
Experimental Archaeogaming
A Case Study

John Aycock and Katie Biittner

ABSTRACT

Archaeogaming is an area of increasing interest within archaeology. As archaeogaming’s theory and practice are being fleshed out, it is worth
considering if there are parallels to traditional archaeological methods within the study of video games. Here, we examine one such possibility:
is there an archaeogaming equivalent to experimental archaeology? As a case study, we explore the system used for the mid-1980s devel-
opment of an unreleased video game prototype for the game company Activision. Through examining this development system, whose use
would be otherwise invisible in the finished software artifact, we demonstrate how we have both reconstructed a seemingly lost piece of the
system virtually and used this reconstruction for experiments. The methodology we describe can be applied to digital artifacts within con-
temporary archaeology beyond the scope of video games, and it illustrates some key differences between studying physical and digital artifacts.

Keywords: archaeogaming, experimental archaeology, digital artifact, video game, prototype

Archaeogaming es un área de creciente interés dentro de la arqueología. A medida que se desarrollan la teoría y la práctica del archaeo-
gaming, vale la pena considerar si existen análogos de los métodos arqueológicos tradicionales dentro del estudio de los videojuegos. Aquí
examinamos una de esas posibilidades: ¿existe un archaeogaming equivalente a la arqueología experimental? Como estudio de caso,
exploramos el sistema utilizado a mediados de la década de 1980 para el desarrollo de un prototipo de videojuego inédito para la compañía de
juegos Activision. A través del examen de este sistema de desarrollo, cuyo uso sería de otro modo invisible en el artefacto de software acabado,
demostramos cómo hemos reconstruido virtualmente una pieza del sistema aparentemente perdida, y cómo hemos utilizado esta
reconstrucción para experimentos. La metodología que describimos puede aplicarse a artefactos digitales dentro de la arqueología
contemporánea más allá del ámbito de los videojuegos, e ilustra algunas diferencias clave entre el estudio de artefactos físicos y digitales.

Palabras clave: archaeogaming, arqueología experimental, artefacto digital, videojuego, prototipo

Archaeogaming is broadly and succinctly defined as “the archae-
ology both in and of digital games” (Reinhard 2018:2). As with other
areas of contemporary archaeology, archaeogaming interrogates
our definitions of artifact, assemblage, site, and “the past,” and in
practice, it has required reconsiderations of the methods and the-
oretical frameworks archaeologists commonly use. From its blog-
based origins (Reinhard 2013), archaeogaming now has over a
decade of established scholarship: extensive introductions to—and
histories of—archaeogaming may be found in Rassalle (2021) and
Politopoulos et alia (2023). Initially, archaeogaming was undertaken
by gamer archaeologists who recognized that they were playing
games in ways that were grounded in their archaeological training
and knowledge. These archaeologists wanted more realistic and
representative archaeology in their games and sought ways of
engaging academically with these games through research and
other forms of scholarship.

Over time, archaeogaming has become increasingly interdisciplin-
ary and has expanded to include topics as varied as discourse on

ethics (Graham 2020a), the use of autoethnography (Newell et al.
2022; Smith Nicholls 2021), the framing of archaeogaming as queer
gaming (Smith Nicholls 2018), the study of player-generated con-
tent (Reinhard 2021; Smith Nicholls and Cook 2022), the use of
agent-based modeling and AI (Graham 2020b), the examination of
the value of games and archaeogaming in pedagogy (Winter 2021),
the development of strategies for the preservation of intangible
digital culture (Hanussek 2019), and the use of digital technologies
for transmitting archaeological and traditional cultural knowledge
(Cook Inlet Tribal Council 2017). Our own work has used the the-
oretical framework of the chaîne opératoire and anthropological
approaches to the organization of technology along with the tools
of computer science to interpret the implementation of early video
games (Aycock and Biittner 2019, 2020; Aycock et al. 2022).

And yet, despite the quality and quantity of archaeogaming
undertaken in the last decade, and the appearance of archaeo-
gaming in popular culture (e.g., the Atari video game burial at
Alamogordo, New Mexico; Reinhard 2015), it remains a niche

Advances in Archaeological Practice 12(2), 2024, pp. 75–85

Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Society for American Archaeology. This is an

Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/

4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

DOI:10.1017/aap.2024.5

75

https://doi.org/10.1017/aap.2024.5 Published online by Cambridge University Press

https://orcid.org/0000-0003-0352-489X
https://orcid.org/0000-0003-2353-8252
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/aap.2024.5
https://doi.org/10.1017/aap.2024.5

within the broader discipline. One of the consequences of its
continued marginalization is that archaeogaming theory and
practice are still under development. One way to construct the
theory and practice of this field is to look for parallels with
traditional archaeology to see what has not yet been tried in
archaeogaming, and what these might look like when applied in
an archaeogaming context. This article examines the value of
experimental reconstruction in understanding the organization of
digital technologies—specifically, how it can provide insights into
the development and implementation of video games.

At the same time, it would be misleading to portray this work as
only being relevant to video games and archaeogaming. The
digital artifact we are studying happens to be one that was used
for video game development, which grounds its context of use
firmly within archaeogaming, but the same techniques we are
describing here are potentially just as applicable to any situation
where unknown software and hardware are encountered. Many
artifacts within the scope of contemporary archaeology are digital
artifacts—a trend that is only accelerating with time—and it is
therefore vital that archaeologists have methods for studying and
understanding them as completely as possible. It has been
observed, however, that in-depth examination of digital artifacts
within archaeology has been studiously ignored for the most part
(Aycock 2021); in this article, we help address this oversight by
showing how we conducted experimental archaeology of one
such digital (archaeogaming) artifact.

Experimental archaeology is well established. Outram (2008) pro-
vides an excellent discussion of what experimental archaeology is
and is not; they situate experimental archaeology within positivist
science and define it as actualistic and “(re)constructive”1—that is,
a means of testing hypotheses and investigating those “activities
that might have happened in the past using the methods and
materials that would actually have been available” via experiments
(Outram 2008:2). This is aligned with Mathieu, who characterized
experimental archaeology in part as “a controllable imitative
experiment to replicate past phenomena” (2002:1). Much experi-
mental work has focused on the (re)construction of ancient tech-
nologies—from studies focused on early Oldowan lithic
technologies (Schick and Toth 1994; Stout et al. 2019; Toth 1985)
to artifacts from the classical world about which is there much
speculation, such as the Antikythera mechanism (David 2017). But
it may be surprising that such work is also needed for artifacts from
the recent Anthropocene. Much knowledge and many items from
the scope of contemporary archaeology are now gone or
endangered, though. For example, Moshenska (2016) highlights
the importance of tacit, undocumented knowledge in contem-
porary archaeology, and in keeping with the theme of archaeo-
gaming, a recent survey found that the vast majority of old video
games were unavailable (Salvador 2023). In this article, we examine
one “lost” game-related item: a tool that was used for video game
development in the mid-1980s.

Finds of tools used in the process of crafting are naturally familiar
within traditional archaeology. For example, in lithic analysis,
experimental flintknapping uses reconstructed tools in conjunc-
tion with analyses of debitage assemblages to understand the
technological production of stone artifacts (Carr and Bradbury
2010; Crabtree 1975). And, similar to the situation we present,
there are instances of tools found on sites whose exact role and
usage is unclear, such as some very early forays into experimental

archaeology that sought to understand whether flint tools recov-
ered from Mount Carmel were sickles and what caused the luster
on them (see Spurrell [1892] and Curwen [1930, 1935], as discussed
in Ascher [1961]).

