divisible N that L ′N = L ′[N

∑r
j=1 D j ] is an ample line bundle on G ×UH X. If for
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all sufficiently divisible N any G× R-invariant section of a positive tensor power
of L ′N vanishes on the boundary of G ×UH X in G ×UH X, then:

(1) the algebra of invariants
⊕

k>0 H 0(X, L⊗k)H is finitely generated;

(2) the enveloping quotient X//H ' G ×UH X//L ′N (G × R) ' Proj(
⊕

k>0

H 0(X, L⊗k)H ) for sufficiently divisible N;

(3) G ×UH X
ss,G×R,L ′N

⊆ G ×UH X and therefore the morphism

φ : X ss
→ X//H

is surjective and X//H is a categorical quotient of X ss;

(4) if x, y ∈ X ss then φ(x) = φ(y) if and only if the closures of the H-orbits of
x and y meet in X ss;

(5) φ restricts to a geometric quotient X s
→ X s/H ⊆ X//H.

REMARK 2.10. Note that the hypotheses in Theorem 2.5 that X should be
nonsingular and that G ×UH X should be normal and nonsingular are not needed
in Theorem 2.9. This is because these hypotheses are only required to ensure that
sections extend over irreducible components of codimension at least two in the
boundary which are not unstable; in the circumstances of Theorem 2.9 there are
no such irreducible components.

Proof. If N is sufficiently divisible then the composition

X ss
→ G ×UH X

ss,G×R,L ′N
→ G ×UH X//L ′N (G × R) (4)

is an H -invariant morphism, and G ×UH X//L ′N (G × R) has an ample line bundle
L which pulls back to a positive tensor power L⊗r of the restriction to X ss of the
linearization L of the H action on X .

X ss is an open subset of X ss, f g and (4) factors through the quotient map

q : X ss, f g
→ q(X ss, f g) ⊆ U

where U is a quasiprojective open subset of the enveloping quotient X//e H with
a birational morphism τ : U 99K G ×UH X//L ′N (G × R) as

X ss ↪→ X ss, f g q
−→ U τ

−→ G ×UH X//L ′N (G × R).

The hypothesis that the boundary of G ×UH X is unstable ensures that this
composition is surjective. Moreover, G ×UH X//L ′N (G × R) is a categorical
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quotient of G ×UH X ss by G × R = G × (H/UH ), so it is also a categorical
quotient of G × X ss by G × H and a categorical quotient of X ss by H , and (4)
and (5) now follow from the analogous properties for classical GIT applied to the
reductive group G × R. The H -invariant morphism q : X ss, f g

→ U then factors
through a birational morphism

σ : G ×UH X//L ′N (G × R)→ U .

Since σ is surjective and G ×UH X//L ′N (G × R) is projective it follows that U is
projective which means that U = X//e H and q is surjective. Furthermore σ and
τ are mutually inverse isomorphisms between X//e H and G ×UH X//L ′N (G × R).
Finally, since

G ×UH X
ss,G×R,L ′N

⊂ G ×UH X

we have ⊕
k>0

H 0(X, L⊗rk)H
'

⊕
k>0

H 0(G ×UH X, (L ′N )
⊗rk)G×R

'

⊕
k>0

H 0(G ×UH X
ss,G×R,L ′N , (L ′N )

⊗rk)G×R

'

⊕
k>0

H 0(G ×UH X//L ′N (G × R),L⊗k). (5)

Thus
⊕

k>0 H 0(X, L⊗rk)H is a finitely generated graded algebra and

X//e H ' G ×UH X//L ′N (G × R) ' Proj
(⊕

k>0

H 0(X, L⊗k)H

)
.

REMARK 2.11. Note that in the circumstances of Theorem 2.9 so that

G ×UH X
ss,G×R,L ′N

= G ×UH X ss

we get a nice geometric description of X//H . We know from classical GIT that
the morphism from G ×UH X

ss,G×R,L ′N
= G ×UH X ss to X//H is G-invariant and

surjective, and maps two points of X ss to the same point of X//H if and only
if the closures of their G × R-orbits meet in G ×UH X

ss,G×R,L ′N
= G ×UH X ss .

Since the G× R-sweep (G× R)Y in G×UH X ss of any closed H -invariant subset
Y of X ss is closed in G ×UH X ss , it follows that the H -invariant morphism φ :

X ss � X//L H is surjective and if x1, x2 ∈ X ss then φ(x1) = φ(x2) if and only if
H x1∩ H x2∩ X ss

6= ∅, as in Theorem 2.9(3) and (4). We can also use the Hilbert–
Mumford criteria for (semi)stability from classical GIT to determine the subsets
X s and X ss of X in an analogous way.
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2.1. Symplectic geometry of X//H . Suppose that the action of H on X
extends to a linear action of G on X and that the projective completion G ×UH X
is of the form G/UH × X where G/UH is a G × R-equivariant projective
completion of G/UH and G ×UH X is identified with G/UH × X via the G × R-
equivariant isomorphism

[g, x] 7→ (gUH , gx).

If furthermore K is a maximal compact subgroup of G with Lie algebra k such
that K R = K ∩ R is a maximal compact subgroup of R then we can give a moment
map description of X//H . For this we choose coordinates for the projective
embedding of X defined by L N and of G/UH such that K acts unitarily. Then
we have moment maps

µX : X → k∗ and µG/UH
: G/UH → k∗× k∗R

for the actions of K on X and of K × K R on G/UH such that the moment map
for the action of K × K R on G/UH × X with respect to L ′N is given by

µ : (y, x) 7→ (NµG/UH
(y)+ µX (x), 0) ∈ k∗× k∗R

We can identify X//H with

µ−1(0)/(K × K R)

= {(y, x) ∈ (πK R ◦ µG/UH
)−1(0)× X :

µX (x) = −NπKµG/UH
(y)}/(K × K R)

where
πK : k

∗
× k∗R → k∗ and πK R : k

∗
× k∗R → k∗R

are the projections. Given a good understanding of the moment map µG/UH
:

G/UH → k∗× k∗R this can provide a nice description of X//H in terms of µX .

EXAMPLE 2.12. When the unipotent radical UH of H is a maximal unipotent
subgroup of G we can use the theory of symplectic implosion, due to Guillemin
et al. [27] (or more generally when U is the unipotent radical of a parabolic
subgroup of G we can use a generalized version of symplectic implosion [30]).

Let us choose a K -invariant inner product on the Lie algebra k of a maximal
compact subgroup K of G, which allows us to identify k with its dual k∗. Let t+ be
a positive Weyl chamber in the Lie algebra t of a maximal torus T of K . Given a
symplectic manifold M with a Hamiltonian symplectic action of K , the implosion
Mimpl is a stratified symplectic space with a Hamiltonian action of the maximal
torus T of K , such that there is an identification of reduced spaces

M//s
λK = Mimpl//

s
λT = (M ×O−λ)//s

0 K = µ−1(λ)/StabK (λ)
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for all λ in the closure of the fixed positive Weyl chamber in t∗, where //s
λ denotes

symplectic reduction at level λ and Oλ is the coadjoint orbit of K through λ with
its canonical symplectic structure, while µ : M → k∗ is the moment map for the
K -action on M and StabK (λ) is the stabilizer in K of λ ∈ k∗ under the coadjoint
action of K .

When M is the cotangent bundle T ∗K (which may be identified with G = KC)
then (T ∗K )impl is obtained from K × t+ by identifying (k1, ξ) with (k2, ξ) if k1, k2

lie in the same orbit of the commutator subgroup of StabK (ξ). If ξ is in the interior
of the chamber, its stabilizer is a torus and no identifications are made: an open
dense subset of (T ∗K )impl is just the product of K with the interior of the Weyl
chamber.

