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ON THE SECOND GAUSSIAN MAP FOR CURVES ON
A K3 SURFACE

ELISABETTA COLOMBO and PAOLA FREDIANI

Abstract. By a theorem of Wahl, for canonically embedded curves which are
hyperplane sections of K3 surfaces, the first Gaussian map is not surjective.

In this paper we prove that if C is a general hyperplane section of high genus

(> 280) of a general polarized K3 surface, then the second Gaussian map of

C is surjective. The resulting bound for the genus g of a general curve with
surjective second Gaussian map is decreased to g > 152.

§1. Introduction

The first Gaussian map, or Wahl map, for the canonical series has been
extensively studied, and it has been shown that for a general curve of genus
≥ 10, different from 11, it is surjective (see [4], [18]).

Wahl ([19], see also [20], [21]) has given a deformation theoretic interpre-
tation of the first Gaussian map, showing that if a canonical curve can be
extended in projective space as a hyperplane section of a surface which is
not a cone, then the first Gaussian map is not surjective. In particular, in
[19] it is proven that if a curve lies on a K3 surface, the first Gaussian map
cannot be surjective (see also [3]). The obstruction to the surjectivity of the
first Gaussian map for a curve in a K3 surface is given by the extension
class of the cotangent sequence

0 → K−1
C → Ω1

X |C → KC → 0,

which is a nontrivial element in the kernel of the dual of the first Gaussian
map (see [3]).

This paper is concerned with the second Gaussian map, γ2
C : I2(KC) →

H0(C,4KC). In fact, the second Gaussian map also encodes some interesting
geometry. Our geometrical motivation to study it comes from its relation
with the curvature of the moduli space Mg of curves of genus g with the
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Siegel metric induced by the period map j : Mg → Ag, which we analyzed
in [9]. There the curvature was computed using a formula for the associated
second fundamental form given in [11]. In particular, in [11] it is proven that
the second fundamental form lifts the second Gaussian map as stated in an
unpublished paper of Green and Griffiths (see [12]).

In [9, (3.8)] we gave a formula for the holomorphic sectional curvature of
Mg along a Schiffer variation ξP , for P , a point on the curve C, in terms of
the holomorphic sectional curvature of Ag and the second Gaussian map.
The relation of the second Gaussian map with curvature properties of Mg

in Ag suggested that its rank could give information on the geometry of Mg

and of some sublocus of it.
Another interesting problem is to understand whether the surjectivity of

the second Gaussian map provides an obstruction to embed a curve in a
surface as a hyperplane section. In this paper we address this problem for
curves in a K3 surface, and we deduce results for the general curve.

Using cohomological techniques in the study of γ2
C for a curve in a K3

surface X , it is natural to consider the “symmetric square” of the cotangent
extension

0 → Ω1
X |C ⊗ K−1

C → S2Ω1
X |C → K2

C → 0.

This does not give any obstruction to the surjectivity of γ2
C for the general

curve in a general K3 surface, while it gives an obstruction if C is any curve
in an abelian surface (see [10]). In fact, in [10] it is shown that if C is a
curve in an abelian surface X , then the corank of γ2

C is at least 2.
In this paper (Theorem 3.1) we prove surjectivity of the second Gaussian

map for a general curve C of high genus (for all g > 280) on a general
polarized K3 surface. This clearly implies surjectivity for the general curve
in the moduli space of curves of any genus g > 280. In corollary (3.5) we
decrease the lower bound for the genus of the general curve with a surjective
second Gaussian map until 152, using examples given in [8]. Note that, for
dimensional reasons, surjectivity can be expected for a general curve of
genus at least 18, so our bound is far from being optimal; nevertheless, it is
the first known lower bound.

We recall that examples of curves whose second Gaussian map is surjec-
tive were already given in [8] (for curves lying on the product of two curves)
and in [1] (for complete intersections). Note that, using complete intersec-
tions, it is not possible to deduce surjectivity for the general curve of any
sufficiently high genus, because of restrictions on the genus. Moreover, the
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first of such examples has a much higher genus. The examples of curves in
a product of two curves are used in this paper to decrease the bound. On
the other hand, Theorem 3.1 shows that general curves on K3 surfaces of
sufficiently high genus behave as general curves in the moduli space, with
respect to the second Gaussian map.

