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Abstract

We show that the completed Hecke algebra of p-adic modular forms is isomorphic to the
completed Hecke algebra of continuous p-adic automorphic forms for the units of the
quaternion algebra ramified at p and ∞. This gives an affirmative answer to a question
posed by Serre in a 1987 letter to Tate. The proof is geometric, and lifts a mod p
argument due to Serre: we evaluate modular forms by identifying a quaternionic double-
coset with a fiber of the Hodge–Tate period map, and extend functions off of the double-
coset using fake Hasse invariants. In particular, this gives a new proof, independent of
the classical Jacquet–Langlands correspondence, that Galois representations can be
attached to classical and p-adic quaternionic eigenforms.
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1. Introduction

Let p be a prime and let D/Q be the (unique up to isomorphism) quaternion algebra ramified at
p and∞. Let A denote the adèles of Q, Af the finite adèles, and A

(p)
f the finite prime-to-p adèles.

Let Kp ⊂ D×(A(p)
f ) be a compact open subgroup. For R a topological ring (e.g. C, Fp, Qp, or

Cp), we consider the space of continuous p-adic automorphic forms on D× with coefficients in R
and prime-to-p level Kp,

AKp

R := Cont(D×(Q)\D×(A)/Kp, R).

For R totally disconnected (e.g. Fp, Qp, or Cp), the archimedean component can be removed,
and we have an identification

AKp

R = Cont(D×(Q)\D×(Af )/Kp, R).

Note that D×(Q)\D×(Af )/Kp is a profinite set. Moreover, by choosing coset representatives, it
can be identified with a finite disjoint union of compact open subgroups of D×(Qp), so that it is
essentially a p-adic object.

The space AKp

R admits an action of the abstract double-coset Hecke algebra

Tabs := Z[Kp\D×(A(p)
f )/Kp],

and a commuting action of D×(Qp). In this work, we study the spectral decomposition of AKp

R

under the action of Tabs.
The classical Jacquet–Langlands correspondence [JL70], proved using analytic techniques,

implies that, up to twisting, the eigensystems for Tabs acting on AKp

C are a strict subset of
those appearing in classical complex modular forms. The eigensystem attached to a cuspidal
modular form appears on the quaternionic side if and only if the corresponding automorphic
representation of GL2 is discrete series at p.

On the other hand, arguing with the geometry of mod p modular curves, Serre [Ser96] showed
that the eigensystems arising in AKp

Fp
are the same as those appearing in the space of mod p

modular forms (see Theorem 1.1.1 for a slight refinement of Serre’s result). In particular, the
gaps in the Jacquet–Langlands correspondence over C disappear when working mod p.
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The main result of this work is a natural lift of Serre’s result to Qp: we use the geometry
of the perfectoid modular curve at infinite level to show that the completed Hecke algebra of
AKp

Qp
is isomorphic to the completed Hecke algebra of p-adic modular forms (see Theorem A for

a precise statement).
Theorem A is compatible with the classical Jacquet–Langlands correspondence: the eigen-

systems appearing in classical complex quaternionic automorphic forms can be identified with
the eigensystems appearing in AKp

Qp
such that the corresponding eigenspace contains a vector

which, up to a twist, transforms via an algebraic representation of D×(Qp) after restriction
to a sufficiently small compact open subgroup. Thus, Theorem A can be interpreted as saying
that there is a p-adic Jacquet–Langlands correspondence that fills in the gaps in the classical
Jacquet–Langlands correspondence. As our proof of the p-adic correspondence is independent
of the classical correspondence, we also obtain a new proof that Galois representations can be
attached to quaternionic automorphic forms (Corollary B).

Both Theorems 1.1.1 and A are purely spectral Jacquet–Langlands correspondences, in the
sense that they compare spectral information for a family of prime-to-p Hecke operators acting
on two different spaces but say little else relating the structure of these spaces; in particular, we
make no attempt here to describe the local D×(Qp)-representation appearing in a fixed Hecke
eigenspace. Nevertheless, some of the methods employed in the proofs of Theorems 1.1.1 and A
can be used provide significant information about these local representations, and we plan to
return to this in future work (see § 1.3 for further discussion).

1.1 Serre’s spectral mod p Jacquet–Langlands correspondence
Before discussing our results and techniques further, we take a detour to give a precise statement
of Serre’s [Ser96] mod p correspondence.

If we fix an isomorphism

D×(A(p)
f ) ∼= GL2

(
A

(p)
f

)
,

then we obtain an action of the Hecke algebra Tabs on the spaceMKp

Fp
of mod p modular forms

of prime-to-p level Kp. In a 1987 letter to Tate, Serre [Ser96] proved a mod p Jacquet–Langlands
correspondence comparing the spectral decompositions of AKp

Fp
andMKp

Fp
. We state below a slight

strengthening of his result, which follows essentially from Serre’s proof.1 First, some notation.
Suppose T′ ⊂ Tabs is a commutative sub-algebra and χ : T′ → Fp is a character. Then, if T′

acts on an Fp-vector space V , we may consider the χ-eigenspace V [χ]. If we write mχ := kerχ,
we may also consider the generalized χ-eigenspace Vmχ (that is, the subset of elements killed by
a power of mχ).

Theorem 1.1.1 (Serre). Let T′ ⊂ Tabs be a commutative sub-algebra. Then, there is a finite
collection of characters χi : T′ → Fp with kernels mi such that:

(i) for each i,
(
AKp

Fp

)
mi

and
(
MKp

Fp

)
mi

are non-zero; in particular

AKp

Fp
[χi] �= 0 and MKp

Fp
[χi] �= 0;

(ii) there are direct sum decompositions

AKp

Fp
=

⊕
i

(
AKp

Fp

)
mχi

and MKp

Fp
=

⊕
i

(
MKp

Fp

)
mχi

.

1 Actually, when p = 2 or 3, this method of proof leads to a small restriction on Kp, but this will be removed by
instead deducing the mod p result directly from our p-adic result.
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In other words, the Hecke eigensystems appearing in mod p quaternionic automorphic forms
are precisely those appearing in mod p modular forms. This stands in contrast to the classical
Jacquet–Langlands correspondence, where the eigensystems appearing in quaternionic forms are
a strict subset of those appearing in modular forms. The following example gives a concrete
illustration.

Example 1.1.2. The discriminant form, represented by the Ramanujan series

Δ(q) = q
∏
n≥1

(1− qn)24 =
∑

τ(n)qn,

is a weight 12 level-one cuspidal eigenform whose corresponding automorphic representation is
principal series at every prime p. Thus, the classical Jacquet–Langlands correspondence says that
its Hecke eigensystem, encoded by the coefficients τ(�) for � prime, does not appear in the space
of classical automorphic forms on D× for any prime p (recall p appears in the definition of D×).
By contrast, Theorem 1.1.1 shows that the coefficients τ(�) mod p for � �= p are remembered
by a mod p quaternionic automorphic form on D×. A similar phenomenon occurs in our p-adic
correspondence, which remembers the numbers τ(�) on the nose.

1.2 A spectral p-adic Jacquet–Langlands correspondence
1.2.1 Serre’s question. Serre ended his letter to Tate with a list of questions inspired by the

mod p Jacquet–Langlands correspondence. One of these suggests an analogous study relating
AKp

Qp
to p-adic modular forms.

Analogues p-adiques. Au lieu de regarder les fonctions localement constantes sur D×
A/D

×
Q á

valeurs dans C, il serait plus amusant de regarder celles à valeurs dans Qp. Si l’on décompose
A en Qp × A′, on leur imposerait d’être localement constantes par rapport à la variable dans
DA′ et d’être continues (ou analytiques, ou davantage) par rapport à la variable dans Dp. . . Y
aurait-il des représentations galoisiennes p-adiques associées a de telles fonctions, supposées
fonctions propres des opérateurs de Hecke? Peut-on interpréter les constructions de Hida (et
Mazur) dans un tel style? Je n’en ai aucune idée. (Serre [Ser96, paragraph (26)].)

Our main result, Theorem A, shows that the answers to Serre’s questions are, largely, yes. In
particular, Theorem A implies that Galois representations can be attached to p-adic quaternionic
eigenforms (Corollary B).

1.2.2 A homeomorphism of completed Hecke algebras. The space AKp

Qp
of p-adic quaternionic

automorphic forms is a Qp-Banach space with respect to the sup norm and the action of Tabs

is by bounded linear operators. For any subalgebra T′ ⊂ Tabs we thus obtain a completed Hecke
algebra T′∧

AKp
Qp

by taking the closure of the image of T′ in the algebra of bounded linear operators

on AKp

Qp
(equipped with the topology of pointwise convergence; see § 2.4 for details). It is a

topological Zp-algebra.
As in the mod p case, we would like to compare the Hecke action on AKp

Qp
to a Hecke action

on a space of modular forms; in this case, we do so by comparing completed Hecke algebras.
To that end: Serre [Ser73] constructed natural spaces of p-adic modular forms by completing
spaces of classical modular forms for the p-adic topology on q-expansions (these spaces were
then interpreted geometrically by Katz [Kat75a, Kat75b]). In particular, one obtains a natural
Qp-Banach spaceMKp

p-adic of p-adic modular forms of prime-to-p level Kp equipped with an action
of Tabs by bounded linear operators and, thus, a completed Hecke algebra T′∧

MKp
p-adic

. Our main
result is as follows.
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Theorem A. For any sub-algebra T′ ⊂ Tabs, the identity map T′ → T′ extends to a canonical
isomorphism of topological Zp-algebras

T′∧
AKp

Qp
= T′∧

MKp
p-adic

.

Theorem A implies Theorem 1.1.1 (as essentially explained in § 4.5; the point is that the
maximal ideals in Theorem 1.1.1 correspond to the open maximal ideals in the corresponding
completed Hecke algebras), and gives a natural lift to characteristic zero suitable, e.g., for the
construction of Galois representations. Our proof lifts Serre’s approach via the mod p geometry
of modular curves to characteristic zero by using the p-adic geometry of infinite level modular
curves.

Remark 1.2.3. The completed Hecke algebras do not change if we replace Qp with a finite exten-
sion, or even Cp (and, indeed, this invariance under base change plays an important role in our
proof). Thus, although Serre in his letter quoted above suggests the study of AKp

Qp
, it is natural

in our setup to work over Qp. In particular, an eigenform in AKp

Qp
will still give rise to a Qp-valued

character of T′∧
AKp

Qp
.

1.2.4 Completed cohomology. By a result of Emerton [Eme11] (building on work by Hida),
T′∧

MKp
p-adic

is equal to the completed Hecke algebra of T′ acting on the completed cohomology

of modular curves. On the other hand, AKp

Qp
is the completed cohomology at level Kp for D×.

Hence, we also obtain a homeomorphism between the completed Hecke algebras for the completed
cohomology of GL2 and D×. In fact, our proof passes first through this equivalence then uses
the result of Emerton, which we establish more carefully along with some other identifications
in § 5.7.

1.2.5 Galois representations. Let Ttame ⊂ Tabs be the tame Hecke algebra of level Kp, i.e.
the commutative sub-algebra generated by the Hecke operators at � for primes � �= p at which
Kp factors as Kp,�K� for Kp,� ⊂ D×(A(pl)

f ) and K� ⊂ D×(Ql) a maximal compact subgroup. For
each such � we write T� for the standard Hecke operator. Combining Theorem A with known
results for T′∧

MKp
p-adic

gives the following result.

Corollary B. If χ : T∧
tame,AKp

Qp

→ Cp is a continuous character then there exists a unique

semisimple continuous representation

ρ : Gal(Q/Q)→ GL2(Cp)

unramified at � as above and such that Tr(ρ(Frob�)) = χ(T�).

One can obtain such a χ from a quaternionic eigenform as in Remark 1.2.3, and thus
Corollary B attaches Galois representations to these eigenforms.

1.2.6 Work of Emerton. Corollary B can also be deduced from the classical
Jacquet–Langlands correspondence. In fact, a version of Theorem A after localizing at a max-
imal ideal was first shown by Emerton [Eme14, 3.3.2] by reversing this argument: the classical
correspondence gives rise to a surjective map of completed Hecke algebras

T′∧
MKp

p-adic
→ T′∧

AKp
Qp
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(which is enough to obtain Corollary B), and then strong results in the deformation theory of
Galois representations can be used to deduce that this map is an isomorphism after localizing
at a maximal ideal m (under minor hypotheses on m).

By contrast, our proof is based entirely on the p-adic geometry of modular curves. Thus,
we obtain a new proof of Corollary B that is independent of the classical Jacquet–Langlands
correspondence, and our proof of Theorem A does not use any R = T theorems or other results
on Galois deformations.

1.3 Eigenspaces and the local p-adic Jacquet–Langlands correspondence
One failing of Theorem A as stated is that it says nothing about the D×(Qp)-representation
appearing in the eigenspace in AKp

Qp
attached to a character of T′∧

AKp
Qp

valued in a finite exten-

sion of Qp. Indeed, because completed Hecke algebras are formed by compiling congruences of
eigensystems, which may not be reflected in congruences of eigenvectors, one does not even know
whether such an eigenspace is non-empty . On the other hand, one expects that it is always non-
empty, and that the D×(Qp)-representation appearing is essentially that constructed in the local
correspondences of Knight [Kni16] and Scholze [Sch18].

In the course of the proof of Theorem A, we produce explicit eigenvectors that show this
eigenspace is non-empty at least for eigensystems attached to classical modular forms. In the
author’s thesis [How17], it was explained how to refine this construction so that it applies more
generally to overconvergent modular forms, and it was also verified that the eigenvectors obtained
are never locally algebraic for the action of D×(Qp) (and, thus, in some sense are new, i.e. not
obtainable by combining the classical Jacquet–Langlands correspondence and Gross’s [Gros99]
theory of algebraic automorphic forms, which together furnish a complete description of the
locally algebraic vectors). One can now do better in at least two ways.

(i) An overconvergent modular form more canonically gives rise to a non-zero map to the corre-
sponding eigenspace in quaternionic automorphic forms from a purely local representation
of D×(Qp) constructed as a space of distributions on the Lubin–Tate tower. The eigenvector
referred to above is obtained as the image of a Dirac delta function under this map. By
studying this local representation we can obtain considerably more, though still incomplete,
information about the eigenspace.

(ii) Combining this with recent results of Pan [Pan22] on the ubiquity of overconvergent modular
forms, we find that, under some minor hypotheses on the associated Galois representation,
the eigenspace is always non-empty.

Both points will be explained further in future work.

1.4 Outline
In § 2 we give some preliminaries, including in § 2.4 some results on comparing completed Hecke
algebras that will be essential in the proof of Theorem A. In § 3 we set up our moduli problems for
elliptic curves and recall the basic adelic setup for modular forms (classical, mod p, and p-adic).
The main result of the section is Theorem 3.7.1, which identifies the supersingular Igusa variety
with a quaternionic coset, one of the key ingredients in the proof of both the mod p and p-adic
correspondence. Some aspects of the way we set up our moduli problems may be of independent
interest; for more, we refer the reader to the introduction of § 3.