Finds of tools used in the process of crafting video games will be
less familiar, however. Whereas traditional experimental archae-
ologists collaborate with those in the materials sciences
(Wisseman and Williams 2013), archaeogaming can instead look to
the expertise and knowledge of those who work in the digital
realm. Here, we create a functional replica of a software devel-
opment system through a process of reverse engineering drawn
from computer science. We then use it for behavioral experiments
to further understand the development system and its constraints
and affordances. But first, some background is needed to under-
stand our experimental archaeogaming reconstruction and the
role that missing piece played in video game development.

BACKGROUND
In 1984, the game company Activision commissioned a video
game prototype, hiring Dona Bailey—one of the earliest female
game developers—as designer.2 Paul Allen Newell, who also had
video game development experience, was in turn contracted to
create the working prototype under Bailey’s direction. Bailey
effectively decided what to build (like an architect), and Newell
realized her vision by writing computer code (the instructions the
computer followed). Although the game is itself of historical
interest, its examination is outside the scope of this article;
instead, we focus on Newell’s workflow as a professional game
developer at that time period and the related artifacts.

As it happens, we have a rich assemblage of both physical and
digital artifacts to work with. Newell retained printouts of code,
documentation, physical correspondence, and a set of floppy
disks. The disks’ contents were extracted by a professional service,
which yielded development-related files as digital artifacts.
Newell’s intuition to keep this material for so many years provides
a clear documentary record and a known provenance. It is worth
noting that, although the floppy disks were physical, tangible
artifacts, their importance was their digital contents: the files
extracted from them were not digitized artifacts but born-digital
artifacts. Any printout of code, in fact, captured the (possibly
temporary) state of a primary digital artifact by definition.

The game prototype was being developed for the Commodore 64
computer, a relatively new machine at the time that was first
released in 1982 and that went on to be a bestseller, with millions
of units in circulation (Steil 2011). Newell did not write the game’s
software on a Commodore 64, however. Instead, he used a sep-
arate computer for development, the contemporaneous Apple IIe;
it was physically connected to a Commodore 64 using a device
that is the subject of our experimental archaeogaming, the “II/64.”
Normally, this whole arrangement would be unknown, barring
anecdotal recollections, because it would leave no identifiable
traces in the prototype game that was eventually produced, but
written records document the equipment that Newell was loaned
by Activision (Figure 1).

Newell’s software development workflow is shown in detail in
Figure 2. Newell wrote the code for the game in assembly

John Aycock and Katie Biittner

76 Advances in Archaeological Practice | A Journal of the Society for American Archaeology | May 2024

https://doi.org/10.1017/aap.2024.5 Published online by Cambridge University Press

https://doi.org/10.1017/aap.2024.5

language, a “low-level” human-readable programming language
that corresponds 1:1 with the binary language that the computer
understands. The code editing task would have been done using
the editor within the Merlin Pro software that he was loaned, which
can be regarded as roughly equivalent to a rudimentary word
processor.3 Code in assembly language cannot be understood
directly by a computer, and the translation from assembly to
machine language was performed by a software tool called an
“assembler,” which was also part of Merlin Pro. Happily, the Apple
IIe and Commodore 64 computers contained essentially the same
central processing unit (CPU) inside the computer responsible for
executing instructions. The machine language was therefore the

same for both. The binary code the assembler produced could
then be transferred via the II/64 from the Apple IIe’s memory to
the Commodore 64’s memory to be run, and the code on the
Commodore 64 could have been debugged from the Apple IIe
using the II/64 as well. And although we could locate archived
versions of the Merlin Pro manual to understand its usage and
capabilities, the II/64 was much more mysterious.

Unlike many artifacts from that era of computing, we could find no
information about the II/64, and as a niche product, very few of
them may have ever existed. We do know that the II/64 was made
by a high school student, Chip Gracey, and sold through his
company Innovative Software Engineering (Parallax 2021). Thanks
to the instructions Newell wrote (Figure 3), we also know the II/64
consisted of a hardware cartridge that plugged into the
Commodore 64, with a ribbon cable connecting the cartridge to
the Apple IIe—specifically, to the Apple IIe’s game I/O connector.
Some II/64 software would then be run on the Apple IIe that would
be able to talk to the hardware cartridge in the Commodore 64,
giving the ability to remotely control aspects of the Commodore
64 from the Apple IIe. The absent hardware cartridge likely con-
tained some unmalleable software in “read-only”memory that the
Commodore 64 would run to perform its half of the communica-
tion. For clarity, we will collectively use “II/64” by itself to refer to
the system as a whole, qualifying it as “II/64 hardware” or “II/64
software” when more specificity is required.

The physical bridging of the two computers is easy to gloss over,
but it is important in understanding the II/64’s context of use. It is
hard to appreciate, in an age of computers with USB connectors,
what a delicate process it was to plug something like the II/64
hardware into the Apple’s game I/O connector. Typically, that
connector would be used for joysticks and other game controllers,
so this was not something done exclusively by software developers;
regular home computer users would have also needed to attach
devices to that connector. The top of the Apple IIe’s case would
have to be opened (it is not screwed on, in fact, so as to facilitate
internal access), exposing the static-sensitive circuitry, and a cable
ending with 16 small, easily bent metal pins would need to be
plugged precisely into the awkward-to-reach 16-pin game I/O
connector on the computer’s main circuit board (Figures 4 and 5).
Luckily, this fraught operation would only need to be performed
correctly once, when the II/64 was initially set up.

This two-computer arrangement for software development is not
unique and is still used today in certain situations. It is referred to

FIGURE 1. Equipment loan documentation. (Image courtesy
of Paul Allen Newell.)

FIGURE 2. Software development workflow.

FIGURE 3. Development instructions excerpt. (Image courtesy
of Paul Allen Newell.)

Experimental Archaeogaming

May 2024 | Advances in Archaeological Practice | A Journal of the Society for American Archaeology 77

https://doi.org/10.1017/aap.2024.5 Published online by Cambridge University Press

https://doi.org/10.1017/aap.2024.5

as a “cross-development system.” Why would a cross-
development system be used? We can look to physical analogs to
understand the reasoning, such as using clay to form molds for
metal casting (Bruhns 1972; Rose et al. 2023; Silas 2005), where
working in one medium allows more ease and flexibility than
another. If we extend this lens of ease and flexibility to the domain
of computers, a cross-development system would be used when
one or more of the following situations exist:

(1) The “target” computer is unable to use software development
tools such as editors and assemblers in a reasonable way. For

example, it would not be possible to develop code on a video
game console without a keyboard, or on a console that had a
paucity of memory. In our case study, this does not apply,
because the Commodore 64 target system is a computer that
is perfectly capable of running such tools.

(2) Software development tools do not (yet) exist for the target
computer. Again, this is not true for the Commodore 64,
which had the BASIC programming language built in, and
Commodore had even produced its own editor/assembler
software the same year the computer was released
(Commodore Business Machines 1982a).

(3) It is challenging to have both the development tools and the
software being developed coexist on the target computer. This
situation did apply here. Although the Commodore 64’s mem-
ory size was not as scarce as it was in computers that preceded
it, having development tools in the computer’s memory would
have precluded creating the ambitiously large game Bailey and
Newell had devised. Alternating between development tools
and the game—completely swapping one in favor of the
other—would have been possible but would have negatively
impacted development time. Another consideration of home
computers during that time period is that computer programs in
the memory of the same computer had no protection from one
another. Even if the game and development system could have
both fit in the Commodore 64’s memory simultaneously, a bug
in the game could have crashed the computer or corrupted
everything in its memory. It was advantageous for several rea-
sons to have a separate development computer.