To prove our theorem, we first show that sufficient conditions for the sur-
jectivity of γ2

C for C, a curve in a K3 surface X , are given by the surjectivity
of the second Gaussian map γ2

OX(C) : I2(OX(C)) → H0(S2Ω1
X ⊗ OX(2C))

and the vanishing of H1(S2Ω1
X ⊗ OX(C)). To prove surjectivity of γ2

OX(C),
we adapt the ideas used in [6] to prove surjectivity of the first Gaussian
map γ1

OX(C).
More precisely, observe that a sufficient condition for the surjectivity of

γ2
OX(C) is the vanishing of H1

(
I3
ΔX

⊗ p∗(OX(C)) ⊗ q∗(OX(C))
)
, where ΔX

is the diagonal in X × X and p, q are the two projections to X . The idea
is to consider the blowup Y of X × X along the diagonal ΔX and to use
the Kawamata-Viehweg vanishing theorem (see [13], [17]) as follows. Let E

be the exceptional divisor; denote by π : Y → X × X the natural morphism
and set f := p ◦ π, g := q ◦ π. Then

H1
(
I3
ΔX

⊗ p∗(OX(C)) ⊗ q∗(OX(C))
)

∼= H1
(
Y, f ∗(OX(C)) ⊗ g∗(OX(C))(−3E)

)

∼= H1
(
Y, f ∗(OX(C)) ⊗ g∗(OX(C)) ⊗ KY (−4E)

)
,

since KY = OY (E). So by the Kawamata-Viehweg vanishing theorem, it
suffices to prove that the line bundle L := f ∗(OX(C)) ⊗ g∗(OX(C))(−4E)
is big and nef.

Now notice that if one decomposes OX(C) as
⊗4

i=1 Ai, where Ai are line
bundles on X , then L =

⊗4
i=1(f

∗(Ai) ⊗ g∗(Ai)(−E)). To obtain that L is big
and nef, we place suitable conditions on the line bundles Ai, and we study
the sublinear system of |f ∗(Ai) ⊗ g∗(Ai)(−E)| given by P

(
Λ2(H0(Ai))

)
(see

Lemma 3.3).
The vanishing of H1(S2Ω1

X ⊗ OX(C)) relies on a similar argument, but
it requires a more refined version of it. In fact, given a decomposition of
OX(C) as OX(D) ⊗ OX(D′), we have

H1
(
S2Ω1

X ⊗ OX(C)
)
= H1

(
X × X,I2

ΔX
/I3

ΔX
⊗ p∗(OX(D)) ⊗ q∗(OX(D′))

)
;
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hence, its vanishing is implied by the vanishing of H1
(
X × X,I2

ΔX
⊗

p∗(OX(D)) ⊗ q∗(OX(D′))
)

and of H2
(
X × X,I3

ΔX
⊗ p∗(OX(D)) ⊗

q∗(OX(D′))
)
. So, with the same argument as above, it suffices to show

that f ∗(OX(D)) ⊗ g∗(OX(D′))(−4E) is big and nef. The strategy is now to
choose OX(D) =

⊗4
i=1 Ai and D′ = D +B with B nef and effective, so that

we take C ∈ |2D + B|.
The above decompositions are shown on concrete examples of K3 surfaces

X and of curves C in X , which are explicitly constructed via their Picard
lattices (see Proposition 3.4).

Finally, regardless of the examples that we give, note that the conditions
of the line bundles Ai as in Lemma 3.3 and the decomposition OX(C) =
OX(2D + B) force the genus of C to be far from the optimal lower bound.
Regardless, observe that the vanishing of H1(S2Ω1

X ⊗ OX(C)) itself already
implies that the curve C must be of genus at least 31, as one can check by
looking at the restriction of Ω1

X ⊗ Ω1
X(C) to C and the induced cohomology

exact sequence.

§2. Preliminaries on Gaussian maps

Let Y be a smooth complex projective variety, and let ΔY ⊂ Y × Y be the
diagonal. Let L and M be line bundles on Y . For a nonnegative integer k,
the kth Gaussian map associated to these data is the restriction to diagonal
map

γk
L,M : H0(Y × Y, Ik

ΔY
⊗ L � M) → H0(Y, Ik

ΔY |ΔY
⊗ L ⊗ M)

(1)
∼= H0(Y,SkΩ1

Y ⊗ L ⊗ M).