In § 4 we prove the version of Serre’s mod p Jacquet–Langlands correspondence stated above
as Theorem 1.1.1. The proof we give is essentially that of Serre, but we emphasize carefully from
the beginning the role of uniformization of the supersingular locus by the supersingular Igusa
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variety, which, by the above, is just a quaternionic coset. In particular, modular forms can be
evaluated to quaternionic automorphic forms after choosing a trivialization of the modular bundle
along the Igusa variety. A mod p modular form can have zeros or poles along the supersingular
locus, but these can be cleared Hecke-equivariantly using the Hasse invariant in order to obtain
a clean comparison of the corresponding Hecke algebras. When p = 2 or 3, this proof actually
falls just short of the full Theorem 1.1.1, but in § 4.5 we explain how to obtain the full statement
as a consequence of Theorem A.

In § 5 we prove Theorem A. Here the quaternionic coset, again in its avatar as the super-
singular Igusa variety, arises naturally as a fiber of the Hodge–Tate period map in the infinite
level perfectoid modular curve (as in [CS17]). Thus, we can evaluate modular forms to p-adic
quaternionic automorphic forms after choosing a trivialization of the modular bundle on this
fiber. A simple argument shows this evaluation map is injective; the other key property we
need is density of the image. We establish this with the help of Scholze’s fake Hasse invari-
ants.2 These properties of the evaluation map are combined with the results of § 2.4 to deduce
Theorem A.

2. Preliminaries

2.1 Numbers
We fix a prime number p and an algebraic closure Qp of Qp. We write Cp for the completion of
Qp. We denote by Q̆p ⊂ Cp the completion of the maximal unramified extension of Qp in Qp, and
by Z̆p ⊂ Q̆p the completion of the ring of integers in the maximal unramified extension. We write
Fp for Z̆p/p, an algebraically closed extension of Fp = Zp/p. There is a canonical identification
W (Fp) = Z̆p, where W (•) denotes Witt vectors.

We write A for the adèles of Q, Af for the finite adèles, and A
(p)
f for the finite prime-to-

p adèles. We write Ẑ for the profinite completion of Z and Ẑ(p) for the prime-to-p profinite
completion. We have canonical identifications

Ẑ =
∏

� prime

Z� and Ẑ(p) =
∏

��=p prime

Z�

and inclusions Ẑ ⊂ Af and Ẑ(p) ⊂ A
(p)
f inducing isomorphisms

Ẑ⊗Q = Af and Ẑ(p) ⊗Q = Ẑ(p) ⊗ Z(p) = A
(p)
f .

Here Z(p) is interpreted via the notation Rp for R a ring and p a prime ideal of R, which means
the localization of R by the multiplicative system R\p.

2.2 Topological spaces, lisse sheaves, and torsors
Given a topological space T , we denote by T the topological constant sheaf with value T , that
is, the functor on schemes

T (S) = Cont(|S|, T )

where |S| denotes the underlying topological space of S. When T is a profinite set, it is represented
by SpecCont(T,Z), where Z is equipped with the discrete topology (so that the continuous
functions are just locally constant). It is, in particular, a sheaf for the pro-étale topology of
[BS15].

2 We note that this step has been considerably simplified compared with the original argument in [How17] by
using Bhatt–Scholze’s [BS19] recent result that Zariski closed equals strongly Zariski closed.
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We also adopt the framework of [BS15] as our formalism for lisse adelic sheaves.3 Thus,
by a lisse Af -sheaf on a scheme S, we mean a locally free of finite rank Af module on Sproét,

and similarly for Ẑ, A
(p)
f , Ẑ(p), Qp, Zp, etc. A lisse Ẑ-sheaf is equivalent to a compatible sys-

tem of locally free Z/nZ modules of finite rank (on either Sét or Sproét: a locally free Z/nZ

module on Sproét is automatically classical because Z/nZ is discrete), and similarly for Ẑ(p)

and Zp.
For K a topological group, a (right) K-torsor on Sproét is a sheaf K equipped with an

action K ×K → K such that locally on Sproét, K ∼= K with the action by right multiplication.
In particular, if A = Af , Ẑ,A

(p)
f , Ẑ(p),Zp, or Qp, and V is a lisse A-sheaf of rank n, then

Isom(An, V ) := T �→ Isom(An
T , VT )

is a GLn(A)-torsor (as in these cases Isom(An, An) = GLn(A)).
The following lemma will be used as a technical tool for moving between infinite-level and

finite-level moduli problems for elliptic curves. When G = GLm(Z�) and H = {e}, it amounts to
the statement that a rank m lisse Z�-sheaf is the same as a compatible family of rank m lisse
Z/�nZ-sheafs, which will surprise nobody.

Lemma 2.2.1. Let G be a profinite group, H ≤ G a closed subgroup, and G a G-torsor on
SpecRproét. The map

H �→ (H · U)H≤U≤G, Ucompact open (2.2.1)

is a bijection between the set of H-torsors in G and compatible systems of U -torsors in G for
H ≤ U ≤ G, U a compact open subgroup.

Proof. It suffices to consider a cofinal system of U ; thus we take a neighborhood basis of the
identity in G consisting of open normal subgroups Gε, ε ∈ I, and consider only U of the form
Hε := H ·Gε. Note that

⋂
ε∈I Hε = H.

The key point is to show that if (Hε ⊂ G)ε is a compatible system of Hε-torsors, then⋂
ε∈I Hε admits a section on a pro-étale cover. Indeed, then because

⋂
ε∈I Hε = H,

⋂
ε∈I Hε

will automatically be an H-torsor, and it is straightforward to check this is a two-sided inverse
to (2.2.1).

For this key point, by passing to a pro-étale cover we may assume G is trivial, i.e. we can take
G = G. We now choose a compatible family of splittings of G→ G/Hε (this is possible because
for each ε the set of splittings is a finite set and the transition maps are surjective), thus we
obtain a compatible family of homeomorphisms, each equivariant for the right multiplication
actions of Hε,

G = G/Hε ×Hε

and, passing to the limit over ε, a homeomorphism

G = G/H ×H
equivariant for the right multiplication action of H.

From this it follows that the Hε-torsors in G are identified with G/Hε(SpecR), the H-torsors
in G are identified with G/H(SpecR), and the map H �→ H ·Hε is induced by the canonical
projection G/H → G/Hε. The result then follows as G/H = limε∈I G/Hε. �

3 Adelic sheaves are not discussed explicitly in [BS15], but it is no more difficult than the case of �-adic sheaves
discussed in [BS15, § 6.8]. Note that we are using only the most elementary parts of this formalism as we have no
need for constructibility, etc.
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2.3 Elliptic curves and quasi-isogenies
For R a ring, we will consider the category Ell(R) of elliptic curves over R. It is Z-linear. The
isogeny category

Ell(R)⊗Q

has the same objects but homomorphisms are tensored with Q. For E an elliptic curve, we
sometimes write E ⊗Q for the corresponding element of Ell(R)⊗Q, so

Hom(E1 ⊗Q, E2 ⊗Q) = Hom(E1, E2)⊗Q.

An isogeny from E1 to E2 is a morphism f : E1 → E2 such that f ⊗Q : E1 ⊗Q→ E2 ⊗Q is
invertible. A quasi-isogeny from E1 to E2 is an invertible morphism f : E1 ⊗Q→ E2 ⊗Q; we
often write instead, e.g., ‘f : E1 → E2 is a quasi-isogeny’.

Similarly, we consider the prime-to-p isogeny category Ell(R)⊗ Z(p) by replacing Q every-
where above with Z(p). A prime-to-p isogeny from E1 to E2 is a morphism f : E1 → E2 such
that f ⊗ Z(p) : E1 ⊗ Z(p) → E2 ⊗ Zp is invertible. A prime-to-p quasi-isogeny from E1 to E2 is
an invertible morphism f : E1 ⊗ Z(p) → E2 ⊗ Z(p); we often write instead, e.g., ‘f : E1 → E2 is
a prime-to-p quasi-isogeny’.

Remark 2.3.1. When R is not normal, this is not quite the category of elliptic curves up-
to-isogeny (respectively, prime-to-p isogeny) considered in [Del71, § 3], but rather the full
subcategory consisting of objects with a genuine underlying elliptic curve. In general, one also
formally enforces effectivity of étale descent. This full subcategory will suffice for our needs as
our moduli problems typically include rigidifying data.

2.3.2 Tate modules. If R/Q (i.e. R is of characteristic zero) and E/R is an elliptic curve, we
consider the p-adic and adelic integral and rational Tate modules

Tp(E) := lim
n
E[pn], Vp(E) := Tp(E)[1/p], T

Ẑ
(E) := lim

n
E[n], VAf

(E) := T
Ẑ
(E)⊗Q.

These are lisse rank-two sheaves on SpecR over Zp,Qp, Ẑ, and Af , respectively. All are functors
on Ell(R), and Vp and VAf

factor through Ell(R)⊗Q.
If R/Z(p) (i.e. all primes � �= p are invertible in R) and E/SpecR is an elliptic curve, then

we may still form the prime-to-p integral and adelic Tate modules

T
Ẑ(p)(E) := lim

n
E[n] and V

A
(p)
f

(E) := T
Ẑ(p)(E)⊗Q = T

Ẑ(p)(E)⊗ Z(p).

These are lisse rank-two sheaves on SpecR over Ẑ(p) and A
(p)
f , respectively. Both are functors on

Ell(R), and V
A

(p)
f

factors through Ell(R)⊗ Z(p).

2.3.3 Relative differentials. For π : E → SpecR an elliptic curve, ωE/R := π∗ΩE/R is a line
bundle on S. Restriction induces canonical isomorphisms

ωE/R = 1∗EΩE/R = (LieE/R)∗,

where, here, 1E : SpecR→ E is the identity section.
The assignment E/R→ ωE/R is a functor from Ell(R) to line bundles on SpecR. If R/Q,

then it factors through Ell(R)⊗Q, and if R/Z(p), it factors through Ell(R)⊗ Z(p); indeed, for
n ∈ Z, the multiplication map by n map [n] : E → E induces ring multiplication by n on ωE/R,
thus is invertible if n is invertible in R.
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2.3.4 p-divisible groups. For R a ring, a p-divisible group G of height h ∈ N(SpecR) is,
following Tate [Tat67, 2.1] and Messing [Mes72, I.2], an inductive system

(Gi, ιi), i ≥ 0

of finite locally free commutative group schemes Gi of degree pih over SpecR, equipped with
closed immersions ιi : Gi → Gi+1 identifying Gi with the kernel of multiplication by pi on Gi+1.

We write p-div(R) for the Zp-linear category of p-divisible groups over R. There is a natural
functor

Ell(R)→ p-div(R) : E/R �→ E[p∞] := (E[pi])i.

This functor factors through Ell(R)⊗ Z(p). We also form the isogeny category p-div(R)⊗Qp

and define isogenies and quasi-isogenies in the obvious way. The functor E �→ E[p∞]⊗Qp then
factors through Ell(R)⊗Q.

If R is a p-adically complete ring, then we write NilpR for the category of R-algebras
where p is nilpotent and we view a p-divisible group G = (Gi) over R as the functor on
NilpR

G(A) = colimiGi(A).

In this case, because E[p∞]R/pn and ER/pn have the same tangent space for any n and R is
p-adically complete, the functor E �→ ωE/S factors through E �→ E[p∞].

2.4 Completing algebra actions
In this section, we develop the basic definitions for completing algebra actions and some tools for
comparing completions. This material is used in § 5.7, where it is essential for the final deduction
of Theorem A from the key geometric input, Corollary 5.6.3. Some results are also used in § 4.5
when we explain how Theorem 1.1.1 can be deduced from Theorem A.

The statements we give here are likely well known to experts and the proofs are, for the most
part, elementary exercises in analysis. Nonetheless we include a full treatment because we are
not aware of another suitable source in the literature.

We begin with some basic definitions in non-archimedean functional analysis. In the following,
L is any complete non-archimedean field.

Definition 2.4.1.

(i) An L-Banach space is a complete topological L-vector space V whose topology is induced
by an ultrametric norm; we refer to the choice of such a norm on V as a Banach norm.

(ii) A bounded collection of vectors {ei}i∈I in an L-Banach space V is an orthonormal basis if
every v ∈ V can be written uniquely as

v =
∑
i∈I

viei, vi ∈ L, vi → 0. (2.4.1)

(iii) We say that V is orthonormalizable if it admits an orthonormal basis.

Note that because in Definition 2.4.1(ii) we assumed {ei}i∈I was bounded, all sums of the form
(2.4.1) converge, and then the open mapping theorem implies that the sup norm |v| = supi∈I |vi|L
is a Banach norm. For L discretely valued (or, more generally, spherically complete), every
L-Banach space is orthonormalizable; cf. [Ser62, Corollaire of Proposition 1 and Remarques
after Proposition 2].
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Definition 2.4.2. For V and W two L-Banach spaces, we write B(V,W ) for the space of
bounded (equivalently, continuous) linear operators from V to W .

(i) The choice of Banach norms on V and W induces an operator norm on B(V,W ) defined by

|T | = sup
v∈V,v �=0

|T (v)|/|v|.

The operator norms for different choices of Banach norms on V and W are equivalent and
with the induced topology B(V,W ) is a Banach space.

(ii) The topology of pointwise convergence4 on B(V,W ) is defined by the family of seminorms
T �→ |T (v)| indexed by v ∈ V (for any Banach norm on W ).

The topology of pointwise convergence is uniquely determined by the property that a net
(Tj)j∈J in B(V,W ) converges to T ∈ B(V,W ) if and only if Tj(v)→ T (v) for all v ∈ V . It is
through this characterization that we access it.

Definition 2.4.3. We say T ⊂ B(V,W ) is bounded if it is bounded in the operator norm
topology.

The following lemma is elementary but extremely useful.

Lemma 2.4.4. Suppose V and W are L-Banach spaces, S ⊂ V is such that the set L[S] of finite
linear combinations of elements of S is dense in V , (Tj)j∈J is a bounded net of operators in
B(V,W ), and T ∈ B(V,W ). Then Tj → T in the in the topology of pointwise convergence if and
only if

lim
j∈J

Tj(v) = T (v) for all v ∈ S. (2.4.2)

Proof. As previously, we have Tj → T in the topology of pointwise converge if and only
if, for every v ∈ V , limj∈J Tj(v) = T (v). Thus, one direction is immediate. For the other,
suppose that (2.4.2) holds and fix Banach norms on V and W . By the boundedness hypoth-
esis, we can then choose a common bound C ≥ 1 for the operator norms of all Tj , j ∈ J ,
and T .