As T ∗K has a Hamiltonian K × K -action its implosion inherits a Hamiltonian
K×T -action. The moment map for the K -action is induced by the map K×t+→
k ∼= k∗ given by (k, ξ) 7→ k(ξ) while the moment map for the T -action is induced
by the projection onto t+ ⊆ t ∼= t. For a general symplectic manifold M with
a Hamiltonian K -action the imploded space Mimpl is the symplectic quotient
(M × (T ∗K )impl)//

s
0 K , with its induced Hamiltonian T -action. This can be

obtained from µ−1(t+) by identifying x with y if µ(x) = µ(y) = ξ and
furthermore x and y lie in the same orbit of the commutator subgroup of StabK (ξ).
(T ∗K )impl can be identified with the affine variety which is the nonreductive

GIT quotient

KC//U = Spec(O(KC)
U ) = G/U ,

of the complex reductive group G = KC by a maximal unipotent subgroup U ; here
O(KC)

U is always finitely generated. This variety has a stratification by quotients
of KC by commutators of parabolic subgroups; the open stratum is just KC/U
and KC//U is the canonical affine completion of the quasi-affine variety KC/U .
Thus when G acts linearly on a projective variety X with an ample linearization L ,
then the enveloping quotient X//U has a description in terms of the corresponding
moment map µX,K : X → k∗: it can be obtained from µ−1

X,K (t+) by identifying x
with y if µX,K (x) = µX,K (y) = ξ and furthermore x and y lie in the same orbit
of the commutator subgroup of StabK (ξ). There is a similar description for X//U
when U is the unipotent radical of any parabolic subgroup of G. Moreover, when
H is a subgroup of the normalizer of U in G with reductive quotient R = H/U
which can be identified with the complexification of a subgroup K R of K , then
we get an induced moment map for the action of K × K R on X × G/U and thus
a description of X//H in terms of µX,K and the moment map µR for the action
of K ∩ R on G/U . In the situation of Theorem 2.9 we can identify X//H with
µ−1

X,K (t
R
+
)/(K ∩ R) where tR

+
is a K ∩ R-invariant subset of t+ whose intersection

with the image of µX,K does not meet the boundary of t+.
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3. Embeddings in Grassmannians

Let U be a unipotent subgroup of the complex special linear group SL(n) and
let Û = U oC∗ be a subgroup of the complex general linear group GL(n) which
is a C∗-extension of U such that the weights of the C∗ action on Lie(U ) are all
strictly positive. Let us suppose also that U and Û are upper triangular subgroups
of GL(n) which are generated along the first row; that is, there are integers 1 =
ω1 < ω2 6 ω3 6 · · · 6 ωn and polynomials pi, j(α1, . . . , αn) in α1, . . . , αn with
complex coefficients for 1 < i < j 6 n such that

Û =




α1 α2 α3 . . . αn

0 α
ω2
1 p2,3(α) . . . p2,n(α)

0 0 α
ω3
1 . . . p3,n(α)

· · · · ·

0 0 0 0 α
ωn
1

 : α = (α1, . . . , αn) ∈ C∗ × Cn−1


(6)

and

U =




1 α2 α3 . . . αn

0 1 p2,3(α) . . . p2,n(α)

0 0 1 . . . p3,n(α)

· · · · ·

0 0 0 0 1

 : α = (1, α2, . . . , αn) ∈ Cn−1

 .
This implies that the Lie algebra u = Lie(U ) has a similar form:

u =




0 a2 a3 . . . an

0 0 q2,3(a) . . . q2,n(a)
0 0 0 . . . q3,n(a)
· · · · ·

0 0 0 0 0

 : a = (a2, . . . , an) ∈ Cn−1


where the qi, j are linear forms in the parameters a = (a2, . . . , an) ∈ Cn−1

satisfying the following properties:

(i) qi, j = 0 for i 6 j .

(ii) Let ω̂i = ωi − 1 for i = 1, . . . , n be the weights of the adjoint action of the
subgroup C∗ of Û on û = LieÛ , so that ω̂1 = 0 and ω̂i > 0 if i = 2, . . . , n.
Then the C∗-action makes u = LieU into a graded Lie algebra, and therefore

qi, j(a2, . . . , an) =
∑

`:ω̂`+ω̂i=s j

c`ij a` (7)

for some structure coefficients c`ij ∈ C.
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REMARK 3.1. In particular, (7) implies that c`ij = 0 for ` > j unless i = 1. But
q1, j = a j so this means that for i > 2

qi, j(a2, . . . , an) = qi j(a2, . . . , a j−1)

is a linear form in the first j − 1 free parameters. It follows immediately that for
j > i > 2

pi, j(α) = pi, j(α1, . . . , α j−1)

depends only on α1, . . . , α j−1.

PROPOSITION 3.2. Let the weighted degree of αs be deg(αs) = ωs for 1 6 s 6 n.
Then:

(i) the polynomial pi, j(α) which is the (i, j)th entry of the element of Û
parametrized by α = (α1, . . . , αn) ∈ C∗×Cn−1 is homogeneous of degree ωi

in α1, . . . , αn;

(ii) pi, j(α) is weighted homogeneous of degree ω j in α1, . . . , αn .

Proof. The first (respectively second) part of the statement follows from the fact
that Û is closed under multiplication by its subgroup

C∗ =



α1 0 . . . 0
0 α

ω2
1 . . . 0

· · · ·

0 · · α
ωn
1

 : α1 ∈ C∗


on the left (respectively right).

3.1. The construction. For a vector of positive integers ω = (ω1, . . . , ωn) we
introduce the notation

SymωCn
= Cn

⊕ Symω2(Cn)⊕ · · · ⊕ Symωn (Cn),

where Syms(Cn) is the sth symmetric power of Cn . Any linear group action on
Cn induces an action on SymωCn .

The most straightforward way to find an algebraic description of the quotient
GL(n)/Û is to find a GL(n)-module W with a point w ∈ W whose stabilizer is Û .
Then the orbit GL(n) ·w is isomorphic to GL(n)/Û as a quasi-affine variety, and
its closure GL(n) · w in W is an affine completion of GL(n)/Û , while its closure
in a projective completion of W is a compactification of GL(n)/Û .
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THEOREM 3.3. Let Û = U o C∗ be a C∗ extension of a unipotent subgroup
U of SL(n) with positive weights 1 = ω1 < ω2 6 · · · 6 ωn and a polynomial
presentation (6). Fix the standard basis E = {e1, . . . , en} of Cn and define

pn =

[
e1 ∧ (e2 + eω2

1 ) ∧ · · · ∧

(
e j +

j∑
i=2

pi, j(e1, . . . , e j−1)

)

∧ · · · ∧

(
en +

n∑
i=2

pi,n(e1, . . . , en)

)]
∈ Grassn(SymωCn) ⊂ P(∧nSymωCn). (8)

Then the stabilizer GL(n)pn of pn in GL(n) is Û .

COROLLARY 3.4. The map φn : GL(n)→ P[∧nSymωCn
] which sends a matrix

with column vectors v1, . . . , vn to the point

(v1, . . . , vn) 7→

[
v1 ∧ (v2 + v

ω2
1 ) ∧ · · · ∧

(
vn +

n∑
i=2

pi,n(v1, . . . , vn)

)]
(9)

is invariant under right multiplication of Û on GL(n) and GL(n)-equivariant with
respect to left multiplication on GL(n) and the induced action on P[∧nSymωCn

].
It therefore defines a GL(n)-equivariant embedding

φn : GL(n)/Û ↪→ Grassn(SymωCn). (10)

REMARK 3.5. Note that the image of the embedding φn : GL(n) →
P[∧nSymωCn

] lies in the open affine subset defined by the nonvanishing of
the coordinate in ∧nSymωCn corresponding to the one-dimensional summand
∧

nCn of ∧nSymωCn spanned by e1 ∧ · · · ∧ en .

Proof of Theorem 3.3. First we prove that Û is contained in the stabilizer
GL(n)pn . For (α1, . . . , αn) ∈ C∗ × Cn−1 let

u(α1, . . . , αn) =


α1 α2 α3 . . . αn

0 α
ω2
1 p2,3(α) . . . p2,n(α)

0 0 α
ω3
1 . . . p3,n(α)

· · · · ·

0 0 0 0 α
ωn
1

 ∈ Û

denote the element of Û determined by the parameters (α1, . . . , αn) and for
an n-tuple of vectors v = (v1, . . . , vn) ∈ (Cn)⊕n forming the columns of the
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n × n-matrix A ∈ GL(n) we similarly define the matrix

u(A) = u(v1, . . . , vn) =


v1 v2 v3 . . . vn

0 v
ω2
1 p2,3(v) . . . p2,n(v)

0 0 v
ω3
1 . . . p3,n(v)

· · · · ·

0 0 0 0 v
ωn
1

 ∈ Mn×n(SymωCn)

with entries in SymωCn . Then the map φ in (9) is the composition

φ(v1, . . . , vn) = (u ◦ π)(v1, . . . , vn)

where the rational map π : Mn×n(SymωCn) 99K Grassn(SymωCn) restricts to
a morphism on an open subset of Mn×n(SymωCn) containing the image of
u : GL(n)→ Mn×n(SymωCn).