(4) The development computer is notably better equipped than
the target computer. This applied in three different ways,
based on documentary evidence. First, Merlin Pro’s minimum
requirements meant that the Apple IIe would have had twice
the amount of memory as the Commodore 64 (Bredon 1984b).
Second, Figure 1 lists an “Axlon Ramdisk 320,” which acted
like extremely fast floppy disk storage for the Apple (Axlon
1982), which would have sped up development. Third, again a
speed enhancement, Newell’s correspondence indicates that
his Apple IIe contained an “Accelerator IIe”—hardware that
would make the Apple’s software “run approximately 3-1/2
times faster” (Titan Technologies 1984:6). Somewhat ironically,
reminiscent of the Ea-nāsịr tablets (Rice 1994), we only know
about the Accelerator IIe being used because Newell’s letter
was a complaint about his development computer crashing
when the device was installed.4

With this background, we can now concentrate our attention on
the II/64. The dearth of information about the II/64 leaves us with
a critical gap in our knowledge of how the game was crafted.
The II/64 was a conduit between the two computers, and it need
not have left any distinguishing “tool marks” to speak of.
However, the II/64’s use would have constrained development
practices by virtue of its affordances. How can something that is
physically absent be reconstructed?

UNDERSTANDING AND RECREATING
A DIGITAL ARTIFACT
The necessary first step toward an experimental reconstruction of
a digital artifact is developing an understanding of what it does
and how it functions. As a starting point, Newell’s development

FIGURE 4. The game I/O socket inside an Apple IIe computer,
indicated by the center-right arrow (digitally added). (Image
courtesy of John Aycock.)

FIGURE 5. A 16-pin game I/O connector, with fingers for
scale. Underscoring its delicacy, two of the pins have broken
off this (joystick) connector as a side effect of handling. (Image
courtesy of Hayden Kroepfl.)

John Aycock and Katie Biittner

78 Advances in Archaeological Practice | A Journal of the Society for American Archaeology | May 2024

https://doi.org/10.1017/aap.2024.5 Published online by Cambridge University Press

https://doi.org/10.1017/aap.2024.5

instructions from that time documented how the II/64 software was
started from Merlin Pro and what he typed at the II/64’s textual
command-line “+” prompt to get the game running on the
Commodore 64. In conjunction with Commodore 64 technical
documentation (Commodore Business Machines 1982b), we were
able to infer what some of these II/64 commands did. Using the
II/64 from the Apple IIe keyboard, Newell was able to set the value
of single memory locations in the Commodore 64, transfer
memory contents en masse from the Apple to the Commodore,
and start the Commodore 64 running machine language instruc-
tions at a specified memory location. This may have been only a
fraction of the II/64’s capabilities, however.

Although we did not have the physical II/64, we had the next best
thing: a digital artifact. Newell’s floppy disks contained a copy of
the II/64 software that ran on the Apple IIe. Consisting of just
under 1,700 bytes, this relatively small binary file contained the
machine code and associated data necessary for the Apple IIe to
control the II/64 hardware. Reverse engineering the binary would
definitely tell us something about the missing device, but it was
not clear how much it would reveal. For example, the software may
not have done anything on the Apple IIe apart from handing off
the II/64 commands untouched to the (now-absent) software in
the Commodore 64 cartridge. In that case, we would learn next to
nothing about the II/64’s full functionality from the digital artifact
we had.

For an initial assessment, we looked through the binary file for
printable strings—messages that might have been printed on the
screen. Perhaps there might even be a “help” screen listing the II/
64 commands. The individual symbols within a string would be
represented using a numeric encoding of some kind, and given
the type of computer and the time period, the most likely
encoding candidate would be one called ASCII. ASCII, an
abbreviation for the wordier American Standard Code for
Information Interchange, is a computing standard that defines
how symbols correspond to numbers. The uppercase letter “A” is
represented by the value 65, for example. However, our search
turned up nothing using tools that looked for printable ASCII
strings, using a modern computer to examine the digital artifact of
the II/64 software.5 Apple ASCII had a slight quirk in that its ASCII
values could be greater than “normal” printable ASCII values
(Apple Computer 1985), and once we compensated for that, a
string with an unmistakable message appeared:

][/64 SYSTEM
(C)1984 BY ISE
DB CHIP GRACEY
VERSION 1.0
SERIAL #110001

This gave us a date and attribution for the digital artifact that was
consistent with other evidence. The “II” of the “Apple II” desig-
nation was often stylized using square brackets, and seeing the
name given as “][/64” was not a substantive difference. There was
no other clear information, and to analyze the binary further, we
needed to examine the machine language code it contained.

Binary machine language code can be automatically converted
into an assembly language representation using a software tool
called a “disassembler,” which takes advantage of the 1:1 cor-
respondence between assembly and machine language

mentioned earlier. The original assembly process, however, dis-
carded substantial information that cannot be recovered, and
what the disassembler produces is not precisely equivalent to the
original; for instance, any human-readable comments the pro-
grammer placed in the original assembly code are lost in trans-
lation. The only way to rediscover knowledge about the code is
through manual analysis of the reconstructed assembly language.
This is a skill that is learnable, but it may also be done in inter-
disciplinary collaboration with computer scientists—not unlike
how archaeologists would work with people in other fields for
scientific analysis of physical artifacts, such as working with
geneticists on ancient DNA recovery and replication from skeletal
materials (Sedig 2019).

As a concrete example of how reverse engineering code can be
done, we consider a discovery we made early on in the code that
acted as the Rosetta Stone for understanding how the II/64 com-
municated between the Apple IIe and the Commodore 64.
Because the II/64 hardware only connected to the Apple IIe via its
game port, logically, all communication had to flow through there.
Thinking of that port’s potential use with joysticks, one would
expect the ability to send input signals into the Apple IIe. What is
unexpected is that the game port had “five output signals” as well
(Apple Computer 1985:190). Moreover, the Apple IIe employed
what is called “memory-mapped I/O,” meaning that special
memory addresses directly manipulated those input and output
signals. Any II/64 code that accessed those special addresses had
to have been part of the Apple–Commodore communication,
which therefore provided us with digital wayfinders in the assem-
bly code. One of those code sequences was especially interesting.

This code sequence, in the span of five consecutive instructions,
did five things in the following order:

(1) Set output signal #1 to the value 0;
(2) Set output signal #2 to the value 1;
(3) Set output signal #3 to the value 0;
(4) Set output signal #4 to the value 1;
(5) Set output signal #4 (again!) to the value 0.

What is critical to remember is that the II/64 connected two
completely independent computers. The last two steps—
changing output signal #4 to 1 and then to 0 immediately
afterward—could happen so quickly that any II/64 software run-
ning on the Commodore 64 might easily overlook it . . . unless the
important effect was not the values at all but the act of transi-
tioning from a 1 to a 0.

The type of CPU present in both the Apple IIe and the
Commodore 64 had the ability to be interrupted, for a signal
occurring at an arbitrary time to force the CPU to run different
code to handle the event, much as the chime announcing an
incoming text message might cause a person to interrupt their
current task to attend to the text. Of those interrupts, one had the
property of being what is technically called “negative edge trig-
gered” (MOS Technology 1976)—in other words, the interruption
would be caused by a transition of that signal from a 1 to a
0. Moreover, that particular interrupt signal, the so-called non-
maskable interrupt, was accessible to a cartridge plugged into the
Commodore 64 (Commodore Business Machines 1982b) just as
the II/64 was. Putting all this together, we surmised that the II/64
hardware had the Apple’s output signal #4 connected to the

Experimental Archaeogaming

May 2024 | Advances in Archaeological Practice | A Journal of the Society for American Archaeology 79

https://doi.org/10.1017/aap.2024.5 Published online by Cambridge University Press

https://doi.org/10.1017/aap.2024.5

Commodore 64’s nonmaskable interrupt line, and the above code
sequence was setting a value of 010 to be read using the first three
steps, with the last two steps causing an interrupt on the
Commodore 64 to make it pay attention to the incoming 010
value. Determining the significance of the value 010 was then a
follow-on task for further reverse engineering.6

Another two starting points for reverse engineering the code
came thanks to Newell’s development instructions, which showed
both how the II/64 software was first loaded into the Apple IIe’s
memory (causing some II/64 code to be run) and how that
in-memory II/64 code was invoked later. The latter code led almost
immediately to the area of the II/64 code that input and inter-
preted user commands. Using that code, we could determine the
full set of II/64 commands and, from there, what each one did. As
we guessed, the II/64 did support more than Newell’s documen-
tation happened to capture.