Let v ∈ V . By the density hypothesis, for any ε > 0 we can find

v′ = �1v1 + · · ·+ �kvk, vi ∈ S
such that |v − v′| ≤ ε. By (2.4.2), for each vi, there is a ji ∈ J such that, for j ≥ ji,

|T (�ivi)− Tj(�ivi)| = |�i||T (vi)− Tj(vi)| ≤ ε.
Thus, taking j′ ≥ j1, . . . , jk (the fundamental property of the directed set indexing a net is
that there is always an upper bound for any finite collection of elements), we obtain that for
j ≥ j′,

|T (v)− Tj(v)| = |(T (v′)− Tj(v′)) + T (v − v′)− Tj(v − v′)|

=
∣∣∣∣

k∑
i=1

(T (�ivi)− Tj(�ivi)) + T (v − v′)− Tj(v − v′)
∣∣∣∣

≤ max(ε, |T (v − v′)|, |Tj(v − v′)|) ≤ Cε.
We conclude that limj∈J Tj(v) = T (v), as desired. �

4 Also called the strong operator topology.
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Definition 2.4.5. If A is a ring, L is a non-archimedean field, and (Wi)i∈I is family of L-Banach
spaces equipped with actions of A by operators in B(Wi,Wi), the completion5 of A acting on
(Wi)i∈I is the closure Â(Wi)i∈I

of the image of A in∏
i∈I

B(Wi,Wi),

where B(Wi,Wi) is equipped with the topology of pointwise convergence and the product is
equipped with the product topology. Concretely, (Ti)i∈I ∈ Â(Wi)i∈I

if and only if there exists a
net (aj)j∈J in A whose image converges to (Ti)i∈I . The latter is equivalent to asking that, for
any i ∈ I and any wi ∈Wi,

lim
j∈J

aj · wi = Ti(wi).

Lemma 2.4.6. Using notation as before, if the action of A on each Wi is bounded (i.e. the image
of A in B(Wi,Wi) is bounded in the operator norm topology), then Â(Wi)i∈I

is a closed subring
of

∏
i∈I B(Wi,Wi).

Proof. It is always a closed subgroup, so it remains just to see that under the boundedness
hypothesis it is closed under composition.

Suppose given (Ti)i∈I and (Si)i∈I in Â(Wi)i∈I
, and choose nets (ajT )jT∈JT

and (bjS )jS∈JS

whose images in
∏

i∈I End(Wi) converge to (Ti)i∈I and (Si)i∈I , respectively. Then we claim that
the image of

(ajT bjS )(jT ,jS)∈JT×JS

converges to (Ti ◦ Si)i∈I . It suffices to show that for any i ∈ I and wi ∈Wi,

lim
(jT ,jS)∈JT×JS

= ajT bjS · wi = Ti(Si(wi)).

We suppress the i now and write Wi = W , wi = w, Ti = T , and Si = S.
To see the convergence, fix a Banach norm on W and, by boundedness of the action, a C ≥ 1

such that |a · v| ≤ C|v| for all a ∈ A and v ∈W . Then, for any ε > 0, we may choose jT,0 ∈ jT
and jS,0 ∈ JS such that:

(i) |ajT · S(w)− T (S(w))| ≤ ε for all jT ≥ jT,0; and
(ii) |bjS · w − S(w)| ≤ ε for all jS ≥ jS,0.

Then, for (jS , jT ) ≥ (jS,0, jT,0),

|ajT bjS · w − T (S(w))| =
∣∣ajT · (bjS · w − S(w)) + (ajT · S(W )− T (S(w)))

∣∣
≤ max(|ajT · (bjS · w − S(w))|, |ajT · S(W )− T (S(w))|)
≤ max(Cε, ε)

≤ Cε
and we conclude. �

The following lemma allows for comparison with other definitions in the literature, in
particular the definition given in [Eme14, 2.1.4].

Lemma 2.4.7. Using notation as before, suppose L is discretely valued and write OL for the
ring of integers and p for its maximal ideal. If each Wi is finite dimensional and, for each i,

5 in the literature on Hecke algebras this is sometimes referred to as the weak completion; we avoid this terminology
because of a conflict with terminology in functional analysis, where this is the completion for the strong operator
topology.
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A preserves an OL-lattice W ◦
i ⊂Wi, then the action is bounded and Â(Wi)i∈I

is naturally
identified with the closure of the image of A in∏

i∈I,n>0

EndOK
(W ◦

i /p
nW ◦

i )

equipped with the product topology (each term is equipped with the discrete topology).

Proof. Boundedness is clear. For the rest, first note the image of A in
∏

i∈I B(Wi,Wi) factors
through

∏
i∈I EndOK

(W ◦
i ), where we identify EndOK

(W ◦
i ) with the subset of B(Wi,Wi) preserv-

ing W ◦
i . This subset is closed, so we can form ÂV by taking the closure of the image of A in∏

i∈I EndOK
(W ◦

i ). Then, for each i we have

EndOK
(W ◦

i ) = lim
n

EndOK
(W ◦

i /p
nW ◦

i ),

where each term on the right is equipped with the discrete topology. Thus,∏
i∈I

EndOK
(W ◦

i ) ⊂
∏

i∈I,n>0

EndOK
(W ◦

i /π
n)

is closed so we may compute ÂV by taking the closure in the space on the right. �
The following lemma says that completion is insensitive to base extension. This is useful as

our comparisons of Hecke modules take place over very large extensions of Qp, whereas one is
typically interested in Hecke algebras over Zp.

Lemma 2.4.8. Let L ⊂ L′ be an extension of complete non-archimedean fields, and let A be a
ring. Suppose (Wi) is a family of orthonormalizable L-Banach spaces equipped with bounded
actions of A. Then the identity map A→ A extends uniquely to a topological isomorphism

Â(Wi)i∈I
= Â(Wi⊗̂LL′)i∈I

.

Proof. Immediate by applying Lemma 2.4.4 to an orthonormal basis and using the fact that an
orthonormal basis remains an orthonormal basis under completed base change. �

The following is our main technical tool for comparing completed Hecke algebras.

Lemma 2.4.9. Suppose V is an orthonormalizable L-Banach space equipped with a bounded
action of a ring A, and (Wi)i∈I is a collection of A-invariant closed subspaces such that the span
of

⋃
iWi is dense in V . Then Â(Wi)i∈I

= ÂV .

Remark 2.4.10. In this setup, each Wi is automatically a Banach space as a closed subspace of
a Banach space and the action on Wi is automatically bounded.

Proof. We abbreviate ÂW := Â(Wi)i∈I
⊂

∏
B(Wi,Wi). We then obtain a map ÂV → ÂW via

restriction: if the image of (aj)j∈J in B(V, V ) converges to T , then, in particular, the image
of (aj)j∈J in B(Wi,Wi) converges to T |Wi . This restriction map is injective by the density
hypothesis.

We show now that it is surjective. The key observation that makes this possible is that, by
the density hypothesis, we may choose an orthonormal basis (em)m∈M for V consisting of vectors
em each of which is a finite linear combination of vectors in the subspaces Wi: indeed, if we fix
a pseudo-uniformizer π in OL and an arbitrary orthonormal basis (fm)m∈M , then any collection
of vectors (em)m∈M with |fm − em| ≤ |π| will also be an orthonormal basis.

Now, suppose (Ti)i∈I ∈ ÂW , and fix a net aj of elements of A whose image converges to
(Ti)i∈I . Then we find that for each m, limj aj · em exists in V , call it vm and, by boundedness of
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the action, the set of vm is bounded. There is, thus, a unique bounded linear operator T : V → V
such that T (em) = vm. We conclude by Lemma 2.4.4 that the image of aj in B(V, V ) converges
to T , and then by restriction that, in fact, T |Wi = Ti.

Now, a topology is uniquely determined by the knowledge of which nets converge to which
points. With this bijection established, Lemma 2.4.4 tells us that the same nets converge to the
same points, so the bijection is a homeomorphism. �

The following lemma combines some of the results given previously, and is used in § 4.5 to
deduce Theorem 1.1.1 from Theorem A.

Lemma 2.4.11. Suppose L is discretely valued and write OL for the ring of integers and p for
the maximal ideal. Suppose V is an L-Banach space and A acts on V preserving a bounded open
OK-lattice V ◦, and (Wi)i∈I is a filtered system of finite-dimensional A-invariant subspaces such
that

⋃
i∈I Wi is dense in V . Then, writing

W ◦
i = Wi ∩ V ◦, W i,n = W ◦

i /p
nW ◦

i = W ◦
i /Wi ∩ pnV ◦,

and Ai,n for the image of A in EndOK
(W i,n), we have

ÂV = Â(Wi)i∈I
= lim

(i,n)∈I×N
Ai,n,

where each term in the limit is equipped with the discrete topology.

Proof. It follows from Lemma 2.4.9 that ÂV = Â(Wi)i∈I
. The result then follows from

Lemma 2.4.7, because in this case the closure of the image of A will be identified with the
limit of the Ai,n as a subset of the product appearing there. �

3. Modular curves and Igusa varieties

In this section, we study some moduli problems for elliptic curves. In § 3.1 we give isogeny for-
mulations for some classical moduli problems and recall the standard representability results. In
§ 3.2 we recall the construction of the modular bundle and the adelic representations on modular
forms, as well as the construction of the Hasse invariant. In § 3.3, we recall the construction of
the supersingular and ordinary loci on the mod p modular curve. In § 3.4, we recall some Igusa
moduli problems over the ordinary locus and their relation with mod p and p-adic modular forms
as developed by Katz [Kat75a].

In §§ 3.5–3.7, we undertake a study of the supersingular Igusa variety, culminating with
the identification of the supersingular Igusa variety with a quaternionic coset in Theorem 3.7.1.
Everything here except this final identification is a very special case of results of Caraiani–Scholze
[CS17]. However, following our treatment of modular curves, we take a resolutely ‘top-down’
approach, and for the most part6 our treatment here is independent of the results of [CS17]. We
lean instead on the Hasse invariant and other ideas specific to this special case.

As to the identification with a quaternionic coset, the basic idea is already present in Serre’s
letter [Ser96], so our main contribution is a careful treatment by exploiting the group action at
infinite level. This identification is a key ingredient in both the mod p correspondence in § 4 and
the p-adic correspondence in § 5.

Finally, we remark that, motivated by our specific needs, we have made what appear to be
some non-standard choices in defining our moduli problems.

6 We do, however, appeal crucially in Lemma 3.5.3 to the construction of an internal hom for p-divisible groups
over Fp as established in [CS17] based on the work of Chai–Oort.

258

https://doi.org/10.1112/S0010437X22007308 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007308


p-adic J–L and a question of Serre

(i) We allow level defined by an arbitrary closed adelic subgroup, which facilitates the free
usage of large group actions on infinite-level moduli problems and, in particular, transparent
passage between the infinite-level prime-to-p moduli problem over Z(p) and infinite-level
moduli problem over Q.

(ii) We give an up to isogeny definition of level structure that does not require the base scheme
to be locally noetherian (i.e. does not use the (pro)-étale fundamental group). In particular,
this is necessary to allow arbitrary closed subgroups as before, but also allows us to evaluate
on, e.g., perfectoid rings and other very non-noetherian objects without appealing behind
the scenes to noetherian approximation.

We accomplish both of these goals by interpreting the sentence ‘level K structure on E is a
K-orbit of trivializations of VAf

(E)’ literally, i.e. as the choice of aK-torsor in Isom(Af
2, VAf

(E)).
All representability statements are deduced from classical results on finite-level curves, and
ultimately all of our arguments could be run in a more classical setup, as the diligent reader will
have no trouble verifying.

3.1 Modular curves
Definition 3.1.1 (The level K elliptic moduli functor). Let K ⊂ GL2(Af ) be a closed sub-
group. Let YK be the functor on Q-algebras

YK : R �→ {(E,K)}/ ∼

sending R/Q to the set of equivalence classes of pairs (E,K) where:

(i) E/R is an elliptic curve;
(ii) K ⊂ Isom((Af )2, VAf

(E)) is a K-torsor;
(iii) the relation ∼ is defined by (E,K) ∼ (E′,K′) if there is a quasi-isogeny q : E → E′ such

that q(K) = K′.

The topological constant sheaf on the normalizer of K, NGL2(Af )(K), acts on YK , and for
K1 ≤ K2 we have the obvious map

YK1 → YK2 , (E,K1) �→ (E,K1 ·K2).

Example 3.1.2 (Infinite level). Take K = {e}. Then the K-torsor K appearing in the moduli
problem YK is just a section of

Isom(Af
2, VAf

(E)),

i.e. an isomorphism ϕAf
: Af

2 ∼−→ VAf
(E), and the condition in the equivalence relation becomes

q ◦ ϕAf
= ϕ′

Af
. The group action is by all of GL2(Af ), and in this notation it acts by composition

with ϕAf
. When K = {e}, we typically omit it from the notation and write simply Y = Y{e}.

Removing any level structure at p, we obtain a variant over Z(p).

Definition 3.1.3 (The integral level Kp elliptic moduli functor). Let Kp ≤ GL2(A
(p)
f ) be a

closed subgroup. Let YKp be the functor on Z(p)-algebras

YKp : R �→ {(E,Kp)}/ ∼
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sending R/Z(p) to the set of equivalence classes of pairs (E,Kp) where:

(i) E/R is an elliptic curve;
(ii) Kp ⊂ Isom((A(p)

f )2, V
A

(p)
f

(E)) is a Kp-torsor;

(iii) the relation ∼ is defined by (E,Kp) ∼ (E′,Kp′) if there is a prime-to-p quasi-isogeny
q : E → E′ such that q(Kp) = Kp′.

The topological constant sheaf on the normalizer of K, N
GL2(A

(p)
f )

(Kp), acts on YKp , and for

Kp
1 ≤ K

p
2 we have the obvious map

YKp
1
→ YKp

2
, (E,Kp

1) �→ (E,Kp
1 ·K

p
2 ).

Example 3.1.4 (Integral infinite level). As in Example 3.1.2, when Kp = {e}, Kp is simply the

choice of an isomorphism ϕ
A

(p)
f

: A
(p)
f

2 ∼−→ V
A

(p)
f

(E). When Kp = {e}, we typically omit it from

the notation and write simply Y = Y{e}.

Arguing as in [Del71, Corollaire 3.5], we find the following.

Lemma 3.1.5. Let Kp ≤ GL2(A
(p)
f ) be a closed subgroup. The assignment

(E,Kp)→ (E, Isom(Z2
p, TpE)×Kp)

induces an isomorphism

YKp,Q
∼−→ YGL2(Zp)Kp .

Example 3.1.6. Lemma 3.1.5 gives YQ = YGL2(Zp), where on the right-hand side GL2(Zp) is
viewed as a closed subgroup of GL2(Af ), and, as previously, Y = Y{e}. This identification
explains one reason why it is convenient to allow an arbitrary closed subgroup in the formulation
of the moduli problem.

Definition 3.1.7. A closed subgroup K ≤ GL2(Af ) (respectively, Kp ≤ GL2(A
(p)
f )) is suffi-

ciently small if it stabilizes a Ẑ-lattice L ⊂ A2
f (respectively, a Ẑ(p)-lattice L ⊂ (A(p)

f )2) and lies
in the kernel of the map GL(L)→ GL(L/nL) for some n ≥ 3 (respectively, and (n, p) = 1).