Now, since Û is a group, the (i, j) entry of the product of two elements is the
polynomial pi, j in the entries of the first row of the product; that is,

u(β1, . . . , βn)u(α1, . . . , αn)

= u
(
α1β1, α

ω2
1 β2 + β1α2, . . . ,

n∑
m=1

pm,n(α1, . . . αn)βm

)
for any α1, . . . , αn, β1, . . . , βn . This implies that

u(e1, . . . , en) · u(α1, . . . , αn)

= u
(
α1e1, α

ω2
1 e2 + α2e1, . . . ,

n∑
m=1

pm,n(α1, . . . αn)em

)
where {e1, . . . , en} is the standard basis for Cn . However, the n-tuple(

α1e1, α
ω2
1 e2 + α2e1, . . . ,

n∑
m=1

pm,n(α1, . . . αn)em

)
∈ (Cn)⊕n

on the right hand side forms the columns of the matrix u(α1, . . . , αn), so we arrive
at

u(e1, . . . , en)·u(α1, . . . , αn)= u(u(α1, . . . , αn)·e1, . . . , u(α1, . . . , αn)·en). (11)

Since u(α1, . . . , αn) lies in the standard Borel subgroup Bn of GL(n), the matrices
u(e1, . . . , en) and u(e1, . . . , en) · u(α1, . . . , αn) represent the same element in
Grassn(SymωCn); that is, in Grassn(SymωCn) we have

pn = π(u(e1, . . . , en)) = π(u(e1, . . . , en) · u(α1, . . . , αn))

= π(u(u(α1, . . . , αn) · e1, . . . , u(α1, . . . , αn) · en)

which completes the proof that Û ⊆ GL(n)pn .
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It remains to prove that GL(n)pn ⊆ Û . Suppose that g = (gi j)
n
i, j=1 ∈ GL(n)pn ;

we want to show that g ∈ Û . For 1 6 m 6 n let

g6m
= (gi j)

m
i, j=1 ∈ GL(m)

be the upper left m × m block of g. Recall that by Remark 3.1 if j > i > 2 then
pi, j(α1, . . . , αn) = pi, j(α, . . . , α j−1) depends only on α1, . . . , α j−1. We prove by
induction on m that

g6m
= u(g11, g12, . . . , g1m)

This is clear for m = 1 since g61
= (g11) = u(g11). Suppose that it is true for

some m < n. Since g ∈ GL(n)pn the Plücker coordinates

e1 ∧ (e2 + eω2
1 ) ∧ · · · ∧

n∑
i=1

pi,n(e1, . . . , en)

of pn agree up to multiplication by a nonzero scalar with the Plücker coordinates

ge1 ∧ (ge2 + geω2
1 ) ∧ · · · ∧

n∑
i=1

pi,n(ge1, . . . , gen)

of gpn , where ge j =
∑n

s=1 gs j es and pi, j(ge1, . . . , gen) ∈ Symωi (Cn) ⊆ SymωCn .
By the inductive hypothesis we have

gi j = pi, j(g11, . . . , g1 j)

for 1 6 i 6 m and 1 6 j 6 m, so with our previous notation

g6m
= u(g11, . . . , g1m) ∈ Û

holds, and therefore g6m fixes pm ; thus

pm = π(u(e1, . . . , em)) = π(u(g6me1, . . . , g6mem)).

In coordinates this means that

·e1 ∧ (e2 + eω2
1 ) ∧ · · · ∧

m∑
i=1

pi,m(e1, . . . , em)

agrees up to multiplication by a nonzero scalar with

ge1 ∧ (ge2 + geω2
1 ) ∧ · · · ∧

m∑
i=1

pi,m(ge1, . . . , gem).
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Therefore,

e1 ∧ (e2 + eω2
1 ) ∧ · · · ∧

m∑
i=1

pi,m(e1, . . . , em) ∧

m+1∑
i=1

pi,m+1(e1, . . . , em+1)

∧ · · · ∧

n∑
i=1

pi,n(e1, . . . , en)

and

e1 ∧ (e2 + eω2
1 ) ∧ · · · ∧

m∑
i=1

pi,m(e1, . . . , em) ∧

m+1∑
i=1

pi,m+1(ge1, . . . , gem+1)

∧ · · · ∧

n∑
i=1

pi,n(ge1, . . . , gen

agree up to multiplication by a nonzero scalar. Applying the identification
n∧( t⊕

i=1

Vi

)
=

⊕
p1+···+pt=n

(∧p1 V1 ⊗ · · · ⊗ ∧
pt Vt) , (12)

with V1 =
∧m+1

(Cn
⊕ Symω2Cn

⊕ · · · ⊕ Symωm+1Cn) and

V2 = Symωm+2Cn, . . . , Vn−m = SymωnCn

we get a natural GL(n)-equivariant projection to the direct summand
corresponding to p1 = m + 1, p2 = · · · = pn−m = 1 given by

π :

n∧
SymωCn

→

m+1∧
(Cn
⊕ Symω2Cn

⊕ · · · ⊕ Symωm+1Cn)

⊗Symωm+2 ⊗ · · · ⊗ SymωnCn

which takes e1 ∧ (e2 + eω2
1 ) ∧ · · · ∧

∑n
i=1 pi,n(e1, . . . , en) to

e1 ∧ (e2 + eω2
1 ) ∧ · · · ∧

m∑
i=1

pi,m(e1, . . . , em)

∧

m+1∑
i=1

pi,m+1(e1, . . . , em+1)⊗ eωm+2
1 ⊗ · · · ⊗ eωn

1 .

This must agree up to multiplication by a nonzero scalar with the projection

π

(
ge1 ∧ (ge2 + geω2

1 ) ∧ · · · ∧

m∑
i=1

pi,m(e1, . . . , em) ∧

n∑
i=1

pi,n(ge1, . . . , gen)

)

= e1 ∧ (e2 + eω2
1 ) ∧ · · · ∧

m+1∑
i=1

pi,m+1(ge1, . . . , gem+1)⊗ qm+2 ⊗ · · · ⊗ qn
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for some q j ∈ Symω jCn for m + 2 6 j 6 n. It follows from this that

λe1 ∧ (e2 + eω2
1 ) ∧ · · · ∧

m+1∑
i=1

pi,m+1(e1, . . . , em+1)

= e1 ∧ (e2 + eω2
1 ) ∧ · · · ∧

m+1∑
i=1

pi,m+1(ge1, . . . , gem+1), (13)

for some nonzero scalar λ.
Now, g6m

= u(g11, . . . , g1m) and therefore by (11)

u(g6me1, . . . , g6mem) = u(e1, . . . , en) · u(g11, . . . , g1m).

But if m + 1 > i > 2 then pi,m+1(α1, . . . , αm) is a polynomial in α1, . . . , αm , and
does not depend on αm+1, . . . , αn . Therefore,

pi,m+1(ge1, . . . , gem) =

n∑
s=2

pis(e1, . . . , em)ps,m+1(g11, . . . , g1,m+1)

for 2 6 i 6 m + 1 (14)

and

p1,m+1(ge1, . . . , gem+1) = gem+1 =

n∑
i=1

gi,m+1ei .

Substituting this into (13) we arrive at the equation

λ ·

(
e1 ∧ (e2 + eω2

1 ) ∧ · · · ∧

m+1∑
i=1

pi,m+1(e1, . . . , em+1)

)
= e1 ∧ (e2 + eω2

1 )

∧ · · · ∧

(
m+1∑
i=2

n∑
s=1

ps,m+1(g11, . . . , g1,m+1)pis(e1, . . . , em+1)+

n∑
s=2

gs,m+1ei

)
.

(15)

There is another GL(n)-equivariant projection to the direct summand
corresponding to Vi = SymωiCn and p1 = 2, p2 = · · · = pm = 1 in (12),
given by

ρ :

m+1∧
(Cn
⊕Symω2Cn

⊕· · ·⊕Symωm+1Cn)→∧2Cn
⊗Symω2Cn

⊗· · ·⊗SymωmCn

which takes the left hand side of (15) to

λ(e1 ∧ em+1)⊗ eω2
1 ⊗ · · · ⊗ eωm

1
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and the right hand side to(
e1 ∧

( m∑
s=2

(ps,m+1(g11, . . . , g1,m+1)− gs,m+1)es + gm+1,m+1em+1

))
⊗ eω2

1 ⊗ · · · ⊗ eωm
1 .

These two are equal, so we obtain

gs,m+1 = ps,m+1(g11, . . . , g1,m+1) for s 6= 1,m + 1 and λ = gm+1,m+1. (16)

Note that the right hand side of (15) is independent of b1,m+1, which can be
chosen arbitrarily, as we expect. Finally, for s = m + 1, we take the third GL(n)-
equivariant projection corresponding to Vi = SymωiCn and p1 = · · · = pn = 1 in
(12), given by

ξ :

m+1∧
(Symω1Cn

⊕ Symω2Cn
⊕ · · · ⊕ Symωm+1Cn)

→ Cn
⊗ Symω2Cn

⊗ · · · ⊗ SymωmCn
⊗ Symωm+1Cn,

and project the equation (15). We get

λ ·eω1
1 ⊗eω2

1 ⊗· · ·⊗eωm+1
1 = eω1

1 ⊗eω2
1 ⊗· · ·⊗eωm

1 ⊗ pm+1,m+1(b11, . . . , b1,m+1)e
ωm+1
1

which gives λ = pm+1,m+1(b11, . . . , b1,m+1). From (16) we get

gm+1,m+1 = pm+1,m+1(b11, . . . , b1,m+1)

and Theorem 3.3 is proved.