Some of the II/64’s commands were local to the Apple IIe only,
such as a command to leave the II/64 prompt and return to the
Merlin Pro menu. The purpose of these local commands was
found by analyzing the II/64 code and, given that they did not
require a physical II/64, the analysis was verified by trying out the
commands in a software-based Apple IIe emulator. The more
interesting commands, however, involved Apple–Commodore
interaction, because they would be ultimately responsible for
facilitating or limiting development practices. We knew three of
these already from Newell’s documentary evidence, at least in
part. Where Newell had only needed to record how to transfer
memory contents from the Apple IIe to the Commodore 64, we
learned from the code that the memory transfer could also be
done in the other direction. And, moreover, selected memory
regions of the Commodore 64 could be viewed in two ways: either
as a numeric view or in a disassembled view of the memory con-
tents interpreted as assembly instructions. A separate “T” com-
mand (sTatus?) would return the current contents of the
Commodore 64’s CPU registers, which were locations for storing
values that were separate from the computer’s memory proper. All
told, these features for remotely interrogating the Commodore
64’s state would have been invaluable for debugging.

In addition, a plausible use for the fifth output line in the Apple
IIe’s game I/O port was found, which had not previously been
accounted for. The II/64 “RS” command would cause that output
to be repeatedly set to 0 for an extended period, and we suspect
that, given the command name, the II/64 hardware connected this
to the Commodore 64’s ReSet signal to restart the remote
computer.

The design of the II/64 software on the Apple IIe was effectively in
three layers (Figure 6), which can be thought of as strata in the
software. The topmost user interface (UI) layer is what the user of
the II/64 interacted with. With the exception of the ReSet com-
mand, which manipulated an output line directly, all the other
UI-layer commands addressing the Commodore 64 were imple-
mented by the second layer, which we called the “command
layer.” The command layer was only able to issue four commands:
read from Commodore 64 memory, write to Commodore 64
memory, run code starting at a given location, and return the CPU
register contents. That means that no matter how many UI-layer
features there were, ultimately, they were all restricted in that they
could only interact with the Commodore 64 in terms of these four

commands. A further complication is that the four commands
were expressed in bytes: a grouping of data where a single byte
consists of eight bits, and an individual bit can be 0 or 1. The
problem is that there were not enough input and output lines
available to the II/64 to express an eight-bit byte all at once, and
that was the task of the link layer: communicating data to and from
the Commodore 64 in piecewise fashion, two bits at a time. In fact,
what we saw in the code sequence outlined earlier was the start of
the link layer indicating to the Commodore 64 that a command
was forthcoming.

With analysis complete, we could begin experimenting. First, we
were able to verify how the II/64 commands appeared to the
user by essentially hotwiring the II/64 code. Where the link layer
expected a response from the missing II/64 hardware, we
modified that code by changing a mere 10 bytes so that the
communication always seemed to succeed. Our modified ver-
sion of the II/64 software, when run in a software-based Apple
IIe emulator (MAME 0.255), allowed us to try all the II/64 com-
mands, although the “data” reported from the fictitious
Commodore 64 always consisted of zeroes. But we could
improve on this.

For our second experimental system, we wrote a Python program
that mediated between (1) the original, unmodified II/64 software
running in an Apple IIe emulator and (2) a virtual Commodore 64
running in a different software emulator (VICE 3.7). Our program
behaved as our analysis suggested the missing II/64 hardware
behaved, thereby allowing us to interact fully with the II/64 as
Newell once did. A screenshot of this experimental system run-
ning is shown in Figure 7. The commands in the Apple IIe window
include transferring data to display “HELLO SAA” to the
Commodore 64’s (screen) memory, disassembling data from the
Commodore’s memory, displaying a portion of that same data as
numbers, and requesting the Commodore’s CPU register values.
We have recreated the II/64.

FIGURE 6. Conceptual layers within the II/64 software on the
Apple IIe.

John Aycock and Katie Biittner

80 Advances in Archaeological Practice | A Journal of the Society for American Archaeology | May 2024

https://doi.org/10.1017/aap.2024.5 Published online by Cambridge University Press

https://doi.org/10.1017/aap.2024.5

ARTIFACT AS POLYGLOT
Digital artifacts may be viewed as a form of language(s).
Considering the II/64 through a linguistic lens, we have already
seen assembly and machine language, which are alternate repre-
sentations of the same code, albeit one for humans and one for
the computer. Furthermore, each conceptual layer inside the II/64
software implements a different language: from the language the
UI layer provides to the user, to the restricted four-command
language of the command layer, to the physically constrained
bitwise language of the link layer. And, as we discovered through
our analysis of the digital artifact, there was yet one more
language.

There was some code in the II/64 software whose purpose was
unclear during our initial reverse engineering, until we read care-
fully through the Merlin Pro manual. Merlin Pro had the ability for
other software to extend its set of assembly language commands
in a controlled manner (Bredon 1984b), and the II/64 software had
taken advantage of this. The II/64 extensions to the Merlin Pro
assembly language, based on our analysis, would have greatly
sped up the development workflow—for instance, machine code
could be transferred to the Commodore 64 and run automatically
as a side effect of running the Merlin Pro assembler. With our
experimental reconstruction of the II/64, we were in an ideal
situation to test this, and we discovered something odd: half of
the extension language commands did not work.

Our reconstruction gave us a vantage point on the II/64 that was
very different from the original hardware, one where we could
watch the data being sent back and forth along the II/64, and we
noticed that the bytes the faulty language extensions sent to the
Commodore 64 were wrong. The problem was neither a bug in
our reconstruction (our first thought) nor a bug in the II/64 soft-
ware. What we realized is that the II/64 software was not designed
to work with Merlin Pro, but instead the earlier version of the
software that was simply called Merlin. Merlin Pro made a change
to the location of some crucial data in the Apple’s memory
compared to Merlin (Bredon 1984a, 1984b), which was why the II/
64 software was sending the wrong data. Thanks to our recon-
struction, we were able to test this hypothesis by pairing the
earlier version of Merlin with Newell’s II/64 software, and the II/64
extension language worked correctly as predicted.

THE LIMITS OF RECONSTRUCTION
Experimental archaeology cannot address all questions about
physical artifacts, and the same is true for digital artifacts.
Consequently, there are some aspects of the missing II/64 hard-
ware that we are unable to reconstruct with complete assurance.
Although we can know what data flowed through the four
command-layer commands based on its usage in the II/64 soft-
ware on the Apple IIe, we do not completely know what the
software inside the Commodore 64 cartridge did. For example, we

FIGURE 7. Reconstruction screenshot. Windows clockwise from upper left: Apple IIe emulator, Commodore 64 emulator, II/64
reconstruction program.

Experimental Archaeogaming

May 2024 | Advances in Archaeological Practice | A Journal of the Society for American Archaeology 81

https://doi.org/10.1017/aap.2024.5 Published online by Cambridge University Press

https://doi.org/10.1017/aap.2024.5

inferred that the “T” command meant sTatus based on the data
returned, but it may also have been sTep, a powerful debugging
facility that would permit executing a single instruction at a time.
Technically, the computer’s hardware did not support this, but it
could be achieved in software, as an earlier model of the Apple II
demonstrated (Apple Computer 1978). Both sTatus and sTep
could return the same data, so we cannot determine the correct
interpretation without additional evidence.