Usually first Gaussian maps are simply referred to as Gaussian maps. The
exact sequence

(2) 0 → Ik+1
ΔY

→ Ik
ΔY

→ SkΩ1
Y → 0

(where SkΩ1
Y is identified to its image via the diagonal map), twisted by

L�M , shows that the domain of the kth Gaussian map is the kernel of the
previous one:

γk
L,M : kerγk−1

L,M → H0(SkΩ1
Y ⊗ L ⊗ M).
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In our applications, we will exclusively deal with Gaussian maps of order 2,
assuming also that the two line bundles L and M coincide. For the reader’s
convenience, we spell out these maps. The map γ0

L is the multiplication map
of global sections

(3) H0(Y,L) ⊗ H0(Y,L) → H0(Y,L2),

which obviously vanishes identically on ∧2H0(L). Consequently, H0(Y ×
Y, IΔY

⊗ L � L) decomposes as ∧2H0(L) ⊕ I2(L), where I2(L) is the kernel
of S2H0(Y,L) → H0(Y,L2). Since γ1

L vanishes on symmetric tensors, one
writes

(4) γ1
L : ∧2H0(L) → H0(Ω1

Y ⊗ L2).

Again, H0(Y × Y, I2
ΔY

⊗ L � L) decomposes as the sum of I2(L) and the
kernel of (4). Since γ2

L vanishes identically on skew-symmetric tensors, one
usually writes

(5) γ2
L : I2(L) → H0(S2Ω1

Y ⊗ L2).

The primary object of this paper is the second Gaussian map of the canon-
ical line bundle KC on a curve C:

γ2
C : I2(KC) → H0(K4

C).

In our situation, Y will be either a K3 surface X or a smooth irreducible
projective curve C on X .

§3. Main theorem

Theorem 3.1. If X is a general polarized K3 surface of degree 2g − 2
with g > 280, and if C is a general hyperplane section of X, then γ2

C is
surjective.
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Let us explain the strategy of the proof of Theorem 3.1. We have the
following commutative diagram:

(6) I2

(
OX(C)

)

r

γ2
OX (C)

H0
(
S2Ω1

X ⊗ OX(2C)
)

p1

H0(S2Ω1
X|C ⊗ K2

C),

p2

I2(KC)
γ2

C

H0(K4
C)

where r and p1 are restriction maps and p2 comes from the conormal exten-
sion. More precisely, consider the exact sequence coming from the conormal
extension

0 → Ω1
X|C ⊗ KC → S2Ω1

X|C ⊗ K2
C → K4

C → 0;

then we have

H0(S2Ω1
X|C ⊗ K2

C)
p2→ H0(K4

C) → H1(Ω1
X|C ⊗ KC) ∼= H0(TX|C)∗,

so p2 is surjective by the following lemma.

Lemma 3.2. If X is a general K3 surface, and if C is a general curve of ge-
nus at least 13 in the very ample linear system |OX(C)|, then H0(TX|C) = 0.

Proof. By the exact sequence given by restriction of TX to C, H0(TX|C)
injects in H1(TX(−C)), which vanishes by [7, Lemma 2.3].

The theorem will follow if we prove that the maps γ2
OX(C) and p1 are

also surjective. In fact, it suffices to exhibit examples of pairs (X,C) where
X is a K3 and C is a very ample curve in X of any genus g sufficiently
high (g ≥ 281) for which γ2

OX(C) and p1 are surjective. To do this, we follow
the strategy used in [6] to study the first Wahl map (see also [5]). More
precisely, from the exact sequence

0 → I3
ΔX

⊗ p∗(
OX(C)

)
⊗ q∗(

OX(C)
)

(7)

→ I2
ΔX

⊗ p∗(
OX(C)

)
⊗ q∗(

OX(C)
)

→ I2
ΔX

/I3
ΔX

⊗ p∗(
OX(C)

)
⊗ q∗(

OX(C)
)

→ 0
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and taking global sections, we see that γ2
OX(C) is surjective if H1(I3

ΔX
⊗

p∗(OX(C)) ⊗ q∗(OX(C))) = 0.
The idea used in [6] is to consider the blowup Y of X × X along the

diagonal ΔX and to use the Kawamata-Viehweg vanishing theorem. Let E

be the exceptional divisor; denote by π : Y → X × X the natural morphism
and set f := p ◦ π, g := q ◦ π. Then

