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GENERALIZED GRADIENTS, LIPSCHITZ BEHAVIOR 
AND DIRECTIONAL DERIVATIVES 

JAY S. TREIMAN 

1. Introduction. In the study of optimization problems it is necessary to 
consider functions that are not differentiable. This has led to the 
consideration of generalized gradients and a corresponding calculus for 
certain classes of functions. Rockafellar [16] and others have developed a 
very strong and elegant theory of subgradients for convex functions. This 
convex theory gives point-wise criteria for the existence of extrema in 
optimization problems. 

There are however many optimization problems that involve functions 
which are neither differentiable nor convex. Such functions arise in many 
settings including optimal value functions [15]. In order to deal with such 
problems Clarke [3] defined a type of subgradient for nonconvex 
functions. This definition was initially for Lipschitz functions on R". 
Clarke extended this definition to include lower semicontinuous (l.s.c.) 
functions on Banach spaces through the use of a directional derivative, the 
distance function from a closed set and tangent and normal cones to 
closed sets. These generalized gradients have found many uses; see for 
example Clarke [3, 4, 5, 6], Aubin [1], Hiriarty-Urruty [9, 10] and 
Rockafellar [15]. 

Rockafellar [14] has given a more direct characterization of Clarke's 
subgradients df(x) to a l.s.c. function/on a Banach space E by way of the 
upper subderivative 

r t , > * • , / ( * ' + ty') - f(x') 
f(x\ y) = sup inf sup inf - — =^-A 

Y^JT(y) x^J^(x) re(0,X) / e y / 
X>0 /(jO^/OO + fi 

This is a l.s.c. convex function of y for each x. The subgradients off at x 
are given by 

df(x) = {v* e E*:(v*,y) ^ f\x; y)9 y e E). 

We will not use the first of the formulas directly but will require the 
second. 

Rules for estimating df(x) are important for analyzing when 0 G df(x) 
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since 0 e df(x) is the subgradient optimality condition. Two often 
considered cases are when/ = / + f2 and when/ = g • F where F:E] —> E 
is a continuously Gateaux differentiate mapping with derivative 
A:E] —> E. The desired rules for estimation are 

(1.1) df(x) c df(x) + df2(x) 

and 

(1.2) d(g-F)(z) ^A*(g(x))-dg(F(z)) 

where A* is the adjoint mapping of A. 
Conditions must be put onf,f2 and g to make (1.1) and (1.2) valid. 

These conditions involve two types of Lipschitz behavior. A function h(x) 
is Lipschitz on a neighborhood X of x if for some L, 

(1.3) l/K*1) ~ h(x2)\ ^L\\xl - x2\\ 

for any x and x in X If (1.3) holds in some neighborhood of x then h is 
locally Lipschitz at x. The result in this case is 

THEOREM 1. [5] Assume that f and g are locally Lipschitz at x and F(z), 
respectively, and assume that f2 is l.s.c. Then (1.1) and (1.2) are valid. 

The other condition used in this setting is t h a t / and g are directionally 
Lipschitz at x. A l.s.c. function h(x) is directionally Lipschitz at x with 
respect to y if 

h(x' + /y') - /*(*') 
hm sup < oo. 

x'—>x t 
y'^>y, t\0 

If any such y exists we simply say that h is directionally Lipschitz at x. 
Rockafellar [14] has noted that h is locally Lipschitz at x if and only if h is 
directionally Lipschitz at x with respect to 0. Under the assumptions that 
/ is directionally Lipschitz at F(z) and some technical conditions on the 
upper subderivatives o f / , / 2 and g, (1.1) and (1.2) hold [12]. 

In finite dimensions the relationship between local Lipschitz behavior 
and Clarke's subgradients has been known for some time. 

THEOREM 2. [13] Let f:Rn —> R be a l.s.c. function and x a point ofR" 
where f is finite. Then f is Lipschitz on a neighborhood of x if and only if 
df(x) is a bounded nonempty set. 