Another key question is whether the Commodore 64 continued to
run a program after a II/64 command had been issued from the
Apple IIe, or whether it was effectively paused to await more II/64
commands. Either arrangement would have been possible, but
interacting with a remote computer that is actively running the
program being debugged would require the programmer to work
in a different way.

The good news is that software is extremely malleable: because
we reconstructed the system in software and not hardware, we can
change the behavior of these aspects by simply changing our
program’s settings and re-running it. This allows us the ability to
experiment with a range of possible configurations to understand
their effects.

DISCUSSION
Because the description of our work is undeniably technical in a
way that archaeological readers may be unfamiliar with yet, it is
helpful to begin the discussion with a recap. We have interpreted
the “experimental” of experimental archaeology in two ways.
First, we have created what Mathieu (2002) would term a “func-
tional replica” of the II/64’s missing components: its hardware and
the related software that would have resided in the II/64’s hard-
ware cartridge. Our reconstruction is validated both by the fact
that we can successfully follow Newell’s contemporary instructions
involving the use of the real, original II/64, as well as our ability to
use even those II/64 commands that Newell did not capture in his
documentation. Second, we applied our reconstruction to per-
form behavioral experiments; importantly, these involved the use
of the real digital artifact that remains, the II/64 software for the
Apple IIe. Through these experiments, among other things, we
discovered a bug in the II/64’s operation and were able to test our
hypothesis about why this occurred. We also saw limitations in the
affordances the II/64 provided to the programmer—for example,
the programmer could view the Commodore 64’s CPU registers
but could not change them.

The methodology we used to analyze the II/64’s remaining soft-
ware in order to build our replica was reverse engineering the
binary code and data in the digital artifact, and we have provided
some key illustrative examples of how that was done. Reverse
engineering a digital artifact is a technique that draws on our
interdisciplinary archaeology / computer science collaboration,
but there are established ties to archaeology in general and
archaeogaming specifically. Moshenska (2016) talks about the
linkage between reverse engineering and contemporary archae-
ology, and our past archaeogaming work—although not focused
on experimental archaeology—has used reverse engineering to
study video games individually and at scale (Aycock and Biittner
2019, 2020; Aycock et al. 2022). A recent book has further shown
how the process of reverse engineering a digital artifact can be

seen to parallel Carver’s archaeological field research procedure
(Aycock 2023; Carver 2009).

There is a temptation to see Newell’s use of the II/64 for software
development as idiosyncratic and therefore not representative of a
larger class of human behavior, but this is not the case.
Cross-development systems are still in use today, as we noted, and
our work gives us insight into the early use of such a system in
video game development. The documentation in Figure 1 con-
firms that the II/64 and other development paraphernalia were
supplied by the game company Activision to Newell for the pur-
poses of development. This was not a system that Newell already
possessed, and he confirmed that this system was one of
Activision’s choosing—not something he had specially requested.
It is not unreasonable to infer that similar cross-development
systems were used by other Activision developers at the time.
There are anecdotal accounts of in-house cross-development
systems being used elsewhere in early video game development
targeting home computers (e.g., Pape 2013:47–48; Taylor 1984),
but by leveraging Newell’s assemblage, we have been able to
explore this early cross-development system in depth.

In many ways, the experimental archaeogaming approach we have
described here is akin to that of experimental work on the lost-wax
casting technique. There are many experimental studies focused
on the lost-wax (or cire perdue) casting technique (including
Ascher 1961; Congdon 1985; Daragan and Romanenko 2021;
Goren 2008, 2014; Rose et al. 2023; Wang et al. 2023). If we look at
a very simplified operational sequence for lost-wax casting, first a
wax model is produced, then a clay mold is formed around the
wax model. Heating the mold causes the wax to run out, and the
resultant hollow is filled with molten metal to produce the
objective piece. To extract the metal objective piece, the mold is
broken; this intentional and required destruction of the mold
means that only fragments of them are recovered. Although some
of the objective pieces may still have remnants of the mold or core
(Rose et al. 2023), the surfaces of these objective pieces are typ-
ically finished via polishing. These finishing techniques will not
only remove mold or core remnants and residues but also elim-
inate any seams or other attributes indicative of lost-wax casting.
The loss of both the wax model and the mold means that most of
the production process is absent from the archaeological record,
which has necessitated experimental and ethnoarchaeological
research to understand this metallurgical technology and deter-
mine the constraints of the various materials and techniques used
(Rose et al. 2023). For this reason, we can use the experimental
work done on the lost-wax technique as an analog for the
experimental work on the cross-development system we have
described here.

In archaeogaming, we have similar concerns about the invisibility
of the production process in the (digital) archaeological record. As
discussed above, although we may have the end product of the
video game production sequence (i.e., the game), the tools used
can be invisible or “lost” in the assemblages we are working with,
and the physical components used in the construction of digital
artifacts (and tools) may be unknown. In our case, we know from
physical documentation and conversations with Newell what
physical components were needed. Through reverse engineering,
however, we are able to test various components within the
operational sequence to determine both various constraints
Newell encountered while programming the game and the

John Aycock and Katie Biittner

82 Advances in Archaeological Practice | A Journal of the Society for American Archaeology | May 2024

https://doi.org/10.1017/aap.2024.5 Published online by Cambridge University Press

https://doi.org/10.1017/aap.2024.5

specific constraints that resulted from working in a cross-
development system that are captured neither in documentation
nor in Newell’s memory. Although we may not need to conduct
invasive analyses to determine the composition of our materials
and their sources in the same way those examining cire perdue
would, our approach to understanding the materials used is also
similar in that an interdisciplinary approach is required. This
research was possible because of one author’s expertise in, and
access to, the physical and digital materials used and that indi-
vidual’s ability to reconstruct and replicate the production en-
vironment. Indeed, it is the digital immateriality of our artifacts
where the core distinctions lie.

That said, the fact that we have created our functional replica
using software emulators and the programming language
Python—a language that did not even exist in the 1980s—may
come as a surprise and might appear to invalidate our work as
experimental archaeology. An authentic material replica, by con-
trast, would require connecting a physical Apple IIe to a physical
Commodore 64 using reconstructed II/64 hardware built with
period-appropriate electronic components. However, our
approach is not only valid but serves to illustrate some of the
challenges to archaeology posed by archaeogaming that were
mentioned in the introduction.

The Outram quote we used earlier in defining experimental
archaeology would seem to differ, ending as it does with an
injunction to use “the methods and materials that would actually
have been available” (Outram 2008:2). The very next sentence offers
an important qualifier, though: “This is not to say that all materials
and methods need to be authentic in experimental archaeology,
but certainly those pertinent to the hypothesis” (Outram 2008:2).
This is not a lone view, given that Mathieu (2002:3) states,
“Functional replicas need not be authentic in every respect, only in
those aspects which are deemed relevant to the object’s normal
functioning.” On the surface, this suggests that some amount of
abstraction may legitimately be applied to replication. We do not
disagree. We argue the opposite, though: our replication does not
abstract anything away. To understand the justification for this bold
claim, we observe that there is an implied assumption made by
Outram and Mathieu. For physical artifacts, the world the artifact
exists in and the real world are one and the same; it is so obvious
that it does not bear discussion. This is physically oriented thinking,
and we are working with a digital artifact, not a physical one. In
actual fact, for both physical and digital artifacts, authenticity is
relative to the environment in which the artifact exists. With a
physical artifact, the environment is the real world, but with a digital
artifact such as ours, this is not necessarily the case. By running the
II/64’s software in an Apple IIe emulator with a high degree of
verisimilitude, the II/64 software is effectively being run in its own,
separate virtual universe. The II/64 software and, for that matter,
other software running within the Apple IIe emulator cannot detect
that it is not being run on real Apple IIe hardware,7 and our II/64
hardware reconstruction in Python interacts with the emulated Apple
IIe using an interface that makes it all but omnipotent with respect to
the virtual Apple IIe. Consequently, relative to the (virtual, emulated)
environment, our replication is perfectly authentic. An identical
scenario plays out between our II/64 hardware reconstruction and
the emulated Commodore 64.