3.2. Changing the basis of u. We observed in Proposition 3.2 that the left–
right multiplication action of the subgroup C∗ of Û implies that the polynomial
entry pi, j(α) of an element of Û with parameters α in the first row has degree
ωi and weighted degree ω j in α. Similarly we have a bigrading on SymωCn as
follows: the Lie algebra u = Lie(U ) decomposes into eigenspaces for the adjoint
action of LieC∗ = Cz = u1 as

u =

r⊕
i=1

ui ,

where z ∈ u1\{0} and

ui = {x ∈ u : [x, z] = (ω̃i − 1)x}
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if ω̃1, . . . , ω̃r are the different weights among ω1, . . . , ωn . This induces a
decomposition

SymωCn
= Cn

⊕ (u2 ⊗ Symω̃2Cn)⊕ · · · ⊕ (ur ⊗ Symω̃rCn)

of SymωCn . Let Syma
bCn
=
⊕

ωi1+···+ωia=b(Cei1 · · · eia ) ⊆ SymaCn and define

Symω
∆C

n
=

r⊕
i, j=1

(ui ⊗ u j ⊗ Symω̃i
ω̃ j
Cn).

The image of the embedding φn of GL(n)/Û sits in the subset Grassn(Symω
∆Cn)

of Grassn(SymωCn), and the group

G̃L(u) = C∗ × GL(u2)× · · · × GL(ur ) ⊂ GL(û)

acts on Symω
∆Cn via conjugation and thus on Grass(n,Symω

∆Cn). If g ∈ G̃L(u)
then the subgroup

g−1Û g

of GL(n) with Lie subalgebra g−1ug has the same form as Û and so we can
compare the corresponding embeddings φn of GL(n)/Û and GL(n)/g−1Û g in
Grass(n,Symω

∆Cn); let us denote these by φÛ and φg−1Û g. The linear forms in
the first row of g−1ug (and the same linear forms in the first row of g−1Û g) are
linearly independent, and give parameters b1, . . . , bn for the group and its Lie
algebra. The corresponding embedding is then φg−1Û g, and we have

PROPOSITION 3.6. A linear change of basis of û by any element of G̃L(u) does
not change the closure of the image of the embedding φÛ of GL(n)/Û into the
Grassmannian Grass(n,Symω

∆Cn) up to isomorphism.

Proof. This follows from the commutativity of the diagram

GL(n)/Û ⊂

φÛ - Grass(n,Symω
∆C

n)

GL(n)/g−1Û g

conj(g)

?
⊂

φg−1Û g- Grass(n,Symω
∆C

n),

conj(g) ◦ (g11 · g−1)

?

(17)
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where:

(1) the left vertical conj(g) is the conjugation action sending the coset Ûh ∈
GL(n)/Û to (g−1Û g)(g−1hg) = g−1Ûhg ∈ GL(n)/g−1Û g;

(2) the right vertical map is the composition of the multiplication by the scalar
g11 and the matrix g−1 on Cn , and conjugation with g ∈ G̃L(u) on SymωCn .

4. Singularities, jet differentials and curvilinear Hilbert schemes

In this section we study an important example of a group of the form
Û and its projective embedding φÛ : GL(n)/Û ↪→ Grassn(SymωCn) given
by Theorem 3.3 whose image is contained in the affine open subset of the
Grassmannian Grassn(SymωCn) where the coordinate corresponding to ∧nCn is
nonzero. We see that here the codimension-2 property does not hold. Nonetheless
in the next section we see that a modification of this embedding can be used to
find an affine embedding of SL(n)/U o F(M) (where U o F(M) is an extension of
U by a finite subgroup of SL(n)) for which the boundary does have codimension
at least two.

The example we study in this section is given by Û = Gn 6 GL(n), where
as in the introduction Gn is the group of polynomial reparametrizations of n-jets
of holomorphic germs (C, 0)→ (C, 0). This group plays a central role in global
singularity theory [2] and in the recent history of hyperbolic varieties [14, 15,
31, 48]. We see that the compactification GL(n)/Gn constructed in Section 4
as the closure of an orbit of GL(n) with stabilizer Gn in a Grassmannian
Grassn(SymωCn) is isomorphic to the so-called curvilinear component of the
punctual Hilbert scheme on Cn [5, 10].

4.1. Singularity theory in a nutshell [2, 5, 9, 21, 32, 42, 45]. Let Jn(m, l)
denote the space of n-jets of holomorphic map germs from Cm to Cl mapping the
origin to the origin. This is a finite-dimensional complex vector space, and there
is a complex linear composition of jets

Jn(m, l)⊗ Jn(l, p)→ Jn(m, p).

Let J reg
n (m, l) denote the open dense subset of Jn(m, l) consisting of jets whose

linear part is regular (that is, of maximal rank). Note that

Gn = J reg
n (1, 1)

becomes a group under composition of jets, and it acts via reparametrization on
Jn(1, n).
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If z denotes the standard complex coordinate on C, then elements of the vector
space Jn(1, 1) can be identified with polynomials of the form p(z) = α1z+ · · · +
αnzn with coefficients in C, so {z, z2, . . . , zn

} is a natural basis for Jn(1, 1) over
C. The composition of p(z) with q(z) = β1z + · · · + βnzn is

(p ◦ q)(z) = (α1β1)z + (α2β1 + α
2
1β2)z2

+ · · ·

which corresponds (with respect to the basis {z, z2, . . . , zn
}) to multiplication on

the right by the matrix
α1 α2 α3 . . . αn

0 α2
1 2α1α2 . . . 2α1αn−1 + · · ·

0 0 α3
1 . . . 3α2

1αn−2 + · · ·

0 0 0 . . . ·

· · · . . . αn
1

 (18)

where the polynomial in the (i, j) entry is

pi, j(α1, . . . , αn) =
∑

`1+`2+···+`i= j

α`1α`2 · · ·α`i .

Thus the subgroup Gn of GL(n) is an extension by C∗ of its unipotent radical Un ,
and both Gn and Un are generated along the first row and have the form (6) with
weights 1, 2, . . . , n. We can think of the quotient J n(1, n)/Gn as the moduli space
of n-jets of entire holomorphic curves in Cn .

Global singularity theory studies global and local behaviour of singularities
of holomorphic maps between complex manifolds; [2] is a standard reference.
For a holomorphic map f : M → N with f (p) = q ∈ N the local algebra is
A( f ) = mp/ f ∗mq ; if mp is a finite mq-module, then p is an isolated singularity.
For a complex nilpotent algebra A with dimC A = n we define

ΣA(m, l) = { f ∈ Jn(m, l) : A( f ) ' A}

to be the subset of Jn(m, l) consisting of germs with local algebra at the origin
isomorphic to A; these are known as the A-singularity germs. There is a natural
hierarchy of singularities where for two algebras A and A′ of the same dimension
n we have

A > A′ if ΣA(m, l) ⊂ ΣA′(m, l) for l � m.

When An = zC[z]/zn+1 is the nilpotent algebra generated by one element, the
corresponding singularities are the so-called An-singularities (also known as
Morin singularities or curvilinear singularities). These vanish to order n in some
direction, giving us the geometric description

ΣAn (m, l) = {ψ ∈ Jn(m, l) : ∃γ ∈ Jn(1,m) such that γ ◦ ψ = 0}.
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If ψ ∈ Jn(m, l) and a test curve γ0 ∈ Jn(1,m) exists with γ0 ◦ ψ = 0, then there
is a whole family of such test curves. Indeed, for any β ∈ J reg

n (1, 1), the curve
β ◦ γ0 is also a test curve, and in fact if ψ ∈ J reg

n (m, l) then we get all test curves
γ ∈ Jn(1,m) with γ ◦ ψ = 0 in this way. This description of the curvilinear jets
using the so-called ‘test-curve model’ goes back to Porteous et al. [21, 42, 45].

This means that the regular part of ΣAn (m, l) fibres over the quotient
J reg

n (1,m)/Gn , which can be thought of as representing moduli of n-jets of
holomorphic germs in Cm . We can identify Jn(1,m) with the set Mm×n(C) of
m × n complex matrices by putting the i th derivative of γ ∈ Jn(1,m) into the i th
column of the corresponding matrix, and then J reg

n (1,m) consists of the matrices
in Mm×n(C) with nonzero first column. Therefore, when m = n the quotient
J reg

n (1, n)/Gn contains GL(n)/Gn as a dense open subset.
In [9] the first author and Szenes use this model of the Morin singularities

and the machinery of equivariant localization to compute some useful invariants
of An singularities: their Thom polynomials. These ideas were later generalized
in [28, 44].