H1
(
I3
ΔX

⊗ p∗(OX(C)) ⊗ q∗(OX(C))
)

∼= H1
(
Y, f ∗(OX(C)) ⊗ g∗(OX(C))(−3E)

)

∼= H1
(
Y, f ∗(OX(C)) ⊗ g∗(OX(C)) ⊗ KY (−4E)

)
,

since KY = OY (E). So, by the Kawamata-Viehweg vanishing theorem, it
suffices to prove that f ∗(OX(C)) ⊗ g∗(OX(C))(−4E) is big and nef.

Consider now the map

p1 : H0
(
S2Ω1

X ⊗ OX(2C)
)

→ H0(S2Ω1
X|C ⊗ K2

C).

Clearly p1 is surjective if H1(S2Ω1
X ⊗ OX(C)) = 0.

Our strategy to prove the surjectivity of p1 is to adapt the above idea for
the vanishing of H1(Y, f ∗(OX(C)) ⊗ g∗(OX(C)) ⊗ (−3E)) in order to show
that also H1(S2Ω1

X ⊗ OX(C)) vanishes. To this end, let H be a very ample
divisor, and assume that C ∈ |2H + B|, where B is nef and effective. Then

H1
(
S2Ω1

X ⊗ OX(C)
)

∼= H1
(
X,q∗(I2

ΔX
/I3

ΔX
⊗ p∗(OX(H)) ⊗ q∗(OX(H + B)))

)

∼= H1
(
X × X,I2

ΔX
/I3

ΔX
⊗ p∗(OX(H)) ⊗ q∗(OX(H + B))

)
,

where the last isomorphism comes from Leray spectral sequence. So, by (7),
to prove surjectivity of p1 it suffices to show that H1

(
I2
ΔX

⊗ p∗(OX(H)) ⊗
q∗(OX(H +B))

)
= 0 and that H2

(
I3
ΔX

⊗ p∗(OX(H)) ⊗ q∗(OX(H +B))
)
= 0.

Using again the blowup Y , this is true if the line bundles f ∗(OX(H)) ⊗
g∗(OX(H +B))(−4E) and f ∗(OX(H)) ⊗ g∗(OX(H +B))(−3E) are big and
nef.

In conclusion, if we prove that f ∗(OX(H)) ⊗ g∗(OX(H + B))(−4E) and
f ∗(OX(H)) ⊗ g∗(OX(H + B))(−3E) are big and nef, then p1 is surjective.
Moreover, also f ∗(OX(C)) ⊗ g∗(OX(C))(−4E) is big and nef, and therefore
γ2

OX(C) is surjective.
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Following [6] we will exhibit pairs (X,C) as above (where C ∈ |2H +
B|) for which f ∗(OX(H)) ⊗ g∗(OX(H + B))(−4E) and f ∗(OX(H)) ⊗
g∗(OX(H +B))(−3E) are big and nef. First of all, observe that if there exist
four line bundles Ai i = 1,2,3,4 on X such that OX(H) ∼= A1 ⊗ A2 ⊗ A3 ⊗ A4,
then we have

f ∗(
OX(H)

)
⊗ g∗(

OX(H + B)
)
(−4E)

∼=
⊗

i=1,2,3,4

(
f ∗(Ai) ⊗ g∗(Ai)(−E)

)
⊗ g∗(

OX(B)
)
,

and

f ∗(
OX(H)

)
⊗ g∗(

OX(H + B)
)
(−3E)

∼=
⊗

i=1,2,3

(
f ∗(Ai) ⊗ g∗(Ai)(−E)

)
⊗

(
f ∗(A4) ⊗ g∗(A4 ⊗ OX(B))

)
.

These are big and nef under the conditions given in the following lemma.

Lemma 3.3. Let A1, A2, A3, A4 be four base point free line bundles on
a K3 surface X with A2

j ≥ 2, j = 1,2,3,4 and such that A1 is very ample.
Assume that either A2, A3, A4 are very ample or they define (2 : 1) finite
morphisms onto P

2 and that if A2
j = 2, we have (A1 ⊗ A2 ⊗ A3 ⊗ A4) · Aj ≥ 12.