The goal of this paper is to prove a theorem similar to Theorem 2 for 
directionally Lipschitz functions on Banach spaces. In order to achieve 
this we first discuss the relationship between the upper subderivative and 
the lower Hadamard derivative. Next we prove a theorem similar to 
Theorem 1 for f.E —> R where E is an arbitrary Banach space. Finally an 
analogous result for directionally Lipschitz functions is obtained. 
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2. Relations between derivatives. Throughout the rest of this paper E 
and Ex will be Banach spaces and all functions will be l.s.c. 

Before proceeding to the main results of this work we need to discuss 
the relationship between the lower Hadamard derivative 

j (x; y) = hm inf 

and the upper subderivative,/^(x; y). Each of these directional derivatives 
corresponds to a tangent cone to the epigraph of/, 

ep i / : = { (x, a) e E X R:a ^ f(x) }. 

The definitions of these tangent cones are: 

Definition 1. Let C be a closed subset of a Banach space Ex and x e C. 
The contingent cone to C at x, K(C, x), is the set of all y such that for any 
€, À > 0 the truncated cone 

x 4- (0, A) • B(y, c) 

intersects C. 
Here B(y, e) is the open ball centered at y with radius e and 

B • A = {fi • z:/3 e B c i? and z e ^ c £ , } . 

Definition 2. [17] Let C be a closed subset of a Banach space £] and 
x G C. Clarke's tangent cone (the tangent cone) to C at x, T(C, * ) , is the 
set of y such that for all c > 0, 

38 > 0 such that Vx' G £(jt, 6) n C, A > 0, 

[*' + (0, A) • £(>/, c) ] n C ^ 0. 

This is not Clarke's original definition but is equivalent to it. The 
properties of these cones and their relationship are discussed in a number 
of articles (see [7] and [11] ). 

From the definitions of the tangent and contingent cones it follows 
that 

T(C, x) c K(C, x). 

Combining this with Theorem 3.1 of [17] we have 

(2.1) lim inf K(C9 x) c T(C, x) c K(C, x) 
x'—*x 

C 

where for a multifunction F\EX —> E2 

(2.2) lim inf F(x') = n U n [F(x') + 5(0, e) ]. 
x'—>x t>0 X^JV(X) jc e JnC 

C 
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Here JV*(X) denotes the family of neighborhoods of x. 
The following facts along with (2.1) will yield the desired result. The 

epigraph of the lower Hadamard derivative of /a t x is the contingent cone 
of ep i / a t (x,f(x) ) and the epigraph of the upper subderivative off at x is 
the tangent cone of ep i / a t (x,f(x) ). The first of these statements follows 
easily from the definitions. For a discussion of the second see [14]. 

THEOREM 3. Let E be a Banach space,/a l.s.c. function on E and x a point 
where f is finite. For all y e E, 

f*(x; y) Si f\x; y) â lim s u p / V ; y). 
Jt'—>X 

/ 
Proof The first inequality is a direct consequence of (2.1). Therefore we 

concentrate on the second inequality. 
The epigraph of lim sup/ # ( jc ; y) is 

f 

8>0 f(x')^f(x) + 8 

Since AT(epi/, (JC', a) ) D AT(epi/, (x',f(xf) ) ) for any a ^f(x'), combining 
(2.1), (2.2) and (2.3) yields the second inequality. 

3. The Lipschitz case. The statement of Theorem 2 gives a simple 
characterization of local Lipschitz behavior around a point x. Unfortu­
nately the same statement is not true in infinite dimensional spaces. 

Example. Let C be a closed convex subset with a boundary point x 
where there are no supporting hyperplanes (see [11] ). Since C is convex, 
the tangent cone is the same as the convex tangent cone, and thus 
T(C, x) = E. If / is the indicator function of C then / is not locally 
Lipschitz at x however 3/(3c) = {0}. 

A result slightly weaker than Theorem 2 does hold in Banach spaces. 
The following preliminary results will help clarify this situation. 

LEMMA 1. Let E be a Banach space, f a l.s.c. function on E and x a point 
where fis finite. If there is a neighborhood N of x on which 3/(x') is bounded 
(Vx^xdfix') is bounded set) and nonempty then f is locally Lipschitz 
at x. 