Another way that archaeogaming forces reconsideration of ar-
chaeological methods is in its treatment of (digital) artifacts.

Regarding the use of real artifacts in replication, Mathieu writes
that, because it “requires . . . the use of a somewhat unique arti-
fact, it is often the most expensive and least pursued form of
replication” (2002:3). Again, this is physically oriented thinking. Our
original digital artifact, the Apple IIe portion of the II/64 software, is
backed up; even when we perform behavioral experiments that
result in the emulated code changing the contents of the digital
artifact, we can easily restore a pristine version of it afterward.
Destructive experiments within our virtual environment cause no
lasting damage. This means that our experiments are repeatable by
us and reproducible by others, permitting a well-founded scientific
approach to archaeological experimentation.

Putting these two ideas together, our preliminary experiment
before creating our Python-based II/64 replica involved what we
characterized as “hotwiring” the II/64 code by changing 10 spe-
cific bytes of it. This could have been accomplished by altering the
digital artifact prior to using it in the Apple IIe emulator, a change
that could be trivially undone using the digital artifact’s backup
copy. Instead, we took advantage of the virtual universe of the
emulated Apple IIe in a different way. We allowed the II/64 soft-
ware to start normally inside the emulator and become resident in
the emulated Apple IIe’s memory. Then, we paused the emulator:
from the point of view of the emulated Apple IIe, the flow of time
in its virtual universe stopped in an undetectable fashion. We
could then make the necessary 10 bytes’ worth of changes from
our extra-universe vantage point and resume the emulator’s exe-
cution. From the perspective of the emulated Apple IIe, the II/64
software was modified spontaneously and instantaneously, and it
can be done repeatably.

One final note pertains to the scope of applicability of this work.
It would be easy to relegate our experiments to archaeogaming,
or even a narrow subinterest within the inclusive umbrella of
archaeogaming, but there is much more at stake. Archaeogaming’s
deliberate engagement with digital artifacts and virtual environ-
ments makes it a crucible for developing techniques through
which archaeology in general can address artifacts of the present
and the recent contemporary past. Software development is a
human activity, where programmers are creating, interacting with,
and being constrained by technology. The approach we have
described here is not at all limited to video games, and it provides
an exemplar of ways in which digital artifacts can be studied
archaeologically.

CONCLUSION
Archaeogaming is a productive and, importantly, creative
endeavor that represents one pathway to addressing limitations in
traditional approaches to understanding our collective past. It
engages with the theory of materiality while explicitly addressing
the consequences of the intangibility of digital artifacts on the
methods we can use. As we have demonstrated, it is possible to
analyze a digital artifact thoroughly even when we are left with
only its collection of binary 1s and 0s. From this effort—conducted
using an interdisciplinary approach, just as what archaeology
would use for the specialized analysis of physical artifacts—we
were able to learn about this behind-the-scenes software devel-
opment tool, its capabilities, and its limitations. Ultimately, what
the II/64 did and did not do shaped the experience of program-
mers and how they were able to perform their work.

Experimental Archaeogaming

May 2024 | Advances in Archaeological Practice | A Journal of the Society for American Archaeology 83

https://doi.org/10.1017/aap.2024.5 Published online by Cambridge University Press

https://doi.org/10.1017/aap.2024.5

More importantly for the development of archaeogaming theory
and practice, we have shown how analysis can be applied to bring
a digital artifact to life again. This has allowed us to verify our
analysis, experiment with the system, and even uncover some
hidden flaws that might otherwise have easily been overlooked.
We want to stress that, even though the missing II/64 aspects were
physical, the reconstruction need not be, and this gives us sub-
stantial flexibility for experimentation with its unknown
characteristics.

Although future generations of archaeologists will undoubtedly
engage with both digital and material artifacts, it is our responsi-
bility to continue to develop robust archaeogaming theory and
practice today. Every day, humans spend a significant amount of
their time working and playing on their devices, using digital
tools, and creating huge quantities of born-digital artifacts. We
face a “tsunami” of digital artifacts (Aycock 2021), so it is critical
that we continue to reimagine, redevelop, and revise our ways of
doing archaeology.

Acknowledgments
Many thanks to Dona Bailey and Paul Allen Newell for sharing
their recollections, providing feedback on this article, and sup-
plying the artifacts that made this work possible. Thanks also to
the anonymous reviewers, whose comments were instrumental in
improving this work. Carolina Avendaño Duque assisted with the
Spanish-language abstract, and Jeremy Penner provided a critical
hint for using the MAME Lua interface.

Funding Statement
This work is supported in part by the Government of Canada’s
New Frontiers in Research Fund (NFRFE-2020-00880).

Data Availability Statement
The source code for our reconstruction is freely available at
https://github.com/aycock/ii64.

Competing Interests
The authors declare none.

NOTES
1. As discussed in Outram (2008:2), the use of the “re-” prefix is not universally

loved. We have chosen to use the variant “(re)construction” except in cases
where recovered artifacts have been replicated.

2. Background information is drawn from interviews with Dona Bailey and Paul
Allen Newell, with ethics approval from the MacEwan University Research
Ethics Board, file 102076. Bailey is best known for Atari’s Centipede (1980),
and Newell published games for the Atari 2600 and Vectrex, along with the
arcade game Cube Quest (1983).

3. Although the manifest in Figure 1 says Merlin and not Merlin Pro, Newell’s
documentation mentions the latter (Figure 3), and we also found the Merlin
Pro software on the development disks he retained. This may seem to be a
minor point, but it has ramifications we discuss later.

4. We note that the Accelerator IIe is not listed in Figure 1, but then that
manifest also does not list other hardware inside the Apple IIe that would
have needed to be present, such as a floppy disk controller card. We
conjecture that only obvious, discrete physical items were recorded
in that list.

5. We used the strings program on Linux for this task. Similar programs are
available for Windows and Apple’s OS X.

6. The 010 turned out to be the initial part of the II/64’s “handshake” between
the Apple II and the Commodore 64 to verify that the Commodore 64 was
attached, powered on, and responding properly.

7. The reality of emulator detection is more nuanced. Modern software emu-
lators for retrocomputing platforms such as the Apple IIe are extremely
accurate and constantly improving, but perfectly accurate emulation can
be difficult to perform correctly. It is possible to craft a modern program
that, when run within a software emulator, tries to detect obscure “edge
cases” where an emulator’s behavior is known to differ from that of the
real physical computer (Pilgrim 2014). Having said that, the software we
ran inside the Apple IIe emulator was well over 30 years old and could not
have been written with foreknowledge of emulators in the distant future
(in computing terms), so this possibility can be safely disregarded without
loss of generality.