Then ⊗

i=1,2,3,4

(
f ∗(Ai) ⊗ g∗(Ai)(−E)

)

is big and nef.

Proof. The proof is almost the same as the proof of [6, Lemma 2.2], but
we reproduce it here for the reader’s convenience.

If Ai is very ample, the linear system |f ∗(Ai) ⊗ g∗(Ai)(−E)| on Y has a
sublinear system defining the morphism F : Y → Gr(1,PH0(Ai)∗), associ-
ating to (x, y) ∈ Y the line between φAi(x) and φAi(y), composed with the
Plücker embedding. Notice that if (x, y) ∈ E, we can think of (x, y) as a pair
where x ∈ X , y ∈ PTX,x; hence, F (x, y) is the line generated by (dφAi)x(y).
Therefore, f ∗(Ai) ⊗ g∗(Ai)(−E) is nef, and it is also big, since the image of
X in PH0(Ai)∗ is not ruled.

Therefore, since A1 is very ample, (f ∗(A1) ⊗ g∗(A1))(−E) is big; hence,⊗
i=1,2,3,4(f

∗(Ai) ⊗ g∗(Ai)(−E)) is big, and it can fail to be nef only on
a curve Z contained in the indeterminacy locus of the maps Y → Gr(1,
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PH0(Ai)∗), i = 2,3,4, if Ai is not very ample. Notice that Z is a curve
contained in {(x, y) ∈ Y − E | φAi(x) = φAi(y)} ∪ {(x, y) ∈ E | (dφAi)x(y) =
0}. Assume that Ai is not very ample; hence, by assumption, it gives a
(2 : 1) morphism to P

2. If Z �⊂ E, let τ : X × X → X × X be the involution
τ(x, y) = (y,x); then we can assume that the image Z of Z in X × X is such
that τ(Z) = Z, because

⊗
i=1,2,3,4(f

∗(Ai) ⊗ g∗(Ai)(−E)) is invariant under
τ . Then the first (or second) projection Z ′ of Z in X is φ∗

Ai
(Z1) for some

curve Z1 in P
2. If L is a line in P

2 and if Z1 ∼ mL, we have
⊗

i=1,2,3,4

(
f ∗(Ai) ⊗ g∗(Ai)(−E)

)
· Z

= 2(A1 ⊗ A2 ⊗ A3 ⊗ A4) · Z ′ − 4E · Z

= 2(A1 ⊗ A2 ⊗ A3 ⊗ A4) · mφ∗
Ai

(L) − 4E · Z

= 2m(A1 ⊗ A2 ⊗ A3 ⊗ A4) · Ai − 4E · Z;

therefore, we are done if we show that E · Z = 6m. Let B be the ramification
divisor of φAi ; then B is a smooth plane sextic, and E · Z = mB · L = 6m,
if the intersection of E and Z is transverse. This can be checked directly as
in [6, Lemma 2.2].

If Z ⊂ E, then it is the strict transform of the ramification divisor R on
X of φAi ; hence, Z · E = −c1(OPTX

(1)) · Z = − degTR = 18. Therefore,
⊗

i=1,2,3,4

(
f ∗(Ai) ⊗ g∗(Ai)(−E)

)
· Z = 6(A1 ⊗ A2 ⊗ A3 ⊗ A4) · Ai − 4E · Z ≥ 0.

Let us now show the construction of the examples.

Proposition 3.4. There exist smooth K3 surfaces X with Picard lattice
Γ = ZD ⊕ ZL ⊕ ZR ⊕ ZS ⊕ ZT with intersection matrix diag(2h, −2k, −2j,
−2l, −2m) with j, k, l,m ≥ 2, h ≥ k +1, j +1, l+1,m+1 and D very ample.
Moreover, D + L, D + R, D + S, and D + T are base point free, and they
are either very ample or define (2 : 1) morphisms to P

2.