Proof. We proceed by contradiction. Assume that 9/(x') is bounded and 
nonempty on an open convex neighborhood N of x and assume that / is 
not Lipschitz on N. 

For any L > 0 there are z G iV and y e E \ {0} such that z + y e N 
and 

f(z+y)>f(z) + L\\y\\. 
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Since / i s l.s.c. there is a neighborhood 

B((z +y,f(z) + L||.y||),j8) c EX R 

of (z + y,f(z) 4- L Hy\\ ) that does not intersect epi / . Take /} so that 

£(z 4- y, j8) c N. 

Thus we have the following situation; there is a closed subset C = e p i / 
of a Banach space Ex = E X R, a point z = (j>, L||j>|| ) such that 

C n [z + y] = 0 

where 7 is a ball around w with radius less than ||w||. 
The technique of Bishop and Phelps [2] as applied in the proof of 

Lemma 2.1 of [17] can be employed here to find a n / e i V and a X > 0 so 
that/Cx') < oo and 

e p i / n [ (*' ,/(*') ) + (0, X) • B{ (y, L\\y\\ ), )8) ] = 0. 

This implies t h a t / # ( x r ; y) > L|| j | | . T h e r e f o r e / V ; y) > L||>>||. 
Hence either df(x') is empty or 3/(jcr) contains an element of norm 

greater than L. 

What we want to have is Lemma 1 without the added condition that 
df(x') is nonempty. 

LEMMA 2. Let E be a Banach space, f a l.s.c. function on E and x a point 
where f is finite. If in every neighborhood of x, there is a point x' such that 
df{x') = 0 then 8/ is unbounded on any neighborhood of x. 

Proof Let TV be any open convex neighborhood of x. Since/is l.s.c. we 
may assume f{x') > — oo for all x' G N. Let L > 0 be arbitrary. 

There are two situations to consider: when/(jc') = oo for some x' e TV 
and when df(x') = 0 and/(jc') < oo for some x' G N. In the first case the 
technique used in Lemma 1 can be applied to find a point z G N and 
a j G £ \ { 0 } such tha t / (z ) < oo and 

/W)>L|LH|. 
If 3/(z) is nonempty we are done. Otherwise the problem reduces to the 
second case. 

Assume tha t / (* ' ) < oo and 3/(JC') = 0 for jcr
 G N. Since 3/(JC') = 0, 

the line ( - o o , oo) • (0, - 1) is in T(epif, (x',f(x') ) ). By Definition 2 the 
interior of every truncated cone of the form 

(* ' , / (* ' ) ) + (0,A)-2?((0, - l ) , c ) 

intersects e p i / Here 6, X > 0 are arbitrary. 
The fact t h a t / i s l.s.c. guarantees that for some X0, c0, we have 

https://doi.org/10.4153/CJM-1985-058-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-058-1


GENERALIZED GRADIENTS 1079 

X0 • B(x', c0) c N and 

{ (*',/(*') ) + X0 • B( (0, - 1 ) , co) } n e p i / = 0. 

This implies that for any e e (0, e0), 

{ (*',/(*') ) + \0B( (0, - 1 ) , «) } n e p i / = 0. 

Fix c e (0, c0) with « < ML and define a function F:E —» R by 

F(z) = 
/ ( z ) - / (* ' ) + -| |z - JC'II if Hz - x'\\ g V 

€ 

-f oo otherwise. 

This definition insures that F is l.s.c, F(x') = 0, inf F < 0 and if 
\\z - JC'II ^ X0€ then F(z) > 0. 

We can apply Ekeland's variational principle [8] to F to get the desired 
result. The version needed is the following: 

THEOREM 4. Let E be a Banach space and F a l.s.c. function from E into R 
that is bounded from below. For any 8 > 0 there is a z e E such that 

F{z) ^ inf F + 8 and 

Vz' e E F(z') ^ F(z) - S\\z - z% 

Applying this theorem with 8 < min {- - L, -inf F J yields a z e E 

such that 

\\z — JC'H < X0€, z ^ x' and 

Vz' e £ F(z') ^ F(z) - 8||z' - z||. 