The hierarchy of singularities is only partially understood, but there are well-
known singularity classes in the closure of the An-singularities (for details see [2,
43]). In particular, for n = 4, the so-called Ia,b singularities with a + b = 4 are
defined by the algebra

A Ia,b = (x, y)/(xy, xa
+ yb)

and it is well known (see [43, 44]) that

ΣI2,2(m, l) ⊂ ΣA4(m, l)

has codimension 1 in ΣA4(m, l). But as we have just seen, a dense open subset
of ΣA4(4, l) fibres over GL(4)/G4, and the latter is embedded via φ4 (see
Corollary 3.4) into Grass4(SymωCn)whereω = (1, 2, 3, 4) as at (18). When l = 1,
then in fact

ΣA4(4, 1) = φ4(GL(4) ⊆ Grass4(SymωCn),

because the fibres are trivial. So it follows that ΣI2,2(4, 1) lies in the boundary of
φ4(GL(4) and has codimension one. In fact

p2,2 = lim
t→0


t t−2

−t−5 0
0 1 −2t−3 0
0 0 t−1 0
0 0 0 1

 ·pn = e1∧ e2∧ (e3+ e2
1)∧ (e4+ e1e3+ e2

2+ e3
1)
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sits in ΣI2,2(4, 1) and its orbit has codimension 1 in φ(GL(4). Indeed it can be
checked by direct computation that the stabilizer of p2,2 is


t a b c
0 t3/2

−2t1/2a d
0 0 t2 tb + a2

0 0 0 t3

 : t ∈ C∗, a, b, c, d ∈ C


which has dimension 5, whereas the stabilizer G4 of p4 in GL(4) has dimension 4.

4.2. Invariant jet differentials and the Demailly bundle. Jet differentials
have played a central role in the study of hyperbolic varieties. Their contribution
can be traced back to the work of Bloch [12], Cartan [13], Ahlfors [1], Green
and Griffiths [22], Siu [48], whose ideas were extended in the seminal paper of
Demailly [14], and recently used by Diverio et al. [15] and the first author in [4] to
prove the Green Griffiths conjecture for generic projective hypersurfaces of high
order; see also the survey papers [14, 16, 31] for more details.

Let
f : C→ X, t → f (t) = ( f1(t), f2(t), . . . , fd(t))

be a curve written in local holomorphic coordinates (z1, . . . , zd) on a complex
manifold X , where d = dim(X). Let Jn(X) be the n-jet bundle over X of
holomorphic curves, whose fibre (Jn(X))x at x ∈ X is the space of n-jets of
germs at x of holomorphic curves in X . This fibre can be identified with Jn(1, d).
The group of reparametrizations Gn = J reg

n (1, 1) acts fibrewise on Jn(X), and the
action is linearized as at (18). For λ ∈ C∗ we have

(λ · f )(t) = f (λ · t), so λ · ( f ′, f ′′, . . . , f (k)) = (λ f ′, λ2 f ′′, . . . , λk f (k)).

Polynomial functions on Jn(X) correspond to algebraic differential operators
called jet differentials; these have the form

Q( f ′, f ′′, . . . , f (k)) =
∑
αi∈Nn

aα1,α2,...αk ( f (t))( f ′(t)α1 f ′′(t)α2 · · · f (n)(t)αn ),

where aα1,α2,...αn (z) are holomorphic coefficients on X and t 7→ f (t) is the germ of
a holomorphic curve in X . Here Q is homogeneous of weighted degree m under
the C∗ action if and only if

Q(λ f ′, λ2 f ′′, . . . , λk f (n)) = λm Q( f ′, f ′′, . . . , f (n))

for every λ ∈ C.
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DEFINITION 4.1. (i) (Green and Griffiths [22]) Let EGG
n,m denote the sheaf on X

of jet differentials of order n and weighted degree m.
(ii) (Demailly, [14]) The bundle of invariant jet differentials of order n and

weighted degree m is the subbundle En,m of EGG
n,m whose elements are invariant

under the action of the unipotent radical Un of the reparametrization group Gn

and transform under the action of Gn as

Q(( f ◦ φ)′, ( f ◦ φ)′′, . . . , ( f ◦ φ)(n)) = φ′(0)m Q( f ′, f ′′, . . . , f (n))

for φ ∈ Gn .

Thus the fibres of the Demailly bundle
⊕

m>0 En,m are isomorphic to
C[Jn(1, d)]Un , where Un is the unipotent radical of Gn . Demailly in [14]
conjectured that this algebra of invariant jet differentials is finitely generated.
Rousseau [46] and Merker [34, 35] showed that when both n and dim X are small
then this conjecture is true, and in [34] Merker provided an algorithm which
produces finite sets of generators when they exist for any dim X and n. In [8] the
authors put forward a proof that Un is a Grosshans subgroup of SL(n), with the
Demailly conjecture as an immediate corollary, but we later discovered a gap in
that proof. In this paper we are studying quotient constructions for linear actions
such as that of Un on a fibre of the Demailly bundle

⊕
m>0 En,m from a more

geometric point of view; however, it will follow from this point of view (see
Remark 1.5) that the subalgebra of C[Jn(1, d)]Un spanned by the jet differentials
which are weight vectors with nonpositive weight for the action of C∗ 6 G̃n

twisted by a well-adapted rational character is finitely generated (cf. [34, 35]).

4.3. Curvilinear Hilbert schemes. In [6] the closure Jn(1, d)/Gn of
Jn(1, d)/Gn embedded in Grassn(

⊕n
i=1 Sym iCd) is identified with the

curvilinear component of the n + 1-point punctual Hilbert scheme on Cd ;
this geometric component of the punctual Hilbert scheme on Cd is thus the
compactification of a nonreductive quotient.

Hilbert schemes of points on surfaces form a central object of geometry
and representation theory and have a rich literature (see for example [10, 37]).
Recently many interesting connections between Hilbert schemes of points on
planar curve singularities and the topology of their links have been discovered [33,
39, 40, 47]. However, much less is known about Hilbert schemes or punctual
Hilbert schemes on higher dimensional manifolds.

As above let Gn = J reg
n (1, 1) denote the group of n-jets of reparametrization

germs of C, which acts on the space J reg
n (1, d) of n-jets of germs of curves
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f : (C, 0)→ (Cd, 0) with nonzero linear part. As in Section 4 we have a map

φ : J reg
n (1, d)→ Grassn

( n⊕
i=1

Sym iCd

)
(v1, . . . , vn) 7→

[
v1 ∧ (v2 + v

2
1) ∧ · · · ∧

( ∑
a1+a2+···+ai=n

va1va2 · · · vai

)]
where vi ∈ Cd is the degree i part of the germ in J reg

n (1, d), so that v1 6= 0. This
map is invariant under the action of Gn = J reg

n (1, 1) on the left, and gives us an
embedding

J reg
n (1, d)/Gn ↪→ Grassn

( n⊕
i=1

Sym iCd

)
.

Let Xn,d = J reg
n (1, d)/Gn denote the closure of the image of this embedding.

In [6] it is proved that Xn,d is the curvilinear component of the punctual Hilbert
scheme of n + 1 points on Cd . This component is defined as follows. Let (Cd)[n]

denote the Hilbert scheme of n points on Cd ; that is, the set of zero-dimensional
subschemes of Cd of length n. The punctual Hilbert scheme (Cd)

[n]
0 consists of

those subschemes which are supported at the origin in Cd . The components of
the punctual Hilbert scheme are not known for d > 3 but there is a distinguished
component containing all curvilinear subschemes. For more details on punctual
Hilbert schemes see [10].

DEFINITION 4.2. A subscheme ξ ∈ (Cd)
[n]
0 is called curvilinear if ξ is contained

in some smooth curve C ⊂ Cd . Equivalently, one might say that Oξ is isomorphic
to the C-algebra C[z]/zn . The punctual curvilinear locus is the set of curvilinear
subschemes supported at the origin in Cd and its closure C[n]d is the (punctual)
curvilinear component of (Cd)

[n]
0 .

Let m = (x1, . . . , xd) ⊂ OCd ,0 denote the maximal ideal of the local ring at the
origin. Then

C[n]d = {I ⊂ m : m/I ' tC[t]/tn}.

Note that Sym 6nCd
= m/mn+1

=
⊕n

i=1 Sym iCd consists of function germs of
degree 6 n, and the punctual Hilbert scheme sits naturally in its Grassmannian

ρ : (Cd)
[n+1]
0 ↪→ Grass(n, Sym 6nCd)

I 7→ m/I.

The idea of [6] (also mentioned in [5]) to describe the curvilinear component is
the observation that curvilinear subschemes have test curves; that is, map germs
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γ ∈ Jn(1, d) on which they vanish up to order n, so that γ (C) ⊆ Spec(m/I ). Such
a test curve is unique up to polynomial reparametrization of (C, 0). Therefore, the
image of φ is the same as the image of ρ and their closures coincide.

PROPOSITION 4.3. For d, n ∈ Z>0 we have C[n+1]
d = Xn,d .