Proof. Observe that the lattice Γ is even, nondegenerate, and of signa-
ture (1,4); hence, it occurs as the Neron-Severi group of some algebraic K3
surface (see [15, Corollary 2.9]). We will show that there does not exist a
class F ∈ Γ such that F 2 = −2, D · F = 0. By well-known results on periods
of K3 surfaces (see, e.g., [2]), this implies that there exists a K3 surface
with Picard lattice Γ and such that D is ample.
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Assume that F = aD + bL + cR + dS + eT (a, b, c, d, e ∈ Z) is such that
F · D = 0 and that F 2 = −2. The first equality implies a = 0, and the second
one yields 1 = kb2 + jc2 + ld2 + me2, which is absurd, since k, j, l,m ≥ 2.
So D is ample and D2 ≥ 4; hence, D is very ample provided that there
does not exist an irreducible curve F such that F 2 = 0, F · D = 1,2 (see
[16], or [14, Theorem 5]). But this cannot happen, because if we write
F = aD + bL + cR + dS + eT , a, b, c, d, e ∈ Z, then F · D = 2ha �= 1,2 since
h ≥ 2. So D is very ample. Note that (D + L)2 = 2h − 2k ≥ 2, since h ≥
k + 1.

First of all, we show that for any (−2)-curve F , F · (D + L) > 0; hence,
D +L is ample, and it is base point free, provided that there does not exist
irreducible curves F,G and an integer a ≥ 2 such that D + L ∼ aF + G,
with F 2 = 0, G2 = −2, F · G = 1 (see [16], or [14, Theorem 5]). This clearly
cannot happen, since the product of two classes is always even.

Set F = aD + bL + cR + dS + eT , a, b, c, d, e ∈ Z with F 2 = −2. Since D

is ample, D · F = 2ha > 0; hence, a > 0. F 2 = −2 yields a2 = (kb2 + jc2 +
ld2 + me2 − 1)/h.

If (D+L)(aD+bL+cR+dS +eT ) = 2ah − 2kb ≤ 0, we have bk ≥ ah > 0,
so b > 0 and b2k2 ≥ h2a2 = h(b2k + c2j + d2l + e2m − 1). Thus we get

b2(k2 − hk) − hc2j − hd2l − he2m + h ≥ 0,

so if we set h = k + 1 + t, t ≥ 0, we obtain

0 ≤ b2(k2 − hk) − hc2j − hd2l − he2m + h ≤ b2(k2 − hk) + h

= t(1 − b2k) + k(1 − b2) + 1 ≤ −t + 1;

hence, we must have either t = 0 or t = 1. But if t = 0, then h = k + 1, so

0 ≤ b2(k2 − hk) − hc2j − hd2l − he2m + h

= k(1 − b2) − (k + 1)(c2j + d2l + e2m) + 1 ≤ k(1 − b2) + 1,

so b = 1, but then −(k + 1)(c2j + d2l + e2m) + 1 ≥ 0, which is absurd.
If t = 1, then h = k + 2, so we have

0 ≤ −2b2k + k + 2 − (k + 2)(c2j + d2l + e2m) ≤ k(1 − 2b2) + 2;

thus we must have b = 1, so 0 ≤ −k + 2 − (k + 2)(c2j + d2l + e2m) ≤ −(k +
2)(c2j +d2l + e2m), which implies c = d = e = 0. But then a2 = (k − 1)/(k +
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2), which is absurd. So D +L is ample and base point free. If (D +L)2 ≥ 4,
a similar computation shows that there does not exist a curve F such that
F 2 = 0 and F · (D + L) = 1,2; therefore, D + L is very ample.

If (D +L)2 = 2, it clearly defines a (2:1) morphism to P
2. The same holds

for D + R, D + S, and D + T .

Proof of Theorem 3.1. Consider the K3 surfaces constructed in Propo-
sition 3.4. Set A1 = D, and set Ai, i = 2,3,4, equal to D, D + L, D + R,
D +S, or D +T . By setting H = A1 +A2 +A3 +A4 = 4D +aL+ bR+ cS +
dT , with a, b, c, d ≥ 0, a + b + c + d ≤ 3, and H̃ = 2H + B, where B = nD +
m(D+L)+r(D+R)+s(D+S)+ t(D+T ), with m,n, r, s, t ≥ 0, Lemma 3.3
applies. In fact, it suffices to check that H · (D + L) ≥ 12, H · (D + R) ≥ 12,
and H · (D + S) ≥ 12, H · (D + T ) ≥ 12, which is true for our choices of H .
Hence,

⊗
i=1,2,3,4

(
f ∗(Ai) ⊗ g∗(Ai)(−E) ⊗ g∗(OX(B))