Thus 

/(* ' ) + - | |z ' - JC|| S / ( z ) + -| |z - x|| - 5||z' - z\\ 
€ € 

or 

/ (z ' ) ^f(z) + - ( Hz - xll - ||z' - *|| ) - «||z' - z\\. 
€ 

The function 

G(z') = / ( z ) - - ( ||z' - x\\ - ||; - x|| ) - S||z' - z|| 
€ 

has lower Hadamard derivatives 

G* 
;#(z; _i x \ = _ ! -s and 

V ' l l z - x l l / 
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G* 
V Hz - x \ \ l e 

Since G(z) = f(z), G(z') ^ f(z') for all z' and 8 > L, we have that 
c 

/ is supported below by a Lipschitz function G on a neighborhood of z, 

f#\z\ I > - c o and 

V \\z-x\\J 
Therefore df(z) ¥= 0 and df(z) contains an element of norm greater 

than L. 

We can now state and prove the main theorem of this section. 

THEOREM 5. Let E be a Banach space, fa l.s.c. function on E and x a point 
where f is finite. Under these hypotheses the following are equivalent: 

(i) / is locally Lipschitz at x, 
(ii) UyGAr9/(.x;') is a bounded subset of E* for some neighborhood N 

of x, 
(iii) for some L > 0 and some neighborhood N of x, 

\f*(x'; y)\< L for all x' G N and y G B(0, 1), 

(iv) there exists a neighborhood N of x and an M > 0 such that 

f*(x?\y) ^ M for all x' G N and y G £(0, 1). 

Proof. We will prove the following implications: (i) => (iii), (iii) =» (ii), 
(ii) =» (i) and (ii) <=> (iv). 

(i) => (iii). Assume/is Lipschitz on an open convex neighborhood N of 
x with Lipschitz constant L. Since/is Lipschitz on N, at any point x' G N 
and for any y G E the lower Hadamard derivative and lower directional 
derivative coincide. For any x' in TV and y G E and some t0 > 0, 

\f(x> + ty) - / (* ' ) I 
^ L\\y\\. 

Thus 

| / V * ) I ^L\\y\\ 
for any x' G N and y G E. 

(iii) => (ii). Let the neighborhood JV of x be an open set. Since 

1/V; y) I s L||j|| 
for all x' e N and j e 5(0, 1), Theorem 3 shows that 
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|/V;^)I ^L 
for all x' G N and >> G 5(0, 1). Thus UyejV9/(jc') contains no elements of 
norm greater than L. 

(ii) => (i). Assume JV is an open neighborhood of x. Since Ux,eAr3/(x') 
is a bounded set, Lemmas 1 and 2 imply fis Lipschitz on N. 

(iii) => (iv). This follows directly from the statements. 
(iv) =» (iii). Without loss of generality let N be an open convex 

neighborhood of x. We proceed by contradiction. Assume that (iv) holds 
on N and that (iii) doesn't hold on N. Then there exist x' G N and 
y G 5(0, 1) such that 

/ V ; > 0 < -2M. 
This implies that for some / > 0 and y' G 5(0, 2) 

f(x' + ty)-f(x') ^ 
< — iM 

t 

where x" = x' + ty' G N. 
Rewriting, this becomes 

/ ( * " ~ ty')-fjx") > 2M 

t 

Applying the argument used in Lemma 1 yields a point z G N such that 

/ # ( z ; - / ) > 2M 

or 

/*M) . > M 
2 

where — y' 12 G 5(0, 1). This contradicts our assumptions. Therefore 
(iv) =» (iii). 

Note. Using the same techniques as those in the proof that (iii) is 
equivalent to (iv) one can show that/being locally Lipschitz is equivalent 
to (iii) or (iv) where the lower Hadamard derivative is replaced by any of 
the following three directional derivatives; the standard lower directional 
derivative, the upper Hadamard derivative 

/ ( * ' + / / ) -fix') 
hm sup — — ^—L, 

y'^y t 

or the upper directional derivative 

r / ( * ' + ty) -f(x')-f(x') 
hm sup . 

t\0 t 
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4. The directionally Lipschitz case. Theorem 5 of the previous section 
gives the relation between Lipschitz behavior and Clarke's subgradients 
on Banach spaces. There has not been any such characterization of 
directionally Lipschitz behavior. The main results along this line concern 
conditions implying directional Lipschitz behavior on R" [Theorem 1 
of 12]. 