Note that if K2 ≤ K1 ≤ GL2(Af ) (respectively, Kp
2 ≤ K

p
1 ≤ GL2(A

(p)
f )), are closed subgroups

and K1 (respectively, Kp
1 ) is sufficiently small, then so is K2 (respectively, Kp

2 ). Moreover, the
property of being a sufficiently small closed subgroup of GL2(Af ) (respectively, GL2(A

(p)
f )) is

preserved under conjugation by GL2(Af ) (respectively, GL2(A
(p)
f )). Because any lattice L is in

the GL2(Af )-orbit of Ẑ2 (respectively, GL2(A
(p)
f )-orbit of (Ẑ(p))2), being sufficiently small is

equivalent to being contained in a conjugate of the standard principal congruence subgroup of
level n ≥ 3 (respectively, (n, p) = 1).

The main representability results are as follows.

Proposition 3.1.8. If K ≤ GL2(Af ) (respectively, Kp ≤ GL2(A
(p)
f )) is a sufficiently small

closed subgroup, then YK (respectively, YKp) is represented by an affine scheme over SpecQ
(respectively, SpecZ(p)), and the natural map

YK → lim
K′ compact open
K≤K′≤GL2(Af )

YK′ (respectively, YKp → lim
Kp′ compact open

Kp≤Kp′≤GL2(A
(p)
f )

YKp′) (3.1.1)
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is a NGL2(Af )(K)-equivariant (respectively, N
GL2(A

(p)
f )

(Kp)-equivariant) isomorphism, where the

action on the right-hand side is induced by the action on the tower that permutes the terms by
conjugation (i.e. right multiplication by h sends YK′ to Yh−1K′h).

If K (respectively, Kp) is furthermore compact open, then YK (respectively, YKp) is a
smooth affine curve. Moreover, for K1 ≤ K2 (respectively, Kp

1 ≤ K
p
2 ) sufficiently small closed

subgroups the natural map YK1 → YK2 (respectively, YKp
1
→ YKp

2
) is profinite étale, and, if

K1 � K2 (respectively, Kp
1 � Kp

2 ) it is Galois with group K1/K2 (respectively, Kp
1/K

p
2 ).

Proof. We argue only in the case over Q, as the argument over Z(p) is essentially the same. If we
fix a Ẑ lattice L ⊂ A2

f preserved by K, then, as in [Del71, Corollaire 3.5], we see that the moduli
problem can be replaced with an equivalent up to isomorphism moduli problem by taking K in
Isom(L, T

Ẑ•(E)). The assertion that (3.1.1) is an isomorphism then amounts to the following:
for E/R an elliptic curve, if we consider the GL(L)-torsor G := Isom(L, T

Ẑ•(E)), we must show
that the following data are equivalent:

(i) a K–torsor inside G;
(ii) a system of K ′-torsors inside G for K ′ compact open, K ≤ K ′ ≤ GL(L), compatible under

inclusion.

This equivalence is provided by Lemma 2.2.1.
As we have established that (3.1.1) is an isomorphism, the rest of the claim for general K is

essentially formal if we can establish the representability claims for K compact open. However,
for K compact open, we can conjugate to assume the lattice L as previously is Ẑ2, and then the
representability statements are consequences of the classical theory of finite level modular curves
as in, e.g., [KM85]. �
Definition 3.1.9 (Compactified modular curves). For K ≤ GL2(Af ) (respectively, Kp ≤ GL2

(A(p)
f )) a sufficiently small compact open subgroup, we form compactifications XK (respectively,

XKp) as in [KM85, 8.6] after fixing a lattice L ⊂ A2
f (respectively, L ⊂ (A(p)

f )2) preserved by K
(respectively, Kp) to relate to classical finite-level moduli problems as in the previous proof. We
obtain smooth projective curves XK/Q (respectively, XKp/Z(p)), and the finite étale maps in the
tower of YK (respectively, YKp) for K (respectively, Kp) sufficiently small compact open extend
to finite maps in the tower of XK (respectively, XKp).

It can be checked that the natural group actions also extend. For XK and XKp,Fp this is even
immediate because the smooth compactifications of smooth curves are functorial over a perfect
field: using this, we could also define XK and XKp,Fp with no reference to the moduli problem.

We extend these definitions to K (respectively, Kp) sufficiently small closed by taking limits
as in Proposition 3.1.8, and the resulting objects are schemes because the transition maps are
affine.

We refer to the boundary XK\YK (respectively, XKp\YKp) with its reduced subscheme
structure as the cusps. The cusps can also be described as filling in the punctures corresponding
to level structure on the Tate curve as in [KM85, 8.11].

3.2 Modular forms
For any sufficiently small closed K ≤ GL2(Af ) (respectively, Kp ≤ GL2(A

(p)
f )), we have a

universal elliptic curve EK/YK (respectively, EKp/YKp), determined up to unique isogeny
(respectively, prime-to-p isogeny). We write simply ω for the line bundle ωE/K/YK (respectively,
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ωEKp/YKp/YKp): it is determined up to unique isomorphism compatibly with all pullbacks, base
change, and group actions discussed so far, so that this notation will cause no confusion.

For every sufficient small compact open K (respectively, Kp), we extend ω to XK (respec-
tively, to XKp) in the standard way by allowing sections with holomorphic q-expansions at each
cusp. Direct computation shows this is compatible with all pullbacks, base change, and group
actions discussed so far, so that we can extend this definition to any sufficiently small closed K
(respectively, Kp) and again no confusion will be caused by referring to the extended line bundle
also as ω.

We consider the smooth GL2(Af )-representation of modular forms,

Mk,Q = H0(X,ωk).

For K any sufficiently small closed subgroup, pullback from level K identifies

MK
k,Q = H0(XK , ω

k).

Applied to K sufficiently small compact open, we deduce that Mk,Q is an admissible represen-
tation of GL2(Af ). Applied to K = GL2(Zp), we obtain

M
GL2(Zp)
k,Q = H0(XGL2(Zp), ω

k) = H0(XQ, ω
k) = H0(X, ωk)⊗Z(p)

Q.

In particular, if we write
Mk,Fp = H0(XFp , ω

k),

an admissible Fp-representation of GL2(A
(p)
f ) by the same argument as previously, then

H0(X, ωk) is a natural Z(p)-lattice in MGL2(Zp)
k,Q equipped with a GL2(A

(p)
f )-equivariant reduction

map to Mk,Fp .

Remark 3.2.1. Neither Mk,Fp nor the image of reduction is what is typically referred to as mod p
modular forms. We recall this definition in § 3.4.

3.2.2 The Hasse invariant. We now recall how, to any elliptic curve E/R for R/Fp, one can
attach a canonical section Ha(E/R) ∈ ωp−1

E/R, the Hasse invariant. We follow one of the approaches
described in [KM85, 12.3].

As the section Ha(E/R) can be constructed Zariski locally, it suffices to assigns to any pair
(E/R,α) where R is an Fp-algebra, E/R is an elliptic curve and α ∈ ωE/R is a non-vanishing
invariant differential, an element Ha(E/R,α) of R such that, for a ∈ A×,

Ha(E/R, aα) = a−(p−1)Ha(E/R,α)

and whose formation is functorial in base change and isomorphism. In this case, to give our rule
we first take the invariant derivation ∂α that is dual to α, then form

∂p
α := ∂α ◦ · · · ◦ ∂α︸ ︷︷ ︸

p times

,

which is also an invariant derivation and thus a multiple of ∂. Then the equation

∂p
α = Ha(E/R,α)∂α,

defines Ha(E/R,α), and it is straightforward to check this satisfies the desired transformation
rule if we scale α and is functorial in base change and isomorphism.

In fact, the construction is also functorial in prime-to-p quasi-isogenies: it suffices to observe
that a prime-to-p quasi-isogeny induces an isomorphism of p-divisible groups and, in particular,
of formal groups, and that the action of an invariant derivation is completely determined by
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its action on the formal group. This observation also has the important consequence that the
resulting section Ha(E/R) can be constructed entirely in terms of E[p∞].

Applying this construction to the universal elliptic curve over YFp , we obtain a GL2(A
(p)
f )-

invariant section of ωp−1. A direct computation on the Tate curve (see [KM85, Theorem 12.4.2])
shows that its q-expansions are constant equal to 1 at every cusp, thus it extends to

Ha ∈MGL2(A
(p)
f )

p−1,Fp
.

3.3 Supersingular and ordinary loci
Let

bss =
(

0 p
1 0

)
∈M2(Zp) and bord =

(
p 0
0 1

)
∈M2(Zp).

Let Xss/Fp (respectively, Xord/Fp) be the p-divisible group corresponding to the covariant
Dieudonné module Z2

p with Frobenius F acting by bss (respectively, bord). Then Xss is a connected
one-dimensional height-two p-divisible group, whereas Xord = μp∞ ×Qp/Zp is a one-dimensional
height-two p-divisible group with non-trivial étale part. It follows from the classification of p-
divisible groups by Dieudonné modules that, for any algebraically closed κ/Fp, every height-two
one-dimensional p-divisible group over κ is quasi-isogenous/isomorphic7 to exactly one of Xord,κ

and Xss,κ.
In particular, this applies to E[p∞] for E/κ an elliptic curve. It thus makes sense, for any Kp

sufficiently small, to define the supersingular (respectively, ordinary) locus Yss
Kp,Fp

(respectively,
Yord

Kp,Fp
) in YKp,Fp as the locus whose geometric points are such that the p-divisible group of

universal elliptic curve is quasi-isogenous/isomorphic to Xss (respectively, Xord). We then have

YKp,Fp = Yord
Kp,Fp

�Yss
Kp,Fp

and it can be shown that the supersingular locus is closed (and, thus, the ordinary locus is open).
In fact, a local computation as in [KM85, Theorem 12.4.3] gives the following result.

Lemma 3.3.1. For Kp sufficiently small, the vanishing locus of Ha, viewed as a section of
H0(XKp ,Fp), is Yss

Kp,Fp
with its reduced closed subscheme structure.

We write also

Xss
Kp,Fp

= Yss
Kp,Fp

= V (Ha) and Xord
Kp,Fp

= XKp,Fp\Xss
Kp,Fp

.

3.4 Ordinary Igusa varieties, mod p, and p-adic modular forms
Following Katz [Kat75a], we define mod p and p-adic modular forms as functions on certain
moduli problems. This has the advantage of rendering group actions transparent, and mirrors
our approach to the supersingular Igusa variety and quaternionic p-adic automorphic forms.
Functions on these moduli problems have q-expansions, and the connection with the completion
of q-expansions of classical modular forms as in Serre’s [Ser73] perspective then comes from
evaluation along a canonical trivialization of ω and the q-expansion principle.

We begin by treating mod p modular forms.

Definition 3.4.1 (The μp-Igusa moduli problem). Let Kp ≤ GL2(A
(p)
f ) be a closed subgroup.

Let Igμp

Kp be the functor on Fp-algebras

Igord
Kp,μp

: R �→ {(E,ϕp,Kp)}/ ∼

7 The fact that quasi-isogeny classes are equal to isomorphism classes in this case is, of course, one of the many
facts that makes GL2 very special.
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sending R/Fp to the set of equivalence classes of triples (E,ϕp,Kp) where:

(i) E/R is an elliptic curve;
(ii) ϕp : μp

∼−→ Ê[p] is an isomorphism;
(iii) Kp ⊂ Isom((A(p)

f )2, V
A

(p)
f

(E)) is a Kp-torsor;

(iv) the relation ∼ is defined by (E,Kp) ∼ (E′,Kp′) if there is a prime-to-p quasi-isogeny
q : E → E′ such that q ◦ ϕp = ϕ′

p and q(Kp) = Kp′.

As usual, when Kp = {e} we drop it from the notation. For Kp sufficiently small, the functor
Igord

Kp,μp
is a finite étale (Z/pZ)× cover of Yord

Kp,Fp
, where (Z/pZ)× acts by precomposition with

ϕp. A direct computation on the Tate curve, whose formal group is canonically Ĝm, shows the
cover is unramified at the cusps and, thus, extends canonically to a finite étale (Z/pZ)×-cover
Igord,c

Kp,μp
of Xord

Kp,Fp
.

Definition 3.4.2 (Mod p modular forms). The space of mod pmodular forms is the (Z/pZ)× ×
GL2(A

(p)
f )-equivariant ringMFp := H0(Igord,c

μp
,O).

The pullback (ϕ−1
p )∗(dt/t) of the invariant differential dt/t on μp = SpecFp[t]/(tp − 1) is

GL2(A
(p)
f )-equivariant trivialization of ω on Igord

μp
and extends to a trivialization over Igord,c

μp
. In

particular, we can use it to evaluate modular forms to functions on Igord,c
μp

and we obtain the
following version of a well-known result (cf., e.g., [Gros90]).

Lemma 3.4.3. Evaluation along (ϕ−1
p )∗(dt/t) induces a (Z/pZ)× ×GL2(A

(p)
f )-equivariant iso-

morphism of rings (⊕
k≥0

Mk,Fp

)
/(Ha− 1) ∼=MFp ,

where (Z/pZ)× acts on Mk,Fp by the character z �→ zk.

Proof. First note that the evaluation map on Mk,Fp factors through H0(Xord
Fp
, ωk). One computes

that ((ϕ−1
p )∗(dt/t))p−1 = Ha, so that the evaluation map factors as

⊕
k≥0

Mk,Fp →
p−2⊕
k=0

H0(Xord
Fp
, ωk) ∼−→ H0(Igord,c

μp
,O) =MFp ,

where the first arrow is restriction followed by division by Ha
k/(p−1)�. The second arrow is an
isomorphism because we can decompose H0(Igord,c

μp
,O) according to the characters of (Z/pZ)×

in Fp and if f is in the character space for zk, then f((ϕ−1
p )∗(dt/t))k is invariant under (Z/pZ)×

thus descends to a section over Xord
Fp

.
The first map is clearly surjective because multiplying by a sufficient power of Ha will clear

any poles along the supersingular locus. On the other hand, any element in the kernel can be
multiplied by 1 + Ha + Ha2 + Ha3 + · · · (the condition of being in the kernel, when written out,
guarantees that this product is zero in sufficiently large degree) to show that it is, in fact, in the
ideal generated by (1−Ha). �
Remark 3.4.4. The ideal (Ha− 1) on the left can also be interpreted as the kernel of the total
q-expansion map, and indeed the original definition of mod p modular forms was by passing to
q-expansions.

We now define p-adic modular forms.
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Definition 3.4.5 (The Katz–Igusa moduli problem). Let Kp ≤ GL2(A
(p)
f ) be a closed sub-

group. Let Igord
Kp,Ĝm

be the functor on NilpZp

Igord
Kp,Ĝm

: R �→ {(E,ϕp,Kp)}/ ∼

sending R/Zp to the equivalence classes of triples (E,ϕp,Kp) such that:

(i) E/R is an elliptic curve;
(ii) ϕp : Ĝm

∼−→ Ê is an isomorphism of formal groups;
(iii) Kp ⊂ Isom((A(p)

f )2, V
A

(p)
f

(E)) is a Kp-torsor; and

(iv) the relation ∼ is defined by (E,ϕp,Kp) ∼ (E′, ϕ′
p,Kp′) if there is a prime-to-p quasi-isogeny

q : E → E′ such that q ◦ ϕp = ϕ′
p and q(Kp) = Kp.