REFERENCES CITED
Apple Computer. 1978. Apple II Reference Manual (January 1978). Apple

Computer, Cupertino, California.
Apple Computer. 1985. Apple IIe Technical Reference Manual. Addison-Wesley,

Reading, Massachusetts.
Ascher, Robert. 1961. Experimental Archeology. American Anthropologist

(N.S.) 63(4):793–816.
Axlon. 1982. Supercharge Your APPLE II (advertisement). Creative Computing

8(4):131.
Aycock, John. 2021. The Coming Tsunami of Digital Artefacts. Antiquity

95(384):1584–1589. https://doi.org/10.15184/aqy.2021.84.
Aycock, John. 2023. Amnesia Remembered: Reverse Engineering a Digital

Artifact. Berghahn, New York.
Aycock, John, and Katie Biittner. 2019. Inspecting the Foundation of Mystery

House. Journal of Contemporary Archaeology 6(2):183–205. https://doi.
org/10.1558/jca.36745.

Aycock, John, and Katie Biittner. 2020. LeGACy Code: Studying How (Amateur)
Game Developers Used Graphic Adventure Creator. Proceedings of the
15th International Conference on the Foundations of Digital Games 23:1–
7. https://doi.org/10.1145/3402942.3402988.

Aycock, John, Shankar Ganesh, Katie Biittner, and Paul Allen Newell. 2022. The
Sincerest Form of Flattery: Large-Scale Analysis of Code Re-Use in Atari
2600 Games. Proceedings of the 17th International Conference on the
Foundations of Digital Games 26:1–10. https://doi.org/10.1145/3555858.
3555948.

Bredon, Glen. 1984a. Merlin: The Macro Assembler for the Apple. Roger
Wagner, Santee, California.

Bredon, Glen. 1984b. Merlin Pro: The Macro Assembler for the Apple IIe & IIc.
Roger Wagner, Santee, California.

Bruhns, Karen Olsen. 1972. Two Prehispanic Cire Perdue Casting Moulds from
Colombia. Man (N.S.) 7(2):308–311.

Carr, Philip J., and Andrew P. Bradbury. 2010. Flake Debris and Flintknapping
Experimentation. In Designing Experimental Research in Archaeology:
Examining Technology through Production and Use, edited by Jeffrey
R. Ferguson, pp. 71–92. University Press of Colorado, Boulder.

Carver, Martin. 2009. Archaeological Investigation. Routledge, London.
Commodore Business Machines. 1982a. The Commodore 64 Macro Assembler

Development System. Commodore Business Machines, West Chester,
Pennsylvania.

Commodore Business Machines. 1982b. Commodore 64 Programmer’s
Reference Guide. Commodore Business Machines, Wayne, Pennsylvania.

Congdon, L. O. K. 1985. Water-Casting Concave-Convex Wax Models for Cire
Perdue Bronze Mirrors. American Journal of Archaeology 89(3):511–515.
https://doi.org/10.2307/504365.

Cook Inlet Tribal Council. 2017. Storytelling for the Next Generation: How a
Nonprofit in Alaska Harnessed the Power of Video Games to Share and
Celebrate Cultures. In The Interactive Past: Archaeology, Heritage & Video
Games, edited by Angus A. A. Mol, Csilla E. Ariese, Krijn H. J. Boom and
Aris Politopoulos, pp. 21–31. Sidestone Press, Leiden, Netherlands.

John Aycock and Katie Biittner

84 Advances in Archaeological Practice | A Journal of the Society for American Archaeology | May 2024

https://doi.org/10.1017/aap.2024.5 Published online by Cambridge University Press

https://github.com/aycock/ii64
https://github.com/aycock/ii64
https://doi.org/10.15184/aqy.2021.84
https://doi.org/10.15184/aqy.2021.84
https://doi.org/10.1558/jca.36745
https://doi.org/10.1558/jca.36745
https://doi.org/10.1558/jca.36745
https://doi.org/https://doi.org/10.1145/3402942.3402988
https://doi.org/https://doi.org/10.1145/3555858.3555948
https://doi.org/https://doi.org/10.1145/3555858.3555948
https://doi.org/https://doi.org/10.1145/3555858.3555948
https://doi.org/10.2307/504365
https://doi.org/10.2307/504365
https://doi.org/10.1017/aap.2024.5

Crabtree, Don. 1975. Comments on Lithic Technology and Experimental
Archaeology. In Lithic Technology: Making and Using Stone Tools, edited
by Earl Herbert Swanson, pp. 105–114. Mouton, The Hague, Netherlands.

Curwen, E. Cecil. 1930. Prehistoric Flint Sickles. Antiquity 4(14):179–186.
Curwen, E. Cecil. 1935. Agriculture and the Flint Sickle in Palestine. Antiquity

9(33):62–66.
Daragan, Marina N., and Yurij N. Romanenko. 2021. Technique and Technology

of Scythian Bronze Arrowhead Casting: Experimental and Metallographic
Approach. Journal of Archaeological Science: Reports 37:102919. https://
doi.org/10.1016/j.jasrep.2021.102919.

David, Nicholas. 2017. The Antikythera Mechanism: Its Dating and Place in the
History of Technology. Journal of Mediterranean Archaeology 30(1):85–104.

Goren, Yuval. 2008. The Location of Specialized Copper Production by the Lost
Wax Technique in the Chalcolithic Southern Levant. Geoarchaeology
23(3):374–397.

Goren, Yuval. 2014. Gods, Caves, and Scholars. Chalcolithic Cult and Metallurgy
in the Judean Desert. Near Eastern Archaeology 77(4):260–266.

Graham, Shawn. 2020a. An Approach to the Ethics of Archaeogaming. Internet
Archaeology 55. https://doi.org/10.11141/ia.55.2.

Graham, Shawn. 2020b. An Enchantment of Digital Archaeology: Raising the
Dead with Agent-Based Models, Archaeogaming, and AI. Berghahn,
New York.

Hanussek, Benjamin. 2019. Conducting Archaeogaming and Protecting Digital
Heritage: Does the Future for Archaeology Lie in The Immaterial. Art and
Science 3(1). https://doi.org/10.21494/ISTE.OP.2019.0414.

Mathieu, James R. 2002. Introduction. In Experimental Archaeology: Replicating
Past Objects, Behaviors, and Processes, edited by James R. Mathieu, pp.
1–11. BAR International Series 1035. Archaeopress, Oxford.

Moshenska, Gabriel. 2016. Reverse Engineering and the Archaeology of the
Modern World. Forum Kritische Archäologie 5:16–28.

MOS Technology. 1976. MCS6500 Microcomputer Family Hardware Manual
(January 1976). MOS Technology, Norristown, Pennsylvania.

Newell, Paul Allen, John Aycock, and Katie Biittner. 2022. Still Entombed after
All These Years: The Continuing Twists and Turns of a Maze Game. Internet
Archaeology 59. https://doi.org/10.11141/ia.59.3.

Outram, Alan K. 2008. Introduction to Experimental Archaeology. World
Archaeology 40(1):1–6. https://doi.org/10.1080/00438240801889456.

Pape, Bob. 2013. It’s Behind You: The Making of a Computer Game. Electronic
document, https://www.bizzley.com, accessed November 21, 2023.

Parallax. 2021. Our Story. Electronic document, https://www.parallax.com/our-
story/, accessed August 2, 2023.

Pilgrim, Mark. 2014. Emulator Detection in 6502 Assembly (Kansasfest 2014
Presentation). Electronic document, https://archive.org/details/
EmulatorDetectionIn6502AssemblyKansasfest2014Presentation,
accessed November 22, 2023.

Politopoulos, Aris, Angus A. A. Mol, and Sybille Lammes. 2023. Finding the Fun:
Towards a Playful Archaeology. Archaeological Dialogues 30(1):1–15.

Rassalle, Tine. 2021. Archaeogaming: When Archaeology and Video Games
Come Together. Near Eastern Archaeology 84(1):4–11.

Reinhard, Andrew. 2013. What Is Archaeogaming? Electronic document, https://
archaeogaming.com/2013/06/09/what-is-archaeogaming/, accessed
August 25, 2023.