In order to use the concept of directionally Lipschitz functions on 
Banach spaces a theorem similar to Theorem 5 is required. The central 
theorem of this section along with its corollaries help fill this void. 

THEOREM 6. Let f be a l.s.c. function from E into R and let x be a point 
where f is finite. Under these assumptions the following are equivalent: 

(i) / is directionally Lipschitz at x with respect to y, 
(ii) for some neighborhoods Y of y and X ofx and 8 > 0, 

{f*(x',y'):x' G X,y' e Y,f(x') < f(x) + 8} 

is bounded from above 
(iii) for some neighborhoods Y of y and X of x and some 8 > 0, / is 

directionally Lipschitz at all x' G Xsuch thatf(xf) <f(x) 4- 8 with respect 
to ally' G y. 

(i v) for some neighborhoods Y of y and X of x and some 8 > 0, 

{ <v*,/>:Vv* G 3/(*'), x' G X9y G y,f(x') ^f(x) + 8} 

is bounded from above. 

Proof. Rockafellar [14] states t ha t /be ing directionally Lipschitz at x 
with respect to 0 is equivalent to /be ing locally Lipschitz around x. With 
minor modifications the proof of Theorem 5 works for Theorem 6 with 
y = 0. Hence we only consider the case when y ¥= 0. 

Without loss of generality assume that ||>>|| = 1 and that all 
neighborhoods of y are convex. The implications to the proven are 
(i) => (ii), (ii) => (iii), (iii) => (i) and (ii) <̂> (iv). 

(i) => (ii). This follows directly from the definitions. 
(ii) =» (iii). We proceed by contradiction. Assume that for all 

neighborhoods Y of y and X of x and for all 8 > 0, / is not direction-
ally Lipschitz at some x' G X with respect to some y' G Y where 
f(x') < f(x) + 8. This implies that for any M > 0 there exist x", y" 
and / > 0 with x" as close to xf as desired, f(x") < f(x) + 5, y" as 
close to y' as desired and / as small as wanted such that 

f{x" + ty") - f(x") 
> M. 

t 
By taking y" close enough to y' and t small enough one can make 

y G F, x" + ty" G X and 

/ (*") + Mt\\y"\\ < / ( * ) -f 8. 
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The argument used in Lemma 1 can be applied to find a z e X with 
f(z) <f(x) + S and 

/ # ( z ; y») ^ M. 

This proves the contrapositive of (ii) => (iii), or (iii) => (ii). 
(iii) => (ii). This is clear. 
(ii) ^> (iv). This follows from Theorem 3 and the duality between df(x) 

znd f\x\y). 

The following two results give more conditions that allow one to detect 
directionally Lipschitz functions. They may be obtained from either 
Theorem 6 or the definition of a directionally Lipschitz function using the 
techniques in this paper. 

COROLLARY 1. Let f be a l.s.c. function from E into Rn and x a point 
where fis finite. Then fis directionally Lipschitz at x if and only if there exist 
a y, neighborhoods Y of y and X of x, an L > 0 and t, S > 0 such that 

f{x' + z) - f(x') < L\\z\\ 

for all x' G X with f(x') < f(x) + 8 and all z in the truncated cone 
(0, t) • Y. 

This corollary along with the next result show how closely directionally 
Lipschitz functions are related to Lipschitz functions. Before stating the 
final corollary a definition is needed. 

Definition 3. [13] A closed set C c E, is said to be epi-Lipschitzian at x if 
there is some neighborhood X of x, a X > 0 and a non-empty open set Y 
such that 

x' + ty G c f o n G C n x , / E r , / e (o, A). 
This is equivalent to saying that C is the epigraph of a Lipschitz 

function [13]. 

COROLLARY 2. [13] A l.s.c. function f on a Banach space E is directionally 
Lipschitz at x if and only if e p i / is epi-Lipschitzian at (x,f(x) ). 
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