)
is big and nef, and(⊗

i=1,2,3(f
∗(Ai) ⊗ g∗(Ai)(−E))

)
⊗

(
f ∗(A4) ⊗ g∗(A4) ⊗ (OX(B))

)
is also big

and nef. If we take C ∈ |H̃|, we also have H1(S2Ω1
X ⊗ OX(C)) = 0; thus γ2

C

is surjective.
Now we have to check that, with our choices of a nondivisible H̃ , we

obtain all the genera g(C) = 1 + (1/2)H̃2 ≥ 281 for curves C ∈ |H̃|. To this
end, it suffices to take H̃ = aD + sL + tR + vS + rT, where s, t, v, r ≥ 0,
relatively prime, s + t + v + r ≤ a − 2, 9 ≤ a ≤ 14, and, if a = 9, at most one
among s, t, v, r is odd; if a = 10, at most two among s, t, v, r are odd; and if
a = 11, at most three among s, t, v, r are odd.

In particular, let us start with H̃ = 9D + 6L + R; for C ∈ |H̃|, we have

g(C) = 1 +
1
2
H̃2 = 1 + 81h − 36k − j.

Let us set n = k − 2, m = j − 2, and h = n+3+ t, where n,m, t ≥ 0; then we
have h ≥ m+3, so t ≥ m − n, g(C) = 1+81(n+3+ t) − 36(n+2) − (m+2),
and we have two cases.

(1) ρ := n − m ≥ 0, t ≥ 0; then

g(C) = 1 + 81(m + ρ + 3 + t) − 36(m + ρ + 2) − (m + 2)

= 170 + 45ρ + 44m + 81t,

with t,m,ρ ∈ Z, t,m,ρ ≥ 0.
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(2) α := m − n ≥ 0, t = α + β, with β ≥ 0; then

g(C) = 1 + 81(n + 3 + α + β) − 36(n + 2) − (n + 2 + α)

= 170 + 44n + 80α + 81β,

with n,α,β ∈ Z, n,α,β ≥ 0.

Since 44 and 45 are relatively prime, it is clear that with g(C) = 170 +
45ρ + 44m + 81t one gets all sufficiently high genera. Using (1) and (2), one
can simply check that g(C) runs through all the integers greater than 620
and that with the other choices of H̃ one gets all genera g greater than 280
except for g = 321.

For g = 321, we consider the K3 surface constructed in [6, Proposition 3.2]
with Picard lattice given by Γ = ZD ⊕ ZL with D2 = 4, L2 = 2, D · L = 7.
In [6] it is proven that D is very ample and that L defines a 2:1 finite
morphism onto P

2. So if we set Ai = D, i = 1,2,3,4, H = 4D, B = 3D + L,
and H̃ = 2H + B = 11D + L, since H · L = 4D · L = 28, Lemma 3.3 applies.
Hence,

⊗
i=1,2,3,4

(
f ∗(Ai) ⊗ g∗(Ai)(−E) ⊗ g∗(OX(B))

)
is big and nef, and(⊗

i=1,2,3(f
∗(Ai) ⊗ g∗(Ai)(−E))

)
⊗

(
f ∗(A4) ⊗ g∗(A4) ⊗ (OX(B))

)
is also

big and nef. So, as above, if we take C ∈ |H̃|, we also have H1(S2Ω1
X ⊗

OX(C)) = 0; thus γ2
C is surjective. Now it suffices to check that C has genus

g = 1 + (1/2)H̃2 = 321.

Corollary 3.5. For the general curve of genus greater than 152, the
second Gaussian map γ2

C is surjective.

Proof. By Theorem 3.1 and semicontinuity of the corank of γ2
C , for a

general curve of genus greater than 280 γ2
C is surjective. Surjectivity for the

general curve of genus 153 ≤ g ≤ 280 can be proved by exhibiting examples
of curves of genus g with a surjective second Gaussian map, which are either
hyperplane sections of a polarized K3 surface, as in the proof of Theorem 3.1,
or are contained in the product of two curves as in [8, Theorem 3.1].