As usual, when Kp = {e} we drop it from the notation. The main source is [Kat75a], which
works with the geometrically connected variant with full level n structure. As in [Kat75a], for Kp

sufficiently small, Igord
Kp,Ĝm

is represented by an affine p-adic formal scheme, a pro-étale Z×
p -torsor

over the formal ordinary locus Y
∧,ord
Kp /SpfZp; here, the action of Z×

p is by precomposition with ϕp.
For the same reason as the μp-Igusa moduli problem, it is unramified at the cusps and thus
extends canonically over X

∧,ord
Kp /SpfZp to an affine formal scheme Igord,c

Kp,Ĝm
.

Definition 3.4.6. The space of p-adic modular forms is the unitary Z×
p ×GL2(A

(p)
f ) represen-

tation on the Qp-Banach space

VQp := VZp [1/p] for VZp := H0(Igord,c

Ĝm
,O).

In the introduction, we used the notation Mp−adic, which we do not employ further. We note
also that VZp is p-torsion free.

The GL2(A
(p)
f )-representation VQp is not smooth, but one can check that the smooth vectors

are dense and, for Kp a sufficiently small closed subgroup, already at the integral level we have

VKp

Zp
= H0(Igord,c

Kp,Ĝm
,O).

The bundle ω is GL2(A
(p)
f )-equivariantly trivialized over Igord

Ĝm
by (ϕ−1

p )∗(dt/t) and this trivial-

ization extends to Igord,c

Ĝm
. We can, thus, evaluate modular forms to elements of VQp and, as in

[Kat75a, especially Theorem 2.1], one obtains the following result.

Lemma 3.4.7. Evaluation on (ϕ−1
p )∗(dt/t) induces a Z×

p ×GL2(A
(p)
f )-equivariant injection

⊕
k≥0

M
GL2(Zp)
k,Qp

↪→ VQp ,

where we let Z×
p act by zk on Mk,Qp . The induced map on Kp-invariants has dense image for

any compact open subgroup Kp.

Remark 3.4.8. If we write VFp = VZp/(p), then it is clear by comparing moduli problems that
the invariants V

1+pZp

Fp
represent Igord,c

μp
. The following obvious diagram comparing Lemmas 3.4.3
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and 3.4.7 then commutes.⊕
k≥0M

GL2(Zp)
k,Qp

��

⊕
k≥0H

0(XZp , ω
k)��

��

��
⊕

k≥0Mk,Fp

��

VQp VZp
�� �� VFp V

1+pZp

Fp
= H0(Igord,c

μp
,O)��

This diagram summarizes why in [Kat75a] one must pass to divided congruences to see all
of V, which in our presentation corresponds to the fact that it is crucial to invert p to obtain
the density statement in Lemma 3.4.7.

Remark 3.4.9. For Kp a sufficiently small compact open, if we fix a set of cusps c1, . . . , cm, one
in each connected component of XGL2(Zp)Kp,Q̆p

, then we obtain q-expansion maps

M
GL2(Zp)Kp

k,Qp
→

m∏
i=1

Z̆p[[q]][1/p].

A generalization of Serre’s [Ser73] original definition of p-adic modular forms of level Kp would
be to take the completion of the span of the images of these maps over all k. The q-expansion
principle combined with Lemma 3.4.7 implies that this agrees with the definition given above
(see [Kat75a] for related discussions).

3.5 The supersingular Caraiani–Scholze Igusa variety
We now turn our attention to the main player in our story. Though it would be possible to work
over Fp, from here on out it will be cleaner and more convenient to work over Fp (essentially
because the endomorphisms of Xss,Fp

are not all defined over Fp).

Definition 3.5.1 (The supersingular Caraiani–Scholze Igusa moduli problem). Let Kp ≤ GL2

(A(p)
f ) be a closed subgroup. Let Igss

Kp be the functor on Fp-algebras

Igss
Kp : R �→ {(E,ϕp,Kp)}/ ∼

sending R/Fp to the set of equivalence classes of triples (E,ϕp,Kp) where:

(i) E/R is an elliptic curve;
(ii) ϕp : Xss,R ⊗Qp

∼−→ E[p∞]⊗Qp is a quasi-isogeny;
(iii) Kp ⊂ Isom

(
(A(p)

f )2, V
A

(p)
f

(E)
)

is a Kp-torsor; and

(iv) the relation ∼ is defined by (E,ϕp,Kp) ∼ (E′, ϕ′
p,Kp′) if there is a quasi-isogeny q : E ⊗

Q
∼−→ E′ ⊗Q such that

q(Kp) = Kp′ and q ◦ ϕp = ϕ′
p.

As usual, when Kp = {e} we drop it from the notation and write Igss := Igss
{e}. In this case,

we also identify the prime-to-p level data with the choice of an isomorphism ϕ
A

(p)
f

: (A(p)
f )2 →

V
A

(p)
f

(E) as in Example 3.1.4.

This up to quasi-isogeny moduli problem is well-adapted for comparison with the quaternionic
coset, as we show in § 3.7. To compare with modular curves, however, it is useful to also have an
up to prime-to-p quasi-isogeny moduli interpretation. Similarly to Lemma 3.1.5 (see also [CS17,
Lemma 4.3.4]), we obtain the following result.
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Lemma 3.5.2. For Kp ≤ GL2(A
(p)
f ) a closed subgroup, consider the functor

Igss
Kp,Xss

: R �→ {(E,ϕp,Kp)}/ ∼

sending R/Fp to the set of equivalence classes of triples (E,ϕp,Kp) where:

(i) E/R is an elliptic curve;
(ii) ϕp : Xss,R

∼−→ E[p∞] is an isomorphism;

(iii) Kp ⊂ Isom
(
(A(p)

f )2, V
A

(p)
f

(E)
)

is a Kp-torsor; and

(iv) the relation ∼ is defined by (E,ϕp,Kp) ∼ (E′, ϕ′
p,Kp′) if there is a prime-to-p quasi-isogeny

q : E ⊗ Z(p)
∼−→ E′ ⊗ Z(p) such that

q(Kp) = Kp′ and q ◦ ϕp = ϕ′
p.

The assignment

(E,ϕp,Kp) �→ (E,ϕp ⊗Qp,Kp)

induces an isomorphism

Igss
Kp,Xss

→ Igss
Kp .

We write Op = End(Xss,Fp
) and Dp := Op ⊗Qp, so that Op is the maximal order in Dp, a

ramified quaternion algebra over Qp. Then Dp acts on Xss,Fp
⊗Qp, and there is a natural action

of D×
p on Igss

K by composition with ϕp. The action of O×
p ⊂ D×

p preserves the prime-to-p moduli
interpretation of Lemma 3.5.2.

In fact, what acts most naturally are the functors on Fp-algebras

Aut(Xss,Fp
) : R �→ Aut(Xss,R) and Aut(Xss,Fp

⊗Qp) : R �→ Aut(Xss,R ⊗Qp).

The following lemma says we have not missed anything.

Lemma 3.5.3. The actions of D×
p and O×

p described previously factor through isomorphisms
O×

p → Aut(Xss,Fp
) and D×

p → Aut(Xss,Fp
⊗Qp).

Proof. This is established in a more general context in the proof of [CS17, Proposition 4.2.11].
The key point is that on Fp-algebras, by [CS17, Lemma 4.1.7, Corollary 4.1.10], the endomor-
phisms of Xss,Fp

are given by the Tate module of an étale p-divisible group over Fp, and are thus
equal to the constant sheaf on the Fp-points of that Tate module. �
Remark 3.5.4. One can also define an ordinary Caraiani–Scholze Igusa variety. We do not use
this here, but see Remark 5.7.2 for some connections to the present work and [How20] for an
application to the study of p-adic modular forms.

3.6 Uniformization of the supersingular locus
Proposition 3.6.1. For Kp a sufficiently small closed subgroup, the assignment

(E,ϕp,Kp) �→ (E,Kp)

induces a D×
p ×NGL2(A

(p)
f )

(Kp)-equivariant map

unifXss : Igss
Kp = Igss

Kp,Xss
→ Yss

Kp,Fp
,

where D×
p acts on Yss

Kp,Fp
by Frobvp◦Nrd (here Frob : YKp,Fp

→ YKp,Fp
is the relative Frobenius

and Nrd : Dp → Qp denotes the reduced norm). Moreover, unifXss is a trivializable O×
p -torsor,
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and the maps compile to a GL2(A
(p)
f )-equivariant isomorphism of towers as the sufficiently small

closed subgroup Kp varies.

Proof. We first show that the map factors through Yss
Kp,Fp

: given a point

(E,ϕp,Kp) ∈ Igss
Kp,Xss

(R),

we find Ha(E/R) is identically zero because E[p∞] ∼= Xss,R and, as observed in § 3.2.2, the Hasse
invariant only depends on E[p∞]. However, Ha(E/R) is the pullback of Ha under the induced
map SpecR→ YKp,Fp

, so by Lemma 3.3.1 this induced map factors through Yss
Kp,Fp

, as desired.
It is also clear from the definitions of the moduli problems and the identification Aut(Xss,Fp

) =
O×

p in Lemma 3.5.3 that the map is a quasi-torsor; to conclude it is a trivializable torsor it thus
suffices to produce a section.

To obtain this, we observe that the p-divisible group of the universal elliptic curve over
Yss

Kp,Fp
is isomorphic to Xss,Yss

Kp,Fp
: indeed, it is pulled back from Yss

Kp′,Fp
for any sufficiently

small compact open subgroup Kp′ ≤ GL2(A
(p)
f ) containing Kp, and Yss

Kp′,Fp
is just a finite union

of Fp-points. We can choose an isomorphism at each of these points (because Xss,Fp
is the unique

up to isomorphism connected one-dimensional height-two p-divisible group over Fp), and then
assemble these and pull back to Yss

Kp to obtain the desired isomorphism. This is exactly the data
of a section.

It is left only to verify the action of D×
p /O×

p is as described on Yss
Kp,Fp

, and this is a direct
computation from the definitions that we leave to the reader (we do not use this part of the
statement in any of what follows). �

As a consequence, one finds that for each sufficiently small Kp, Igss
Kp is a profinite set, thus, in

particular, a perfect affine scheme over Fp. Our next goal is to identify this profinite set explicitly
with a quaternionic coset.

3.7 Supersingular Igusa variety as quaternionic coset
We now identify Igss with a quaternionic coset using the orbit map for the action of
D×

p ×GL2(A
(p)
f ). To that end, fix a supersingular elliptic curve E0/Fp and level structure to

obtain

x0 = (E0, ϕp,0, ϕA
(p)
f ,0

) ∈ Igss(Fp).

We write D = End(E0)⊗Q. As explained, e.g., in [Sil92, Theorem V.3.1], this a quaternion
algebra over Q, and because it is non-split and acts faithfully on the �-adic Tate module for all
� �= p, it must be ramified exactly at p and ∞.

By definition, D× is identified with the self quasi-isogenies of E0 ⊗Q. The actions of D on
E0[p∞]⊗Qp and V

A
(p)
f

(E), transported by ϕp,0 and ϕ
A

(p)
f ,0

, thus induce an identification

D×(Af ) = D×(Qp)×D×(A(p)
f ) = D×

p ×GL2(A
(p)
f ).

In particular, we obtain a map D×(Q) ↪→ D×(Af ).
The action on the point x0 induces an orbit map

D×
p ×GL2(A

(p)
f )→ Igss, g �→ x0g, (3.7.1)

and we show that the following holds.
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Theorem 3.7.1. The orbit map (3.7.1) factors through a D×(Af ) = D×(Qp)×GL2(A
(p)
f )-

equivariant isomorphism

D×(Q)\D×(Af ) = D×(Q)\
(
D×

p ×GL2

(
A

(p)
f

)) ∼−→ Igss.

Before proving Theorem 3.7.1, it is helpful to recall the following basic structural result for
quaternionic double cosets. We write O = End(E0), a maximal order in D, and consider the
finite class set of right fractional ideals in O

D×(Q)\D×(Af )/(O ⊗ Ẑ)× = D×(Q)\D×
p ×GL2(A

(p)
f )/O×

p ×GL2(Ẑ(p)).

We may fix a finite set of representatives for the class set I and corresponding representatives
γI ∈ D×(Af ), I ∈ I, for the double cosets. The stabilizer of I for left multiplication in D×(Q)
is the units in a maximal order OI , and we find

D×(Q)\D×(Af ) ∼=
⊔
I∈I

O×
I \γI(O ⊗ Ẑ)× =

⊔
I∈I

O×
I \Isom(O ⊗ Ẑ, I ⊗ Ẑ),

where the isomorphisms on the right-hand side are of right O ⊗ Ẑ-modules. Because each group
O×

I is finite, if we replace O ⊗ Ẑ with a small enough compact open subgroup K ⊂ O ⊗ Ẑ×, we
obtain a finite set of representatives γI,i such that

D×(Q)\D×(Af ) ∼=
⊔

I∈I,i

γI,iK. (3.7.2)

In other words, we obtain a topological splitting of the locally profinite set D×(Af ) as a product
of a discrete set and a profinite set,

D×(Af ) ∼= D×(Q)×D×(Q)\D×(Af ) (3.7.3)

compatible with the left action of D×(Q) and the right action of K.
We also need to understand the quasi-isogenies of E0 after arbitrary base change. To this

end, we observe that, for any S, there is a natural map from D×(Q)(R) to Aut(E0 ⊗Q)(R) =
Aut(E0,R ⊗Q); indeed, because D×(Q) is discrete, an element of D×(Q)(R) is a locally constant
on SpecR choice of element in D×(Q).

Lemma 3.7.2. The natural map defined previously identifies D×(Q) with Aut(E ⊗Q).

Proof. It suffices to verify this on SpecR points, and we may moreover assume R is of finite
type over Fp, and then that R is reduced using that quasi-isogenies lift along nilpotent ideals
containing p. Then, the result follows from the computation over algebraically closed fields. �
Proof of Theorem 3.7.1. By Lemma 3.7.2, we deduce that the orbit map factors as an injection
on R-points

D×(Q)(R)\D×(Af )(R)→ Igss(R).

From (3.7.3), we deduce

D×(Q)\D×(Af )(R) = D×(Q)(R)\D×(Af )(R),

and thus the orbit map factors through an injection

D×(Q)\D×(Af ) ↪→ Igss.

It remains to show the map is surjective. To do so, it suffices to show that the universal elliptic
curve over Igss is quasi-isogenous to E0,Igss . However, the universal elliptic curve is the pullback
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from Y ss
Fp

along the map unifXss of Proposition 3.6.1, and the statement follows as in the proof
of Proposition 3.6.1 by reduction to a finite set of points at finite level and the fact that any two
supersingular elliptic curves over Fp are isogenous. �
Remark 3.7.3. We can avoid the use of any Grothendieck topology above because our torsors
are all trivializable. In particular, this sidesteps the following question: for X a topological space
and Γ a topological group acting on X, for which Grothendieck topologies does X/Γ = X/Γ?
Indeed, when X → X/Γ is a trivializable Γ-torsor, this is already true at the level of presheaves.