When d = 2 the curvilinear component C[n+1]
2 is dense in (C2)

[n+1]
0 , and

therefore the full punctual Hilbert scheme is equal to the closure of the image
of φ.

COROLLARY 4.4. (C2)
[n+1]
0 = Xn,2 for any positive integer n.

This description of the curvilinear component becomes particularly useful
when n 6 d so that the number of points is not more than the dimension d plus
1. In this case, the curvilinear component C[n+1]

d is the closure of a GL(n)-orbit in
the Grassmannian Grassn(Sym6nCn). In fact, for any fixed basis {e1, . . . , ed} of
Cd , we have Xn,d = GL(n) · en,d where

en,d = e1 ∧ (e2 ⊕ e2
1) ∧ · · · ∧

( ∑
a1+···+al=n

l6d

ea1 . . . eal

)
.

This follows when n 6 d from the fact that φ is GL(n)-equivariant, but for n > d
it cannot be true as the dimension of the quotient is larger than the dimension of
GL(n). In particular, when d = n we have GL(n) ⊂ J reg

n (1, n), and an embedding

GL(n)/Gn ⊆ Grassn(Sym 6nCn)

and the closure of the image Xn,n = C[n+1]
n is the curvilinear component of the

punctual Hilbert scheme of n + 1 points on Cn . In [6] this parametrization of
the curvilinear Hilbert scheme is used to develop an iterated residue formula for
cohomological intersection numbers of tautological bundles over the curvilinear
component.

5. Proof of the theorems

5.1. Boundary components of GL(n)/Û in P(∧n(SymωCn)). Let us now
return to the situation in Section 3 where Û and U are subgroups of GL(n) of the
form described at (6). In Section 3 we embedded GL(n)/Û in the Grassmannian

Grassn(SymωCn) ⊆ P(∧n(SymωCn))
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as the GL(n) orbit of

pn = φn(e1, . . . , en) =

[
e1 ∧ (e2 + eω2

1 ) ∧ · · · ∧

( n∑
i=1

pin(e1, . . . , en)

)]
∈ P[∧n(SymωCn)],

and observed at Remark 3.5 that the image of this embedding lies in the open
affine subset defined by the nonvanishing of the coordinate in P(∧n(SymωCn))

corresponding to the one-dimensional summand ∧nCn of ∧n(SymωCn) spanned
by e1 ∧ · · · ∧ en . In Section 5 we saw that there exist examples where the image
has codimension-one boundary components which meet this affine open subset,
and therefore the Grosshans principle is not applicable in this situation.

In this section we study first the boundary of the orbit GL(n)pn in the affine
space W = ∧

n(SymωCn). The stabilizer of pn in GL(n) is U . Let Wv1 be the
linear subspace

Wv1 =

⊕
(k1,k2,...,kn)6=(1,1,...,1)

∧
k1(Cn)⊗∧k2(Symω2Cn)⊗ · · · ⊗ ∧kn (SymωnCn)

of W where the coefficients corresponding to v1 ∧ v
ω2
1 ∧ · · · ∧ v

ωn
1 are zero; that

is, if π∧ : W → Cn
∧ Sym ω2Cn

∧ · · · ∧ Sym ωnCn denotes the projection onto
the corresponding summand of W then

Wv1 = {w ∈W : π∧(w) = 0} ⊂W .

Similarly, let
Wdet = {w ∈W : π det(w) = 0} ⊂W

denote the kernel of the coordinate corresponding to v1∧ · · · ∧ vn , or equivalently
the projection π det

:W → ∧nCn .

PROPOSITION 5.1. The boundary of the orbit GL(n)(pn) in W is contained in
the union of the subspaces Wv1 and Wdet:

GL(n)(pn)\GL(n)(pn) ⊂Wv1 ∪Wdet

Proof. Let Bn ⊂ GL(n) denote the standard upper triangular Borel subgroup
of GL(n) which stabilizes the +filtration Ce1 ⊂ Ce1 ⊕ Ce2 ⊂ · · · ⊂ Cn . Since
GL(n)/Bn is projective we have

GL(n) · (pn ⊕ er
1) = GL(n)Bn · (pn ⊕ er

1).
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Let
w = lim

m→∞
b(m)(pn ⊕ er

1) ∈ Bn(pn ⊕ er
1) ⊆W

be a limit point where

b(m) =


b(m)11 b(m)12 . . . b(m)1n

0 b(m)22 . . . b(m)2n
. . .

0 0 . . . b(m)nn

 ∈ Bn ⊂ GL(n). (19)

Now expanding the wedge product in the definition of pn we get

b(m)(pn) = (det(b(m))e1 ∧ · · · ∧ en + · · · + (b
(m)
11 )

1+ω2+···+ωn e1 ∧ eω2
1 ∧ · · · ∧ eωn

1 )

so by considering the coefficient of e1 ∧ · · · ∧ en we see that the determinant
det(b(m)) tends to a limit in C as m → ∞. If this limit is zero then the limit
point w sits in Wdet, so we focus on the other case when limm→∞ det(b(m)) ∈
C\{0}. Then we have to show that if w is a boundary point then w ∈Wv1 , that is,
limm→∞ b(m)11 = 0.

We show indirectly that b(∞)11 = limm→∞ b(m)11 ∈ C\{0} implies that w ∈
Bn(pn ⊕ e1) sits in the orbit. Here

b(m)pn = b(m)11 e1 ∧ (b
(m)
22 e2 + (b

(m)
11 )

ω2 eω2
1 )

∧ · · · ∧ (b(m)nn en + b(m)n−1nen−1 + · · · + b(m)1n e1

+

n−1∑
s=2

psn(b
(m)
11 e1, b(m)22 e2 + b(m)12 e1, . . . , b(m)nn en

+ · · · + b(m)1n e1)+ (b
(m)
11 )

ωi eωi
1 ).

Now look at the coefficient of

e1 ∧ eω2
1 ∧ · · · ∧ eωi−1

1 ∧ e j ∧ eωi+1
1 ∧ · · · ∧ eωn

1

in b(m)(pn) when 1 6 j 6 i 6 n; we see that

(b(m)11 )
1+ω2+···+ωi−1+ωi+1+···+ωn b(m)j i

tends to a limit in C as m →∞, and so since b(∞)11 6= 0

b(m)j i → b(∞)j i ∈ C.

Also
lim

m→∞
det(b(m)) = b(∞)11 b(∞)22 · · · b

(∞)
nn ∈ C\{0},

so b(m) → b(∞) ∈ GL(n). Therefore, w = b(∞)(pn ⊕ e1) lies in the orbit
GL(n)(pn ⊕ e1) as required.
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COROLLARY 5.2. The boundary of the orbit GL(n)[pn] in P(W) is contained in
the union of the subspaces P(Wv1) and P(Wdet).

Proof. By rescaling using elements of C∗ = Û/U we can assume that

lim
m→∞

b(m)[pn] =

[
lim

m→∞
b(m)pn

]
.

Proposition 5.1 then gives us the statement.

5.2. Well-adapted characters. Let X be a nonsingular complex projective
variety on which Û acts linearly with respect to a very ample line bundle L
inducing a Û -equivariant embedding of X in PN . Let GL(n) ×Û X denote the
quotient of GL(n) × X by the free action of Û defined by û(g, x) = (gû−1, ûx)
for û ∈ Û , which is a quasiprojective variety by [41, Theorem 4.19]. Then there
is an induced GL(n)-action on GL(n)×Û X given by left multiplication of GL(n)
on itself. In cases where the action of Û on X extends to an action of GL(n) there
is an isomorphism of GL(n)-varieties

GL(n)×Û X ∼= (GL(n)/Û )× X (20)

given by [g, x] 7→ (gÛ , gx). In this case the linearization L on X extends to a
very ample GL(n)-linearization L (p,q) on GL(n)×Û X and its closure GL(n)×Û X
using the inclusions

GL(n)×Û X ↪→ GL(n)×Û PN ∼= (GL(n)/Û )× PN ↪→ P(∧n(SymωCn))× PN

and the very ample line bundle OP(∧n(SymωCn))(p) ⊗ OPN (q). Here the GL(n)-
invariants on GL(n)×Û X are given by⊕

m>0

H 0(GL(n)×Û X, L⊗pm)GL(n) ∼=

⊕
m>0

H 0(X, L⊗pm)Û = ÔL⊗p(X)Û . (21)

Note that the normalizer NGL(n)(Û ) of Û in GL(n) acts on the right on
GL(n)×Û X via

n[g, x] = [gn, n−1x].