More precisely, let C1, C2 be two smooth curves of respective genera g1,
g2; choose divisors Di on Ci of degree di, i = 1,2. Set X = C1 × C2, and let
C ∈ |p1

∗(D1) ⊗ p2
∗(D2)| be a smooth curve, where pi is the projection from

C1 × C2 on Ci; then g(C) = 1 + (g2 − 1)d1 + (g1 − 1)d2 + d1d2.
In [8] we proved that if g1, g2 ≥ 2, di ≥ 2gi +5, i = 1,2, or if g1 ≥ 2, g2 = 1,

d1 ≥ 2g1 + 5, d2 ≥ 7, or if g2 = 0, d2 ≥ 7, d2(g1 − 1) > 2d1 ≥ 4g1 + 10, then
γ2

C is surjective.
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Then one has to check directly that these values of g(C) cover all the
remaining integers between 153 and 280.

References

[1] E. Ballico and C. Fontanari, On the surjectivity of higher Gaussian maps for complete
intersection curves, Ricerche Mat. 53 (2004), 79–85.

[2] A. Beauville, Preliminaires sur les periodes des surfaces K3, Asterisque 126 (1985),
91–97.

[3] A. Beauville and J.-Y. Merindol, Sections hyperplanes des surfaces K3, Duke Math. J.

55 (1987), 873–878.

[4] C. Ciliberto, J. Harris, and R. Miranda, On the surjectivity of the Wahl map, Duke
Math. J. 57 (1988), 829–858.

[5] C. Ciliberto, A. F. Lopez, and R. Miranda, Projective degenerations of K3 surfaces,
Gaussian maps, and Fano threefolds, Invent. Math. 114 (1993), 641–667.

[6] C. Ciliberto, A. F. Lopez, and R. Miranda, “On the corank of Gaussian maps for
general embedded K3 surfaces” in Proceedings of the Hirzebruch 65 Conference on
Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc. 9, Bar-Ilan Uni-

versity, Ramat Gan, 1996, 141–157.

[7] C. Ciliberto, A. F. Lopez, and R. Miranda, Classification of varieties with canonical
curve section via Gaussian maps on canonical curves, Amer. J. Math. 120 (1998),
1–21.

[8] E. Colombo and P. Frediani, Some results on the second Gaussian map for curves,
Michigan Math. J. 58 (2009), 745–758.

[9] E. Colombo and P. Frediani, Siegel metric and curvature of the moduli space of
curves, Trans. Am. Math. Soc. 362 (2010), no. 3, 1231–1246.

[10] E. Colombo, P. Frediani, and G. Pareschi, Hyperplane sections of abelian surfaces,

preprint, to appear in J. Algebraic Geom., arXiv:math/0903.2781

[11] E. Colombo, G. P. Pirola, and A. Tortora, Hodge-Gaussian maps, Ann. Sc. Norm.
Super. Pisa Cl. Sci. (4) 30 (2001), 125–146.

[12] M. L. Green, “Infinitesimal methods in Hodge theory” in Algebraic Cycles and Hodge
Theory, Torino 1993, Lect. Notes Math. 1594, Springer, Berlin, 1994, 1–92.

[13] Y. Kawamata, A generalization of Kodaira-Ramanujam’s vanishing theorem, Math.
Ann. 261 (1982), 43–46.

[14] S. Mori, On degrees and genera of curves on smooth quartic surfaces in P 3, Nagoya
Math. J. 96 (1984), 127–132.

[15] D. R. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75 (1984),
105–121.

[16] B. Saint-Donat, Projective models of K3 surfaces, Amer. J. Math. 96 (1974), 602–

639.

[17] E. Viehweg, Vanishing theorems, J. Reine Angew. Math. 335 (1982), 1–8.

[18] C. Voisin, Sur l’application de Wahl des courbes satisfaisant la condition de Brill-

Noether-Petri, Acta Math. 168 (1992), 249–272.

[19] J. Wahl, The Jacobian algebra of a graded Gorenstein singularity, Duke Math. J. 55
(1987), 843–871.

[20] J. Wahl, Gaussian maps on algebraic curves, J. Differential Geom. 32 (1990), 77–98.

https://doi.org/10.1215/00277630-2010-006 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2010-006


136 ELISABETTA COLOMBO AND PAOLA FREDIANI

[21] J. Wahl, “Introduction to Gaussian maps on an algebraic curve” in Complex Pro-
jective Geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lect. Note Ser.
179, Cambridge University Press, Cambridge, 1992, 304–323.

Elisabetta Colombo

Dipartimento di Matematica

Università di Milano
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