Corollary 3.7.4. For any sufficiently small closed subgroup Kp ≤ GL2(A
(p)
f ), the map of

Theorem 3.7.1 induces a D×
p ×NGL2(A

(p)
f )

(Kp)-equivariant isomorphism

D×(Q)\
(
D×

p ×GL2

(
A

(p)
f

))
/Kp ∼−→ Igss

Kp

and, combined with Proposition 3.6.1,

D×(Q)\D×(Af )/
(
O×

p ×Kp
) ∼−→ Yss

Kp,Fp
.

These maps compile to GL2(A
(p)
f )-equivariant isomorphisms of towers as the closed subgroup Kp

varies over all sufficiently small closed subgroups.

4. Serre’s mod p correspondence

In this section we give a proof of Theorem 1.1.1, roughly following Serre [Ser96]. The main
difference between our presentation and that of [Ser96] is that we emphasize from the beginning
the role of the supersingular Igusa variety as quaternionic coset in the uniformization of the
supersingular locus established in Corollary 3.7.4. When p = 2 or 3 the proof is only valid for
Kp sufficiently small, however, in § 4.5 we explain how to deduce the full result directly from
Theorem A.

In this section, D/Q is the specific quaternion algebra ramified at p and ∞ defined in § 3.7.
Up to isomorphism, there is a unique quaternion algebra over Q ramified only at p and ∞, so
this specific choice is made only to normalize with the results of § 3.7. Recall that we have also
fixed in § 3.7 identifications D×(A(p)

f ) = GL2(A
(p)
f ) and D×(Qp) = D×

p . As in the introduction,
we write

AFp
= Cont(D×(Q)\D×(Af ),Fp),

which we view as an admissible D×(Af ) = D×
p ×GL2(A

(p)
f )-representation.

4.1 Mod p modular forms
We writeM

Fp
for the base change to Fp of the space of mod p modular forms of Definition 3.4.2.

As explained in the proof of Lemma 3.4.3, the evaluation map from modular forms to mod p

modular forms factors through an isomorphism of GL2(A
(p)
f )-representations

M
Fp

=
p−2⊕
k=0

H0(Xord
Fp
, ωk). (4.1.1)

We consider the increasing exhaustive filtration FiMFp
whose ith step consists of those sections

on the right-hand side of (4.1.1) with poles of order ≤ i along Xss
Fp

.
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As in § 3.2, we also write
Mk,Fp

= H0(X
Fp
, ωk),

the admissible GL2(A
(p)
f ) representation of weight k modular forms over Fp. In particular, for

Kp sufficiently small, we have
MKp

k,Fp
= H0(XKp,Fp

, ωk).

From these definitions and Lemma 3.3.1, we find that multiplication by Hai gives a GL2(A
(p)
f )-

equivariant isomorphism

FiMFp

∼−→
p−2⊕
k=0

Mk+(p−1)i,Fp
. (4.1.2)

Thus, in particular, FiMFp
is an admissible GL2(A

(p)
f )-representation.

4.2 Evaluation of modular forms
We now explain how to evaluate modular forms to functions on Igss. This works almost exactly
as in the evaluation map for mod p modular forms in Lemma 3.4.3, but we set things up here in
a slightly more canonical language.

We write ωXss = Lie(Xss)∗, equipped with the natural action of O×
p after base change to Fp.

Using the isomorphism ϕp in the prime-to-p moduli interpretation (cf. Definition 3.5.1(ii))
and the uniformization in Proposition 3.6.1, we obtain a canonical O×

p ×GL2(A
(p)
f )-equivariant

isomorphism
ωXss ⊗Fp OIgss

∼−→ unif∗Xss
ω.

In particular, we obtain a GL2(A
(p)
f )-equivariant isomorphism

H0
(
Xss

Fp
, ωk) ∼−→ HomO×

p
(Lie(Xss,Fp

)k, H0(Igss,O)
)
.

Note that, by the definition of Xss in terms of the Dieudonné module given in § 3.5, we have an
identification of Lie Xss with F2

p/〈(1, 0)〉, and of Op with the σ-centralizer of bss in M2(Z̆p). In
particular, the image of (0, 1) gives a basis element of Lie Xss, and a direct computation shows O×

p

acts on Lie Xss,Fp
= Fp through a surjective character ε : O×

p → F×
p2 whose kernel is a pro-p group

we write as Np. Combining with Theorem 3.7.1, we obtain a GL2(A
(p)
f )-equivariant isomorphism

H0(Xss
Fp
, ωk) ∼−→ HomO×

p

(
εk,Cont

(
D×(Q)\Dp ×GL2(A

(p)
f )/Np,Fp

))
. (4.2.1)

Then, evaluating homomorphisms in the right-hand side of (4.2.1) on 1 ∈ Fp and passing to
Kp-invariants, we obtain Serre’s map, a Hecke equivariant isomorphism

H0(Xss
Fp
, ωk) ∼−→ ANpKp

Fp
[εk]. (4.2.2)

4.3 Hecke algebras and generalized eigenspaces
If L is a field and V is a finite-dimensional vector space over L, then for any commutative
L-algebra T acting on V , we have a decomposition into generalized eigenspaces

V =
⊕

Vm,

where m runs over maximal ideals of T with residue field a finite extension of L and Vm is the
sub-module of m-torsion elements. In particular, if Vm �= 0, the eigenspace V [m] consisting of
elements annihilated by m is non-empty.
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The same result applies more generally to V an increasing union of finite-dimensional vector
spaces with T -action. In particular, if W is an increasing union of admissible representations
of a locally profinite group G, K is a compact open subgroup of G, and T is a commutative
subalgebra of the abstract Hecke algebra L[K\G/K], then the action of T on the invariants WK

admits a decomposition into generalized eigenspaces.
This formalism gives a decomposition into generalized eigenspaces for the action of any

commutative subalgebra

T′ ⊂ Fp[Kp\GL2(A
(p)
f /Kp] = Tabs

Kp ⊗ Fp,

on MKp

k,Fp
, AKp

Fp
, and MKp

Fp
. For MKp

k,Fp
this is immediate because Mk,Fp

is admissible. For AKp

Fp

it follows because A is a colimit of admissible GL2(A
(p)
f )-representations by taking invariants

under compact open subgroups of D×
p . ForMKp

Fp
it follows using the filtration by the admissible

representations FiMFp
.

Remark 4.3.1. In order to obtain a GL2(A
(p)
f )-action on modular forms inducing the standard

action of Hecke operators on Kp-invariants, one must twist by the unramified determinant
character that appears in the Kodaira–Spencer isomorphism ω2 = Ω(cusps). This replaces each
individual coset Hecke operators with a multiple by an invertible element (because we do not
include Hecke operators at p), so it will not change the image under the action map. Thus, this
choice is immaterial for our purposes; we prefer not to include the twist because it is less natural
to do so except when one is comparing with étale cohomology, where it is baked in.

4.4 Spectral decompositions
We now compare the spectral decompositions provided by the previous section in order to prove
Theorem 1.1.1. The comparison ofMKp

Fp
and AKp

Fp
is mediated through comparisons of each with⊕

k≥0M
Kp

k,Fp
.

We first treat the simpler case of MKp

Fp
.

Lemma 4.4.1. For m a maximal ideal of T′,(
MKp

Fp

)
m
�= 0 ⇐⇒

⊕
k≥0

(
MKp

k,Fp

)
m
�= 0.

Proof. We have
(
MKp

Fp

)
m
�= 0 if and only if

(
FiMKp

Fp

)
m
�= 0 for i sufficiently large. On the other

hand, by (4.1.2),
(
FiMKp

Fp

)
m
�= 0 if and only if

(
MKp

k′+i(p−1)

)
m
�= 0 for some 0 ≤ k′ ≤ p− 2, and

we conclude as varying k′ and i exhausts all possible k = k′ + i(p− 1). �
On the other hand, using Serre’s evaluation map we obtain the following result.

Lemma 4.4.2. Assume either Kp is sufficiently small or that p �= 2, 3. Then, for m a maximal
ideal of T′, (

ANpKp

Fp

)
m
�= 0 ⇐⇒

⊕
k≥0

(
MKp

k,Fp

)
m
�= 0.

Proof. Suppose
⊕

k≥0

(
MKp

k,Fp

)
m
�= 0. For each k ≥ 0, we have a GL2(A

(p)
f )-equivariant exact

sequence

0→Mk−(p−1),Fp

·H−→Mk,Fp

restriction−−−−−−→ H0(Xss
Fp
, ωk).
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Passing to Kp-invariants and localizing at m, we obtain the exact sequence

0→
(
MKp

k−(p−1),Fp

)
m

·H−→
(
MKp

k,Fp

)
m

restriction−−−−−−→
(
H0(Xss

Fp
, ωk)Kp)

m
. (4.4.1)

By induction on k, we deduce that if
(
MKp

k,Fp

)
m
�= 0, then

(
H0(Xss

Fp
, ωk′

)Kp)
m
�= 0 for some

0 ≤ k′ ≤ k, and, applying (4.2.2), that
(
ANpKp

Fp

)
m
�= 0.

Suppose
(
ANpKp

Fp

)
m
�= 0. Then, as

ANpKp

Fp
=

⊕
k∈Z/(p2−1)Z

ANpKp

Fp
[εk],

we deduce that for some k ≥ 0, ANpKp

Fp
[εk]m �= 0. If Kp is sufficiently small, then because ω is

ample on XKp,Fp
and εk only depends on k mod p2 − 1, we may choose this value of k large enough

that H1(XKp,Fp
, ωk−(p−1)) = 0. Then, the sequence (4.4.1) extends to a short exact sequence;

indeed, it is obtained by localizing at m the short exact sequence

0→ H0(XKp,Fp
, ωk−p−1) ·Ha−−→ H0(XKp,Fp

, ωk)→ H0(Xss
Kp,Fp

, ωk)→ H1(XKp,Fp
, ωk−(p−1))︸ ︷︷ ︸

=0

.

In particular, restriction induces a surjection

(MKp

k,Fp
)m � H0(Xss

Kp,Fp
, ωk)m. (4.4.2)

Applying Serre’s isomorphism (4.2.2) we obtain H0(Xss
Kp,Fp

, ωk)m �= 0, and thus (4.4.2) implies

(MKp

k,Fp
)m �= 0, as desired. If Kp is not sufficiently small, then we can still apply the same argu-

ment by first passing to a sufficiently small Kp
1 that is normal in Kp and such that p does not

divide [Kp : Kp
1 ], then taking Kp/Kp

1 invariants (which are exact because p � |Kp/Kp
1 |). When

p �= 2, 3, such a Kp
1 always exists by adding full level � structure for a large enough prime � �≡ ±1

mod p. �
Finally, a purely representation-theoretic argument allows us to pass back and forth between

AKp

Fp
and its Np-invariants.

Lemma 4.4.3. For m a maximal ideal of T′,(
AKp

Fp

)
m
�= 0 ⇐⇒

(
ANpKp

Fp

)
m
�= 0.

Proof. Because Np is a pro-p group and
(
AKp

Fp

)
m
⊂ AKp

Fp
is a smooth characteristic p represen-

tation of Np, if the representation is non-zero, then it admits a non-zero Np-fixed vector by the
standard trick: the Kp-invariants for some Kp � Np compact open are then non-zero, and then
the orbit-stabilizer theorem applied to the action of Np/Kp on the finite-dimensional Fp-vector
space spanned by the orbit of a non-trivial Kp-fixed vector shows there must be a non-trivial
Np-fixed vector. �
Remark 4.4.4. One can also obtain a similar statement relating MKp

Fp
and the mod p reduction

of p-adic modular forms, VKp

Fp
(see § 3.4 for the notation). Indeed, as in Remark 3.4.8, MKp

Fp
=

(VKp

Fp
)1+pZp , and 1 + pZp is a pro-p-group; however, a little more work is necessary to obtain the

finite-dimensionality needed to apply the formalism of the previous section to VKp

Fp
in the first

place. A version of this argument appears in Lemma 4.5.2.
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4.4.5 Consequences. Combining Lemmas 4.4.1, 4.4.2, and 4.4.3, we obtain Theorem 1.1.1 of
the introduction with the additional restriction that Kp be sufficiently small when p = 2 or 3;
only a finite number of maximal ideals can appear in the decompositions because ANpKp

Fp
is a

finite-dimensional Fp-vector space. We note that this also proves a theorem of Jochnowitz [Joc82]
stating that there are only finitely many eigensystems appearing in mod p modular forms.

4.5 Deduction of Theorem 1.1.1 from Theorem A
To finish the section, we explain how one can deduce the mod p correspondence (Theorem 1.1.1)
directly from the p-adic correspondence (Theorem A), assuming the latter has been established
(as is done independently of the mod p correspondence in § 5). In fact, it is more natural to
deduce the corresponding statement over Fp instead of Fp, but there is no important difference
between the two.

We fix a compact open Kp ≤ GL2(A
(p)
f ) and a commutative subalgebra T′ of Tabs. Then, it

suffices to verify that the maximal ideals appearing in the decompositions given by the formalism
of § 4.3 for AKp

Fp
and MKp

Fp
are identified with the open maximal ideals in the corresponding

completed Hecke algebras. We show this in two lemmas, one for each space.

Lemma 4.5.1. The action of T′ on AKp

Fp
factors through T′∧

AKp
Qp

and the maximal ideals such that(
AKp

Fp

)
m
�= 0 are precisely the open ideals of T′∧

AKp
Qp

.

Proof. The union of the finite-dimensional subspaces AKpKp

Qp
as Kp ranges over compact open

subgroups Kp ≤ D×
p is dense in AKp

Qp
. Thus, if we write T′

KpKp,n for the image of T′ in

EndZ/pn(AKpKp

Z/pnZ
), Lemma 2.4.11 gives

T′∧
AKp

Qp

= lim
Kp,n

T′
KpKp,n.

In particular, considering the maps from the limit when n = 1, we deduce that the action on
AKp

Fp
factors over T′∧

AKp
Qp

as claimed. Moreover, each term in the limit has the discrete topology, so

we also find that every open maximal ideal is pulled back from T′
KpKp,n for some n, and we can

take n = 1 because any maximal ideal in T′
KpKp,n contains p. But the maximal ideals in T′

KpKp,1

are precisely those such that (AKpKp

Fp
)m �= 0, so we conclude. �

Lemma 4.5.2. The action of T′ on MKp

Fp
factors through T′∧

VKp
Qp

and the maximal ideals such

that
(
MKp

Fp

)
m
�= 0 are precisely the open ideals of T′∧

VKp
Qp

.

Proof. Write FiV
Kp

Qp
for the image of

⊕i
k=0M

Kp

k,Qp
in VKp

Qp
under the evaluation map. The sub-

spaces FiV
Kp

Qp
are preserved by T′ and their union is dense in VKp

Qp
. If we write FiV

Kp

Zp
=

FiV
Kp

Qp
∩ VKp

Zp
and T′

i,n for the image of T′ in EndZ/pn(FiV
Kp

Zp
/pnFiV

Kp

Zp
), then Lemma 2.4.11

gives T′∧
VKp

Qp

= limi,n T′
i,n.