The central one-parameter subgroup ZGL(n) of GL(n) normalizes Û , and since
gn = ng for every n ∈ ZGL(n) and g ∈ GL(n), the right action of ZGL(n)
on GL(n) ×Û X extends to a linear action on P(∧n(SymωCn)) × PN given by
n(y, x) = (ny, x). Note also that the induced right action of Û on GL(n) ×Û X
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is trivial and its closure in P(∧n(SymωCn)) × PN is trivial, and that the image
of ZGL(n) in NGL(n)(Û )/Û is the same as the image of the one-parameter
subgroup C∗ of Ũ . However, the induced right action of Û on the line bundle
OP(∧n(SymωCn))(p)⊗OPN (q) is not trivial; it is multiplication by (ω1+ω2+· · ·+ωn)

times the character Û → C∗ with kernel U . Thus the weightsw and w̃ of the right
actions of ZGL(n) and the one-parameter subgroup C∗ 6 Ũ are related by

w̃ = (1+ ω2 + · · · + ωn)(w − n)

when we choose the basis vector diag(1, 1, . . . , 1) for LieZGL(n) and the basis
vector

diag(1+ω2+· · ·+ωn−n, 1+ω2+· · ·+ωn−nω2, . . . , 1+ω2+· · ·+ωn−nωn)

for the Lie algebra of C∗ 6 Ũ .
When ∧n(SymωCn) is identified with the sum of summands

∧
k1(Cn)⊗∧k2(Symω2Cn)⊗ · · · ⊗ ∧kn (SymωnCn)

over nonnegative integers k1, . . . , kn such that k1+· · ·+kn = n, the weight of the
ZGL(n) action on the summand ∧k1(Cn)⊗∧k2(Symω2Cn)⊗· · ·⊗∧kn (SymωnCn)

is
k1ω1 + · · · + knωn.

Thus the weight of the right action of the one-parameter subgroup C∗ 6 Ũ on this
summand is

(k1ω1 + · · · + knωn − n)(ω1 + ω2 + · · · + ωn).

The weights for the ZGL(n) action on GL(n)/Û satisfy k j + k j+1 + · · · + kn 6
n − j + 1 for 1 6 j 6 n and therefore

ωmin = nω1 6 k1ω1 + · · · + knωn 6 ωmax = ω1 + · · · + ωn

where the minimum weight ωmin = nω1 = n is taken on the summand spanned by
e1 ∧ · · · ∧ en whereas the maximum weight ωmax = ω1 + · · · + ωn is taken on the
summand spanned by vω1

1 ∧· · ·∧v
ωn
1 . In fact, since 1 = ω1 < ω2 6 ω3 6 . . . 6 ωn

holds, this is the only summand where the value ωmax is taken. Let ωmax−1 < ωmax

denote the second highest weight for the ZGL(n) which must have the form

ωmax−1 = ω1 + ω2 + · · · + 2ωi + ωi+2 + · · · + ωn = ωmax − ωi+1 + ωi

for some 1 6 i 6 n − 1.
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Let χ : Û → C∗ be a character of Û . We want to choose p and χ such that

p(ωmax − n)(ω1 + · · · + ωn)− χ > 0 > p(ωmax−1 − n)(ω1 + · · · + ωn)− χ

or equivalently

ωmax−1 − n <
χ

p(ω1 + · · ·ωn)
< ω1 + · · · + ωn − n. (22)

We call rational characters χ/p with this property well-adapted. The linearization
of the action of Û on X with respect to L⊗p can be twisted by χ so that the weights
ρ j of ZGL(n) are replaced with ρ j p − χ for j = 0, . . . , s. Let L⊗p

χ denote this
twisted linearization.

5.3. Hilbert–Mumford for the left action of SL(n). Recall that SL(n) =
SU(n)BSL(n) where BSL(n) is the standard (upper triangular) Borel subgroup of
SL(n) and SU(n) is compact, so that

GL(n)/Û = SL(n)[pn] = SU(n)(BSL(n)[pn]).

Moreover, P(Wdet) is SL(n)-invariant, so

P(Wdet) ∩ GL(n)/Û = SU(n)(P(Wdet) ∩ BSL(n)[pn]).

Now fix positive integers ρ1 � ρ2 � · · · � ρn−1 > 0 and consider the left action
of the one-parameter subgroup C∗ρ 6 SL(n) given by

t 7→


tρ1

tρ2

. . .

tρn−1

t−(ρ1+ρ2+···+ρn−1)

 for t ∈ C∗ .

The weights of C∗ρ acting on P(Wdet)∩ BSL(n)[pn] are all of the form k1ρ1+k2ρ2+

· · · + kn−1ρn−1 where k1, . . . , kn−1 > 0.
By Remark 3.1 and Proposition 3.2 BSL(n)[pn] is contained in the subspace

P∗ = P(W1 ∧ · · · ∧Wn) ⊂ P(∧n(SymωCn))

where the subspaces

Wi = SpanC

(
eτ : supp(τ ) ⊆ {1, . . . i},

∑
t∈τ

ωt 6 ωi

)
⊂ SymωCn

are invariant under the upper Borel subgroup Bn ⊂ GL(n) which preserves the
flag Span(e1) ⊂ Span(e1, e2) · · · ⊂ Span(e1, . . . , en). Here τ = (τ1 6 τ2 6
· · · 6 τr ) is a sequence whose support supp(τ ) is the set of elements in τ and
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eτ =
∏

j∈τ e j =
∏r

i=1 eτi ∈ SymrCn . Basis elements of P∗ are parametrized
by admissible sequences of partitions π = (π1, . . . , πn). We call a sequence of
partitions π = (π1 · · ·πn) ∈ Π

×n admissible if:

(1) supp(πl) ⊆ {1, . . . l}

(2)
∑

t∈πl
ωt 6 ωl for 1 6 l 6 n; and

(3) πl 6= πm for 1 6 l 6= m 6 n.

We denote the set of admissible sequences of length n by Π. The corresponding
basis element is then eπ1 ∧ · · · ∧ eπn ∈ W1 ∧ · · · ∧Wn .

LEMMA 5.3. For ρ = (ρ1 � ρ2 � · · · � ρn−1 > 0) and π ∈ Π the weight of the
left C∗ρ action on eπ is strictly positive unless π = (1, 2, . . . , n) corresponding to
the basis element e(1,2,...,n) = e1 ∧ · · · ∧ en .

Proof. The weight ρπ of the left C∗ρ action on eπ = eπ1 ∧ · · · ∧ eπn is

ρπ =

n∑
i=1

∑
j∈πl

ρ j >
n−1∑
i=1

ρi +
∑
j∈πn

ρ j

whenever ρ1 � ρ2 � · · · � ρn−1 > 0 holds by (1) and (2) in the definition
of admissible sequences. Moreover, equality holds if and only if πl = (l) for
1 6 l 6 n − 1. Finally

∑
j∈πn

ρ j > −(ρ1 + · · · + ρn−1) with equality if and only
if πn = (n), otherwise en does not appear in eπn .

Let ηmin = η1 < · · · < ηρ = ηmax be the weights of the action of C∗ρ on X
with respect to the linearization L of the SL(n) action. Then if qηmin + pn > 0 it
follows that every point of (P(Wdet)× X)∩BSL(n)[pn] × X) is unstable for the left
action of this one-parameter subgroup of SL(n) with respect to the linearization
L (p,q) (or equivalently L (p,q)χ ). It follows that

LEMMA 5.4. If p > −qηmin/n then every point of

(P(Wdet)× X) ∩ (GL(n)/Û )× X = SU(n)((P(Wdet)× X) ∩ BSL(n)[pn] × X)

is unstable for the left action of SL(n) with respect to the linearization L (p,q) (or
equivalently L (p,q)χ ).
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5.4. Hilbert–Mumford for the right action of C∗ 6 Ũ . Recall that the
boundary of GL(n)×Û X = (GL(n)/Û )× X in the projective completion

GL(n)/Û × X ⊂ P(∧n(SymωCn))× X

is contained in the union of P(Wv1)× X and P(Wdet)× X . If we twist the linear
action of Ũ on X with respect to L⊗p which extends to a linear action of SL(n) by
a character χ , then the induced right action of the one-parameter subgroup C∗ 6
Ũ on GL(n)/Û × X with respect to the line bundle OP(∧n(SymωCn))(p) ⊗ OPN (q)
has weights

p(k1ω1 + · · · + knωn − n)(ω1 + · · · + ωn)− χ.

If the rational character χ/p is well-adapted in the sense of (22) then the twisted
SL(n) × C∗-linearization L (p,q)χ on GL(n)/Û × X has strictly negative weights
under the right action of the one-parameter subgroup C∗ 6 Ũ on P(Wv1) × X
and therefore all points of P(Wv1) × X are unstable with respect to this linear
action of SL(n) × C∗. We know from Corollary 5.2 that the boundary of the
orbit GL(n)[pn] in P(W) is contained in the union of the subspaces P(Wv1) and
P(Wdet). So combining this with Lemma 5.4 we obtain

PROPOSITION 5.5. If p � q > 0 and the rational character χ/p is well-
adapted in the sense of (22), then the boundary of the closure GL(n)/×Û X ∼=

GL(n)/Û × X of GL(n)×Û X in P(∧n(SymωCn))× X is unstable for the linear
action of SL(n)× C∗ = SL(n)× (Ũ/U ) with respect to the linearization L (p,q)χ .