Reinhard, Andrew. 2015. Excavating Atari: Where the Media was the
Archaeology. Journal of Contemporary Archaeology 2(1):86–93.

Reinhard, Andrew. 2018. Archaeogaming: An Introduction to Archaeology In
and Of Video Games. Berghahn, New York.

Reinhard, Andrew. 2021. Archeology of Abandoned Human Settlements in No
Man’s Sky: A New Approach to Recording and Preserving User-Generated
Content in Digital Games. Games and Culture 16(7):855–884.

Rice, Michael. 1994. The Archaeology of the Arabian Gulf, c. 5000–323 BC,
Routledge, London.

Rose, Thomas, Peter Fabian, and Yuval Goren. 2023. The (In)visibility of Lost Wax
Casting Moulds in the Archaeological Record: Observations from an
Archaeological Experiment. Archaeological and Anthropological Sciences
15:31. https://doi.org/10.1007/s12520-023-01731-6.

Salvador, Phil. 2023. Survey of the Video Game Reissue Market in the United
States. Video Game History Foundation and Software Preservation
Network. Electronic document, https://doi.org/10.5281/zenodo.8161056,
accessed April 8, 2024.

Schick, Kathy D., and Nicholas Toth. 1994. Making Silent Stones Speak: Human
Evolution and the Dawn of Technology. Simon and Schuster, New York.

Sedig, Jakob W. 2019. Ancient DNA’s Impact on Archaeology: What Has Been
Learned and How to Build Strong Relationships. SAA Archaeological
Record 19(1):26–32.

Silas, Fred R. 2005. Lost-Wax Casting: Old, New, and Inexpensive Methods.
Woodsmere Press, Pendleton, South Carolina.

Smith Nicholls, Florence. 2018. Archaeogaming as Queergaming. Florence
Smith Nicholls: Games and heritage (blog), September 23. https://
florencesmithnicholls.com/2018/09/23/archaeogaming-as-queergaming/,
accessed August 25, 2023.

Smith Nicholls, Florence. 2021. Fork in the Road: Consuming and Producing
Video Game Cartographies. In Return to the Interactive Past: The Interplay
of Video Games and Histories, edited by Csilla E. Ariese, Krijn H. J. Boom,
Bram van den Hout, Angus A. A. Mol, and Aris Politopoulos, pp. 117–133.
Sidestone Press, Leiden, Netherlands.

Smith Nicholls, Florence, and Michael Cook. 2022. The Dark Souls of
Archaeology: Recording Elden Ring. Proceedings of the 17th International
Conference of the Foundations of Digital Games 17:1–10. https://doi.org/
10.1145/3555858.3555889.

Spurrell, F. C. J. 1892. Notes on Early Sickles. Archaeological Journal 49:53–68.
Steil, Michael. 2011. How Many Commodore 64 Computers Were Really Sold?

Pagetable.com (blog), February 1. https://www.pagetable.com/?p=547,
accessed August 1, 2023.

Stout, Dietrich, Michael J. Rogers, Adrian V. Jaeggi, and Sileshi Semaw. 2019.
Archaeology and the Origins of Human Cumulative Culture: A Case Study
from the Earliest Oldowan at Gona, Ethiopia. Current Anthropology
60(3):309–340.

Taylor, Graham. 1984. And Pigs Will Fly . . . Popular Computing Weekly 3(14):12–13.
Titan Technologies. 1984. Accelerator IIe Operations Manual. Titan

Technologies, Ann Arbor, Michigan.
Toth, Nicholas. 1985. The Oldowan Reassessed: A Close Look at Early Stone

Artifacts. Journal of Archaeological Science 12(2):101–120.
Wang, Zhen, Lirun Yan, Ying Ma, Anding Shao, Jianjun Mei, and Kunlong Chen.

2023. Pilot Study on the Lipid Residues in the Clay Core of Lost-Wax
Process. Journal of Archaeological Sciences: Reports 49. https://doi.org/10.
1016/j.jasrep.2023.103990.

Winter, Matthew. 2021. Beyond Tomb and Relic: Anthropological and
Pedagogical Approaches to Archaeogaming. Near Eastern Archaeology
84(1):12–21.

Wisseman, Sarah U., and Wendell S. Williams. 2013. Why Study Artifacts? An
Interdisciplinary Approach. In Ancient Technologies and Archaeological
Materials, edited by Sarah U. Wisseman and Wendell S. Williams, pp. 3–13.
Routledge, London.

AUTHOR INFORMATION
John Aycock ▪ Department of Computer Science, University of Calgary,
Calgary, Alberta, Canada (aycock@ucalgary.ca, corresponding author)

Katie Biittner ▪ Department of Anthropology, Economics & Political Science,
MacEwan University, Edmonton, Alberta, Canada (biittnerk@macewan.ca)

Experimental Archaeogaming

May 2024 | Advances in Archaeological Practice | A Journal of the Society for American Archaeology 85

https://doi.org/10.1017/aap.2024.5 Published online by Cambridge University Press

https://doi.org/https://doi.org/10.1016/j.jasrep.2021.102919
https://doi.org/https://doi.org/10.1016/j.jasrep.2021.102919
https://doi.org/https://doi.org/10.1016/j.jasrep.2021.102919
https://doi.org/10.11141/ia.55.2
https://doi.org/10.11141/ia.55.2
https://doi.org/https://doi.org/10.21494/ISTE.OP.2019.0414
https://doi.org/10.11141/ia.59.3
https://doi.org/10.11141/ia.59.3
https://doi.org/10.1080/00438240801889456
https://doi.org/10.1080/00438240801889456
https://www.bizzley.com
https://www.bizzley.com
https://www.parallax.com/our-story/
https://www.parallax.com/our-story/
https://www.parallax.com/our-story/
https://archive.org/details/EmulatorDetectionIn6502AssemblyKansasfest2014Presentation
https://archive.org/details/EmulatorDetectionIn6502AssemblyKansasfest2014Presentation
https://archive.org/details/EmulatorDetectionIn6502AssemblyKansasfest2014Presentation
https://archaeogaming.com/2013/06/09/what-is-archaeogaming/
https://archaeogaming.com/2013/06/09/what-is-archaeogaming/
https://archaeogaming.com/2013/06/09/what-is-archaeogaming/
https://doi.org/10.1007/s12520-023-01731-6
https://doi.org/10.1007/s12520-023-01731-6
https://doi.org/10.5281/zenodo.8161056
https://florencesmithnicholls.com/2018/09/23/archaeogaming-as-queergaming/
https://florencesmithnicholls.com/2018/09/23/archaeogaming-as-queergaming/
https://florencesmithnicholls.com/2018/09/23/archaeogaming-as-queergaming/
https://doi.org/https://doi.org/10.1145/3555858.3555889
https://doi.org/https://doi.org/10.1145/3555858.3555889
https://doi.org/https://doi.org/10.1145/3555858.3555889
https://www.pagetable.com/?p=547
https://www.pagetable.com/?p=547
https://doi.org/https://doi.org/10.1016/j.jasrep.2023.103990
https://doi.org/https://doi.org/10.1016/j.jasrep.2023.103990
https://doi.org/https://doi.org/10.1016/j.jasrep.2023.103990
mailto:aycock@ucalgary.ca
mailto:biittnerk@macewan.ca
https://doi.org/10.1017/aap.2024.5

	Experimental Archaeogaming
	BACKGROUND
	UNDERSTANDING AND RECREATING A DIGITAL ARTIFACT
	ARTIFACT AS POLYGLOT
	THE LIMITS OF RECONSTRUCTION
	DISCUSSION
	CONCLUSION
	Acknowledgments
	NOTES
	REFERENCES CITED