We write FiV
Kp

Fp
:= FiV

Kp

Zp
/
(
FiV

Kp

Zp
∩ pVKp

Zp

)
= FiV

Kp

Zp
/pFiV

Kp

Zp
. Then, FiV

Kp

Fp
is a finite-

dimensional Fp-vector space and VKp

Fp
=

⋃
i FiV

Kp

Fp
. Taking the maps corresponding to the n = 1

terms in the limit above, we deduce that the action of T′ on VKp

Fp
factors through T′∧

VKp
Qp

.

Now, becauseMKp

Fp
= (VKp

Fp
)1+pZp , the action onMKp

Fp
also factors through T′∧

VKp
Qp

. Moreover,

arguing as in the proof of the previous lemma, any open maximal ideal is pulled back from T′
i,1 for
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some i, i.e. from the image of T′ in End(FiV
Kp

Fp
), so we conclude that the open maximal ideals are

exactly those for which (FiV
Kp

Fp
)m �= 0 for some i. On the other hand, FiV

Kp

Fp
is preserved by the

action of Z×
p , which commutes with the Hecke action, thus (FiV

Kp

Fp
)m �= 0 is a finite-dimensional

Fp-vector space with an action of Z×
p . Because 1 + pZp is a pro-p group, (FiV

Kp

Fp
)m �= 0 if and

only if (FiV
Kp

Fp
)1+pZp
m �= 0, as in the proof of Lemma 4.4.3. BecauseMKp

Fp
=

⋃
i(FiV

Kp

Fp
)1+pZp , we

find that as i varies these are exactly the maximal ideals for which (MKp

Fp
)m �= 0. �

Combining Lemmas 4.5.1 and 4.5.2 (and invoking Lemma 4.4.3 still to see that only finitely
many maximal ideals appear), we obtain the Fp-version of Theorem 1.1.1 as a consequence of
Theorem A.

5. Spectral p-adic Jacquet–Langlands correspondence

In this section, we prove Theorem A. After recalling some preliminaries on perfectoid modular
curves in §§ 5.1–5.3, in §§ 5.4–5.5 we recall the construction of the supersingular perfectoid Igusa
variety and its relation to the fibers of the Hodge–Tate period map. In § 5.6 we use this rela-
tion to construct an evaluation map from classical modular forms to ACp . The key properties
of this evaluation map are that it is injective and has dense image; these are established in
Theorem 5.6.2. We conclude in § 5.7 by invoking some of the tools developed in § 2.4; in particu-
lar, Theorem 5.7.1 gives the isomorphism of completed Hecke algebras of Theorem A along with
some other isomorphisms indicated in the introduction.

5.1 Perfectoid modular curves
Let Kp ≤ GL2(A

(p)
f ) be a sufficiently small compact open subgroup. Viewing Kp as a subgroup

of GL2(Af ), the (infinite level at p) schematic modular curves YKp and XKp define functors on
affinoid perfectoids over (Cp,OCp) by

YKp : Spa(R,R+) �→ YKp(R) and XKp : Spa(R,R+) �→ XKp(R).

It is convenient to write out an equivalent definition for YKp , where we separate out the p and
prime-to-p parts of the level.

Definition 5.1.1. We define YKp as the functor on affinoid perfectoid Spa(R,R+)/Spa(Cp,OCp),

YKp : Spa(R,R+) �→ {(E,ϕp,Kp)}/ ∼

sending (R,R+) to the set of equivalence classes of triples (E,ϕp,Kp) where:

(i) E/R is an elliptic curve;
(ii) ϕp : Qp

2 ∼−→ VQp(E) is an isomorphism;

(iii) Kp ⊂ Isom((A(p)
f )2, V

A
(p)
f

(E)) is a Kp-torsor;

(iv) the relation ∼ is defined by (E,ϕp,Kp) ∼ (E′, ϕ′
p,Kp′) if there is a quasi-isogeny q : E → E′

such that q ◦ ϕp = ϕ′
p and q(Kp) = Kp′.

Both YKp and XKp are represented by perfectoid spaces over Cp: in [Sch15, Theorem 3.3.18]
it is shown that there is a perfectoid space

X ′
Kp ∼ lim

Kp≤GL2(Zp)
compact open

Xad
KpKp,Cp
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where, here, a ∼ limit, as defined in [SW13, Definition 2.4.1], in particular implies (via [SW13,
Proposition 2.4.5]) that for (R,R+) perfectoid over (Cp,OCp),

X ′
Kp(R,R+) = lim

Kp≤GL2(Zp)
compact open

Xad
KpKp,Cp

(R,R+).

However, we have the identity

Xad
KpKp,Cp

(R,R+) = XKpKp(R)

because XKpKp is projective and the line bundles on Spa(R,R+) and SpecR are identified via
their global sections which are rank-one projectives over R (for affine schemes this is standard,
and for Spa(R,R+) the equivalence between vector bundles and finite projective modules over R
is given by [KL15, Theorem 8.2.2]). Thus, we conclude XKp = X ′

Kp , so that XKp is a perfectoid
space.

Passing to the open modular curves we find

lim
Kp≤GL2(Zp)
compact open

Y ad
KpKp,Cp

is also represented by an open in XKp , which is perfectoid by the above result. It is
immediate by construction of the analytification of an affine finite-type scheme over Cp

that

Y ad
KpKp,Cp

(R,R+) = YKpKp(R),

so that we conclude YKp is a perfectoid space.

Remark 5.1.2. For open modular curves we can then obtain the same result for Kp closed but
not necessarily compact open by using Proposition 3.1.8 and the fact that the limit of a tower
of finite étale covers of perfectoid spaces is perfectoid, and similarly for X if this is combined
with explicit computations at the cusps. As our main concern is the Hecke action, for which
it suffices to have a construction for Kp compact open, we do not go further into these details
here.

From the actions on YKp and XKp , we obtain an action of GL2(Qp) on XKp preserving YKp

and a commuting action of GL2(A
(p)
f ) on the towers as Kp varies over sufficiently small compact

opens Kp ≤ GL2(A
(p)
f ).

5.2 Modular forms
For k ≥ 0 recall from § 3.2 that we have the admissible GL2(Af )-representation of weight k
modular forms over Cp,

Mk,Cp = H0(XCp , ω
k) ∼= colim K≤GL2(Af )

K sufficiently small
compact open

H0(XK,Cp , ω
k).

We now relate these to XKp .
The GL2(Qp)-action on XKp can be viewed as induced from the identification

XKp ∼ lim
Kp≤GL2(Qp)
compact open

Xad
KpKp,Cp

and the action of GL2(Qp) on the tower. In particular, the analytification of the GL2(Qp)-
equivariant modular bundle ω on the tower pulls back to a GL2(Qp)-equivariant vector bundle
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on XKp which we also denote by ω. Moreover, these compile to a GL2(A
(p)
f )-equivariant bundle

on the tower (XKp)Kp as Kp varies.
For Kp ≤ GL2(Qp) compact open, we have

H0(Xad
KpKp,Cp

, ωk) = H0(XKpKp,Cp , ω
k) = M

KpKp

k,Cp
.

In particular, by pullback to XKp we obtain a GL2(Qp)-equivariant injection

MKp

k,Cp
= H0(XKp , ωk) ↪→ H0(XKp , ωk).

Though we do not need any more than this, we note that this is an isomorphism onto the
GL2(Qp)-smooth vectors, as can be checked after restriction to YKp where it follows from the
sheaf property for the completed structure sheaf on the pro-étale site of Yad

KpKp,Cp
for each

compact open subgroup Kp ≤ GL2(Qp).
This isomorphism is compatible with the GL2(A

(p)
f )-action on the tower of XKp so extends

to a GL2(Af )-equivariant injection

Mk,Cp ↪→ colimKpH0(XKp , ωk).

Remark 5.2.1. As in Remark 4.3.1, to obtain a GL2(Af )-action inducing the standard Hecke
action, one should introduce a twist by the unramified determinant character that appears in
the Kodaira–Spencer isomorphism. This does not change the resulting completed Hecke algebra,
so it is reasonable to include the twist only when convenient, that is, when comparing with
singular/étale cohomology.

5.3 The Hodge–Tate period map
In [Sch15], Scholze constructs the Hodge–Tate period map,

πHT,Kp : XKp → P1(= P1,ad
Cp

).

We normalize some choices related to the group actions and equivariant structures by requiring
that, over YKp , πHT,Kp is the classifying map for the line

LieE(1) ⊂ VpE ⊗OYKp
∼= O2

YKp

given by the Hodge–Tate filtration for the universal elliptic curve and the trivialization of its
relative Tate module. In particular, πHT,Kp is GL2(Qp)-equivariant for the action on P1 in which
GL2(Qp) acts by the dual of the standard representation on H0(P1,O(1)). The image of the
boundary/cusps XKp\YKp is P1(Qp).

The maps πHT,Kp compile to a GL2(Af )-equivariant map

πHT : (XKp)Kp → P1

from the tower XKp , where P1 is given the trivial action of GL2(A
(p)
f ). By construction, after

fixing a compatible system of p-power roots of unity in Cp, there is a natural isomorphism
π∗HTO(1) = ω of GL2(Af )-equivariant line bundles on the tower (XKp)Kp .

Remark 5.3.1. Comparing with [CS17, SW13], over the good reduction locus one can also think
of the map πHT as the classifying map for the p-divisible group E[p∞] equipped with a basis
for TpE[p∞]. A key property of πHT is that we can construct GL2(A

(p)
f )-equivariant fake Hasse

invariants via pullback; this matches well with the perspective on the classical Hasse invariant
described in § 3.2.2 which can be read as saying that it is pulled back from the moduli stack of
p-divisible groups.
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5.4 The perfectoid supersingular Igusa variety
For a closed subgroupKp ≤ GL2(A

(p)
f ), the supersingular Caraiani–Scholze Igusa moduli problem

of Definition 3.5.1 defines a functor on affinoid perfectoids over (Cp,OCp),

Igss
Kp : Spa(R,R+)→ Igss

Kp(R+/p).

When Kp is sufficiently small, Corollary 3.7.4 identifies Igss
Kp with SpecA for

A = AKp

Fp
= Cont(D×(Q)\D×(Af )/Kp,Fp).

Because A is a perfect ring and R+ is p-adically complete,

Igss
Kp(R+/p) = Hom

Fp
(A,R+/p)

= Hom
Z̆p

(W (A), R+)

= Hom(Q̆p,Z̆p)

(
(W (A)[1/p],W (A)), (R,R+)

)
= Hom(Q̆p,Z̆p)

(
(AKp

Q̆p
,AKp

Z̆p
), (R,R+)

)
= Hom(Cp,OCp )

(
(AKp

Cp
,AKp

OCp
), (R,R+)

)
.

However, (AKp

Cp
,AKp

OCp
) is a perfectoid Huber pair, so we conclude that Igss

Kp is represented by

the affinoid perfectoid space Spa(AKp

Cp
,AKp

OCp
), which is just the profinite set D×(Q)\D×(Af )/Kp

viewed as a perfectoid space over Spa(Cp,OCp).

Remark 5.4.1. In [CS17, § 4] this procedure is carried out in much greater generality to con-
struct perfectoid Igusa varieties (without the explicit identification with a double coset, which,
in general, will only occur over the basic locus).

5.5 Uniformization of fibers of πHT

We fix now a one-dimensional connected height-two p-divisible group G/OCp equipped with a
quasi-isogeny

ρG : Xss,OCp/p ⊗Qp
∼−→ GOCp/p ⊗Qp

and a trivialization ψG : Z2
p

∼−→ TpG(OCp). By the Scholze–Weinstein classification [SW13], the
pair (G,ψG) is equivalent to the point x ∈ P1(Cp)\P1(Qp) determined by the position of the
Hodge–Tate filtration. As it will be convenient later, we choose our data so that x is in the affinoid
ball B1 : |U/V | ≤ 1, where here U and V denote the standard basis for O(1) (i.e. projective
coordinates are [U : V ]).

As in [SW13], there is a perfectoid Lubin–Tate space M̂LT,∞ over Spa(Cp,OCp) parameteriz-
ing quasi-isogeny lifts G of Xss equipped with trivializations of TpG. We do not define this space
more carefully as we use it only through a citation to [CS17] in a proof in the following, but let
us recall that there is a local Hodge–Tate period map classifying the Hodge–Tate filtration,

πHT,loc : M̂LT,∞ → P1,

and ρG determines a point x∞ ∈ M̂LT,∞(Cp) lying in π−1
HT,loc(x).

From these data, we now construct a map

unifx∞,Kp : IgKp → YKp ⊂ XKp .
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On points in affinoid perfectoid (R,R+), it sends (E,ϕp,Kp) to (E′, ϕ′
p,Kp′), where:

(i) E′ = ER where E is the elliptic curve over R+ given by the Serre–Tate lifting (cf. [Kat81,
§ 1]) of E to R+ determined by the quasi-isogeny

ρG ◦ ϕ−1
p : E[p∞]⊗Qp → GR+/p ⊗Qp;

(ii) ϕ′
p is the composition of ψG with the canonical identification of Tate modules induced by
E [p∞] = G[p∞]R+ ;

(iii) Kp′ is the unique lift of Kp.

By construction, unifx∞ factors through the closed subset π−1
HT,Kp(x) ⊂ XKp,Cp . The latter is a

Zariski closed subset of a perfectoid space and, thus, admits a canonical structure of a perfectoid
space through which unifx∞ factors (because the domain is also a perfectoid space).

In addition to the obvious GL2(A
(p)
f )-equivariance in the tower, the map unifx∞,Kp also

satisfies an equivariance at p: let Tx := Aut(G⊗Qp) be the group of self quasi-isogenies of G.
Then, by the Scholze–Weinstein classification, ψG identifies Tx with the stabilizer in GL2(Qp)
of x ∈ P1(Cp)\P1(Qp). On the other hand, ρG identifies Tx with a subgroup of the self-quasi-
isogenies

Aut(Xss,OCp/p ⊗Qp) = Aut(Xss,Fp
⊗Qp) = D×

p .

By the interpretation as a stabilizer, Tx is equal to either Q×
p or F× for a quadratic extension

F/Qp, and the latter occurs exactly when x ∈ P1(F )− P1(Qp); this follows from an explicit
computation after observing that any line preserved by a non-scalar matrix in GL2(Qp) must be
defined over a quadratic extension of Qp.

Theorem 5.5.1. The maps unifx∞,Kp induce a Tx ×GL2(A
(p)
f )-equivariant isomorphism of

towers of perfectoid spaces

unifx∞ :
(
D×(Q)\D×(Af )/Kp

)
Kp =

(
Igss

Kp

)
Kp

∼−→
(
π−1

HT,Kp(x)
)
Kp

as Kp varies over sufficiently small compact open subgroups of GL2(A
(p)
f ).

Proof. The equivariance and compatibility in the tower is immediate from the definition, so it
suffices to show that for each Kp the map unifx∞,Kp is an isomorphism of perfectoid spaces.