Recall that GL(n)/Û = SL(n)/(Û ∩ SL(n)) where Û ∩ SL(n) is a finite
extension of U which is contained in Ũ with Ũ/(Û ∩ SL(n)) ∼= C∗. It thus
follows immediately from Theorem 2.9 that we have (following the terminology
of Definition 2.4):

THEOREM 5.6. Let (X, L , Ũ ,SL(n)) be a GIT datum. If the linearization of the
Ũ -action is twisted by a well-adapted rational character χ/p for sufficiently
divisible p, then:

(1) the algebra of invariants
⊕

k>0 H 0(X, L⊗kp)Ũ is finitely generated;

(2) the enveloping quotient X//Ũ ' (GL(n)/Û × X)//L(p,1)χ
(SL(n) × C∗) '

Proj(
⊕

k>0 H 0(X, L⊗kp)Ũ );
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(3) the morphism
φ : X ss,Ũ

→ X//Ũ

is surjective and X//Ũ is a categorical quotient of X ss,Ũ with φ(x) = φ(y)
if and only if the closures of the Ũ -orbits of x and y meet in X ss,Ũ .

5.5. The action of Ũ on X × P1. Now let us consider the diagonal action of
Ũ on X × P1 where Ũ acts on P1 linearly with respect to OP1(1) by

ũ[x0 : x1] = [χ0(ũ)x0 : x1]

where χ0 : Ũ → C∗ is the character with kernel U given by

χ0


tnω1−(ω1+·+ωn)

tnω2−(ω1+···+ωn)

. . .

tnωn−(ω1+···+ωn)

 = t.

We can adapt the arguments of Sections 5.3 and 5.4 to the induced linear action
of SL(n)× C∗ on

GL(n)/Û × X × P1
⊆ P(∧n(SymωCn))× PN

× P1

for the linearization L (p,q,r)χ defined with respect to the line bundle
OP(∧n(SymωCn))(p) ⊗ OPN (q) ⊗ OP1(r) where the action of Ũ on X extends
to a linear action of SL(n) but is then twisted by a rational character χ/p. Now
we want to choose χ, p, q and r such that χ/p is well-adapted in the sense of
(22), and p > −qηmin/n as before, and also r > −qηmin in order that all points of
GL(n)/Û×X×{∞}will be unstable for the action of SL(n)×C∗. Note that ηmin <

0 unless the action of Ũ is trivial, and then these two conditions will be satisfied
if p � q and r � q . So the proofs of Proposition 5.5 and Theorem 5.6 give

PROPOSITION 5.7. If p � q > 0 and r � q and the rational character χ/p is
well-adapted in the sense of (22), then the boundary of the closure GL(n)/Û ×
X × P1 of GL(n) ×Û (X × C) in P(∧n(SymωCn)) × X × P1 is unstable for the
linear action of SL(n) × C∗ = SL(n) × (Ũ/U ) with respect to the linearization
L (p,q,r)χ .

DEFINITION 5.8. Let X ŝ,U denote the U -invariant open subset of X such that

{[pn]} × X ŝ,U
× {[1 : 1]} = ({[pn]} × X × {[1 : 1]})

∩ (P(∧n(SymωCn))× X × P1)s,SL(n)×C∗
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where (P(∧n(SymωCn)) × X × P1)s,SL(n)×C∗ denotes the stable subset of
P(∧n(SymωCn))× X × P1 with respect to the linearization L (p,1,r)χ .

THEOREM 5.9. Let (X, L , Ũ ,SL(n)) be a GIT datum in the sense of
Definition 2.4. If the linearization of the diagonal action of Ũ on X × P1 is
twisted by a well-adapted rational character χ/p for sufficiently divisible p,
then:

(1) the algebra of invariants
⊕

k>0 H 0(X × P1, L⊗kp)Ũ is finitely generated;

(2) the enveloping quotient (X ×P1)//Ũ ' (GL(n)/Û×X ×P1)//(SL(n)×C∗)
' Proj(

⊕
k>0 H 0(X × P1, L⊗kp

⊗OP1(r))Ũ ) for r � 1;

(3) there is a surjective Ũ -invariant morphism

φ : (X × C)ss,Ũ
→ (X × P1)//Ũ

from a Ũ-invariant open subset (X × C)ss,Ũ of X × C making X//Ũ a
categorical quotient of (X × C)ss,Ũ with φ(x) = φ(y) if and only if the
closures of the Ũ -orbits of x and y meet in (X × C)ss,Ũ ;

(4) this morphism φ restricts to a geometric quotient X ŝ,U
→ X ŝ,U/U for the

action of U on the U-invariant open subset X ŝ,U of X.

6. Some applications

Recall that if U is any unipotent complex linear algebraic group of dimension
n − 1 which has an action of C∗ with all weights strictly positive, then U can
be embedded in GL(Lie(U o C∗)) via its adjoint action on the Lie algebra
Lie(U o C∗) as the unipotent radical of a subgroup Û of the form (1) which
is generated along the first row, and as the unipotent radical of the associated
subgroup Ũ of SL(n) (which we are calling the adjoint form of U ). Here the
weights of the action of C∗ on the Lie algebra of U are ω j − 1 for j = 2, . . . , n.
We can apply Theorems 5.6 and 5.9 to this situation, and also in the situation of
jet differentials considered in Section 5. Here U is the unipotent radical Un of the
reparametrization group Gn , and Ũ is the associated subgroup G̃n

∼= Un o C∗ of
SL(n) which is isomorphic to Gn when n is odd and is a double cover of Gn when
n is even.

In this section we describe two examples of algebras of invariants in the case
of jet differentials.
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EXAMPLE 6.1. Invariant jet differentials of order 2 in dimension 2. When n = 2
then U2 (which is the unipotent radical of the standard Borel subgroup of SL(2))
is a Grosshans subgroup of SL(2). As usual let {e1, e2} be the standard basis for
C2, and consider the group

G2 =

{(
α1 α2

0 α2
1

)
: α1 ∈ C∗, α2 ∈ C

}
= C∗ nC+

with maximal unipotent C+ acting on C2 by translation. Then SymωCn
= Cn

⊕

Sym2C2 has an induced basis {e1, e2, e2
1, e1e2, e2

2}. Let xi j denote the standard
coordinate functions on SL(2) ⊂ (C2)∗ ⊗ C2. Then in the notation of Section 4

φ1(x11, x12, x21, x22) = (x11, x21),

and

φ2(x11, x12, x21, x22) = (x11, x21) ∧ ((x12, x22)+ (x2
11, 2x11x21, x2

21)),

and O(SL(n))U is generated by x11, x21 and the 2× 2 minors of(
x11 x21 0 0 0
x12 x22 x2

11 2x11x21 x2
21

)
.

Since the determinant is 1 this set of generators reduces to two generators x11,

x21, as expected since SL(2)/C+ ∼= C2
\{0} and its canonical affine completion

SL(2)//C+ is C2.

EXAMPLE 6.2. Invariant jet differentials of order 3 in dimension 3. When n = 3
the finite generation of the Demailly–Semple algebra O((J3)x)

U3 was proved by
Rousseau in [46]. Here

G3 =


α1 α2 α3

0 α2
1 2α1α2

0 0 α3
1

 : α1 ∈ C∗, α2, α3 ∈ C

 = C∗ n U

while SymωCn
= Cn

⊕ Sym2C3
⊕ Sym3C3 has basis {e1, e2, e3, e2

1, e1e2, . . . , e3
3}.

Let xi j denote the standard coordinate functions on SL(3). Then in the notation of
Section 4

φ3(x11, . . . , x33)

= (x11, x21, x31) ∧ ((x12, x22, x32))+ (x2
11, 2x11x21, x2

21, 2x21x31, 2x11x31, x2
31))

∧ ((x12, x22, x32)+ (2x11x12, . . . , 2x13x23)+ (x3
11, . . . , x3

31))
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and O(SL(3))U is generated by those minors ofx11 x21 x31 0 0 · · · 0 0 0 · · · 0
x12 x22 x32 x2

11 2x11x21 · · · x2
33 0 0 · · · 0

x13 x23 x33 x11x12 x11x22 + x12x21 · · · x31x32 x3
11 x2

11x21 · · · x3
31


whose rows form an initial segment of {1, 2, 3}, that is the minors ∆i1,...is with
rows 1, . . . , s and columns indexed by i1, . . . , is , where s = 1, 2 or 3 and |i j | 6 3.
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[5] G. Bérczi, ‘Moduli of map germs, Thom polynomials and the Green–Griffiths conjecture’,

in Contributions to Algebraic Geometry, EMS Series of Congress Reports (Eur. Math. Soc.,
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