We first note that unifx∞,Kp is the restriction to Igss
Kp × x∞ of a map

unifKp : Igss
Kp ×Spa(Cp,OCp ) M̂LT,∞ → Yss

Kp

defined similarly in [CS17, § 4]; here, Yss
Kp denotes the closed subspace of YKp whose Spa(C,C+)

points for C complete algebraically closed correspond to triples (E, ρp,Kp) such that E extends
to an elliptic curve over C+ with supersingular reduction at the maximal ideal mC+ of C+.

It follows from [CS17, Lemma 4.3.20] (cf. also [CS17, Definition 4.3.17]), that the diagram

Igss
Kp ×Spa(Cp,OCp ) M̂LT,∞ ��

unifKp

��

M̂LT,∞

πHT,loc

��
Yss

Kp

πHT,Kp

�� P1

is Cartesian on perfectoid spaces. Thus, because πHT,loc(x∞) = x, we find that unifx∞,Kp induces
an isomorphism between the functors of points of Igss

Kp and (πHT,Kp |Yss
Kp )−1(x) on perfectoid
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spaces. Because both are perfectoid spaces, and a perfectoid space is determined by its functor
of points on perfectoid spaces, we conclude that unifx∞ is an isomorphism onto this space.

It remains to show that π−1
HT,Kp(x) ⊂ Yss

Kp . Here the point is just that the loci of ordinary
and multiplicative reduction map to P1(Qp), but let us make this completely precise: suppose
given a geometric point

(E,ϕp,Kp) ∈ π−1
HT,Kp(x)(C,C+),

and write t for the corresponding point

t = (E,Kp) ∈ XGL2(Zp)Kp(C) = XKp(C+).

By [Sch15, Lemma 3.3.19], because x �∈ P1(Qp), there is a rational number 1 ≥ ε > 0 such that the
Hasse invariant vanishes on tC+/pε , which thus factors through the supersingular locus. However,
this implies, in particular, that E has supersingular reduction over C+/mC+ , so we conclude. �

5.6 Evaluation of modular forms
Any choice of basis for the fiber of O(1) at x ∈ P1(Cp) induces a GL2(A

(p)
f )-equivariant trivi-

alization of ω|π−1
HT(x). In particular, if we take as basis the section V |x (recall U and V are the

standard basis for O(1)), we obtain a map from classical modular forms

evalK
p

x∞ :
⊕
k≥0

MKp

k,Cp
→ AKp

Cp

(
= H0(Igss

Kp ,O)
)

by first pulling back to XKp , then restricting to π−1
HT(x) and dividing by V k.

Remark 5.6.1. Choosing G to have endomorphisms by Z̆p2 and scaling the trivialization V |x by
a p-adic period of G, one can obtain an evaluation map that, on H0(X

Z̆p,ωk) ⊂MKp

k,Cp
, reduces

modulo p to Serre’s evaluation map described in § 4.

Theorem 5.6.2. For Kp ≤ GL2(A
(p)
f ) a sufficiently small compact open, the map evalK

p

x∞ is
injective and has dense image. Moreover, asKp varies they are compatible and induce an injective

GL2(A
(p)
f )-equivariant map

evalx∞ :
⊕
k≥0

Mk,Cp → ACp .

Proof. The compatibility and equivariance as Kp varies is clear from construction.
We now show injectivity: because z ∈ Z×

p ⊂ Tx acts as multiplication by z−k on our fixed
trivialization V |x, we find that for any compact open Kp ⊂ GL2(Qp), the image of MKpKp

k,Cp
in

H0(π−1
HT(x),O) transforms under zk for the action of z ∈ Kp ∩ Z×

p . Thus, by the equivariance of
the Tx action in Theorem 5.5.1, the image of MKp

k,Cp
lands in the subspace AKp

Cp
[k] of vectors on

which the action of the central Z×
p ≤ D×

p is differentiable with derivative k. In particular, there
can be no cancellation between the different degrees k.

To show the map is injective on each Mk,Cp , we first observe that for K = KpK
p a compact

open subgroup of GL2(Af ), the image of π−1
HT(x) in Xad

K,Cp
(Cp) = XK,Cp(Cp) intersects every

connected component of XK,Cp in an infinite set; indeed, the map factors as an injection from
D×(Q)\D×(Af )/(Kp ∩ Tx) ·Kp, and the connected component of the image in XK,Cp is recorded
by the map

g = gp × (g�)��=p �→ Nrd gp · |Nrd gp|p ·
∏
��=p

|detg�|�

with values in Z×
p modulo the image of K.
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If s is a non-zero section of a line bundle on XK,Cp , then there is at least one connected
component where it has only finitely many zeros. Thus, any section of ωk over XK which vanishes
upon restriction to π−1

HT,Kp(x) is identically zero, and we conclude the map is injective.
We now show the map has dense image. By assumption, x is contained in

B1 : |U |/|V | ≤ 1 ⊂ P1,

and [Sch15, Theorem 3.3.18(i)] gives that π−1
HT(B1) is affinoid perfectoid. By [BS19, Remark 7.5]

(Zariski closed implies strongly Zariski closed; cf. also [Sch15, Definition II.2.6]), we find that
the map

H0(π−1
HT,Kp(B1),O+)→ H0(π−1

HT,Kp(x),O+) = AKp

OCp

is almost surjective; in particular, the image contains pAKp

OCp
.

Thus, given f ∈ p · AKp

OCp
, we can lift it to f̃ ∈ H0(π−1

HT,Kp(B1),O+). By Lemma 5.6.4 we find

that for any n > 0 that there is a k large enough, Kp small enough, and an element of α ∈MKpKp

k,Cp

such that

α/V k ∈ H0(π−1
HT,Kp(B1),O+), α/V k ≡ f̃ mod pnH0(π−1

HT,Kp(B1),O+).

In particular, evalK
p

x∞(α) ≡ f mod pn. Thus, the image of evalK
p

x∞ contains a dense subset of the
open ball pAKp

OCp
, so is dense in AKp

Cp
. �

Corollary 5.6.3. If Kp ≤ GL2(A
(p)
f ) is any compact open subgroup, then evalx∞ restricts to

a Hecke-equivariant injection with dense image⊕
k≥0

MKp

k,Cp
→ AKp

Cp
.

Proof. This statement is immediate from Theorem 5.6.2 except for the density when Kp is
not sufficiently small. To see this density, we pass to a sufficiently small compact open nor-
mal subgroup Kp′ � Kp, then average approximations by Kp′-invariants over Kp/Kp′ to obtain
approximations by Kp invariants. �

The following lemma extracts part of the fake Hasse invariant argument given in [Sch15, Proof
of Theorem 4.3.1, pp. 1028–1031] in the simplest possible case. We make no new contribution,
however, as the specific statement we need is significantly simpler than the setup in [Sch15], we
reproduce the proof here in the hopes that it will be helpful for the reader.

Lemma 5.6.4. If g ∈ H0(π−1
HT,Kp(B1),O+) and n > 0, then there is a compact open subgroup

Kp ⊂ GL2(Zp), a k > 0, and an α ∈ H0(XKpKp , ωk) such that α/V k ∈ H0(π−1
HT,Kp(B1),O+) and

α/V k ≡ g mod pn.

Proof. We use density of sections to approximate g, U , and V at finite level, then make an
argument using formal models and ampleness of ω to extend the approximation of g to a global
section of a power of ω after multiplying by a large enough power of the approximation of V .

To better match the notation of [Sch15], we write

s1 = π∗HT,Kp
U, s2 = π∗HT,KpV, U1 = |s2/s1| ≤ 1 ⊂ XKp , and U2 = |s1/s2| ≤ 1 ⊂ XKp .

In particular, U2 = π−1
HT,Kp(B1) in the previous notation.

By [Sch15, Theorem 3.3.18(i)], both U1 and U2 are affinoid perfectoid and come from finite-
level affinoids U1,Kp and U2,Kp in Xad

KpKp,Cp
for small enough compact open Kp ≤ GL2(Zp).
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Moreover, they satisfy

colimKpO(U•,Kp) ⊂ O(U•) is a dense subset for • = 1, 2.

The same density statement holds for sections of ω, thus we can choose, for Kp small enough,
sections

s
(i)
j ∈ H0(Ui,Kp , ω), i, j = 1, 2

such that s(i)i is non-vanishing and the sections s(i)j satisfy

∣∣∣∣sj − s(i)j

s
(i)
i

∣∣∣∣ ≤ |pn| on Ui.

By possibly taking Kp smaller still, we may also assume that there is a function

h ∈ H0(U2,Kp ,O+) such that |h− g| ≤ |pn| on U2,

where we recall that g is the function we are ultimately trying to approximate.
Now, [Sch15, Lemma 2.1.1] gives:

(i) a formal model Xstrange over SpfOCp for Xad
KpKp,Cp

;
(ii) a cover of Xstrange by affines U• = SpfO+(U•,Kp), • = 1, 2; and
(iii) an ample line bundle w/Xstrange modeling ω/Xad

KpKp,Cp
and such that

w(Ui) = O+(U•,Kp) · s
(i)
i .

In particular, the sections s(j)i glue mod pn to a section si of w/pn, and Ui is exactly the locus
where si is invertible. We deduce by ampleness that for large enough k:

(i) H1(Xstrange,wk/pn) = 0; and
(ii) h̄ · s2k extends to a global section of H0(Xstrange,wk/pn).

The first item implies that H0(Xstrange,wk)→ H0(Xstrange,wk/pn) is surjective: consider the
exact sequence of cohomology coming from

0→ wk/pn → wk/p2n → wk/pn → 0

to lift to H0(Xstrange,wk/p2n) and obtain H1(X,wk/p2n) = 0, then repeat and pass to the limit.
Thus, we can lift h̄ · s2k to

α ∈ H0(Xstrange,wk) ⊂ H0(Xad
KpKp,Cp

, ωk),

and this is the desired section. �

5.7 Comparison of completed Hecke algebras
We now prove Theorem A: let Kp ≤ GL2(A

(p)
f ) = D×(A(p)

f ) be compact open, let

Tabs
Kp = Z[Kp\GL2(A

(p)
f )/Kp],

and let T′ ⊂ Tabs
Kp be a subring. Corollary 5.6.3 and Lemma 2.4.9 give

T′∧(
M

KpKp

k,Cp

)
Kp,k

= T′∧
AKp

Cp

.

Invoking Lemma 2.4.8, we find that we can replace Cp with Qp on both sides.
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On the other hand, combining Lemmas 3.4.7 and 2.4.9, we find that

T′∧(
M

GL2(Zp)Kp

k,Qp

)
k

= T′∧
VKp

Qp

.

Thus, to deduce Theorem A, it remains only to show

T′∧(
M

GL2(Zp)Kp

k,Qp

)
k

= T′∧(
M

KpKp

k,Qp

)
Kp,k

.

This is basically a well-known result of Hida [Hid86, Equation (1.7)], however, we are not aware of
a full proof in the literature. Thus, we include a proof here, arguing with completed cohomology
as explained by Emerton [Eme11, Remarks 5.4.2 and 5.4.3]. This argument forms part of the
proof of the following result, which encodes all of the isomorphisms indicated previously and in
the introduction.

Theorem 5.7.1. The identity map T′ → T′ extends to a topological isomorphism of the
completed Hecke algebras T′ acting on the following:

(i)
(
M

KpKp

k,Qp

)
k,Kp

for k varying over all non-negative integers and Kp varying over all compact

open subgroups of GL2(Qp);
(ii)

(
M

GL2(Zp)Kp

k,Qp

)
k

for k varying over all non-negative integers;

(iii)
(
M

KpKp

2,Qp

)
, for Kp varying over all compact open subgroups of GL2(Qp);

(iv) the completed cohomology of the modular curve at level Kp (cf. [Eme06]),

Ĥ1
Kp = H̃1

Kp :=
(

lim←−
m

lim−→
Kp

H i(YKpKp(C),Z/pm)
)

[1/p];

(v) the space of quaternionic automorphic forms AKp

Qp
; and

(vi) the space of p-adic modular forms VKp

Qp
.

Proof. We have already established the identities of completed Hecke algebras (i) = (v) and
(ii) = (vi). We conclude by identifying (iv) = (i), (iv) = (ii), and (iv) = (iii).

For K = KpK
p sufficiently small, let pr : EK → YK(C) be the universal elliptic curve over

YK(C) and let Symk be the kth symmetric power of R1pr∗Q, a GL2(Af )-equivariant local system
on the tower (YK(C))K . Fixing an isomorphism Qp

∼= C, we obtain for each k ≥ 2 and Kp such
that K = KpK

p is sufficiently small a Tabs-equivariant injection

M
KpKp

k,Qp
↪→ H1(YKpKp(C),Symk−2)⊗ Cp (5.7.1)

given by composing the maps

M
KpKp

k,Qp
↪→M

KpKp

k,C ↪→ H1(YKpKp(C),Symk−2)⊗ C ↪→ H1(YKpKp(C),Symk−2)⊗ Cp,

where the second arrow comes from the classical Eichler–Shimura isomorphism and the last
arrow comes from composition of the isomorphism Qp

∼= C with Qp ↪→ Cp. It follows from the
Eichler–Shimura isomorphism that (5.7.1) induces an isomorphism on the image of T′ in the
respective endomorphism rings. If we denote by T′∧

aux the completed Hecke algebra for T′ acting
on the family (

H1(YKpKp(C),Symk−2)⊗ Cp

)
Kp,k

,

then we deduce that T′∧
aux is isomorphic to the completed Hecke algebra for part(i). By

Lemma 2.4.8, T′∧
aux is also the completed Hecke algebra for T′ acting on(

H1(YKpKp(C),Symk−2)⊗Qp

)
Kp,k

.
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As in [Eme06, Eme11],8

H1(YKpKp(C),Symk−2)⊗Qp ↪→ HomKp(Symk−2Q2
p, Ĥ

1
Kp).

Thus, if we fix for each k ≥ 2 a non-zero vector in (Symk−2Q2
p), then pairing with these vectors

gives Hecke–equivariant injections

H1(YKpKp(C),Symk−2)⊗Qp ↪→ Ĥ1
Kp

whose joint image is dense (indeed, it is already so if we fix k = 2), and thus we deduce from
Lemma 2.4.9 that T′∧

aux is isomorphic to the completed Hecke algebra for part (iv), establishing
(i) = (iv). Then, running the same argument using only weight two modular forms, we find
(iii) = (iv).

Arguing similarly and using the density of GL2(Zp)-algebraic vectors in Ĥ1
Kp as established

in [Eme11, Remark 5.4.2] (specifically of those which transform locally as Symk−2Q2
p for some

k; we do not need to also allow for arbitrary twists by a determinant), we obtain (ii) = (iv). �
Remark 5.7.2. From our perspective, instead of p-adic modular forms it is perhaps more nat-
ural to consider the larger space of p-adic automorphic forms given by functions on the
Caraiani–Scholze Igusa formal scheme over the ordinary locus, which parameterizes isomorphisms

E[p∞] ∼−→ μp∞ ×Qp/Zp.

Indeed, an argument nearly identical to that given in this section for the supersingular Igusa
variety but starting with the point

x = [0 : 1] ∈ P1(Qp)

shows that the completed Hecke algebra of this space of p-adic automorphic forms is the same
as that appearing in Theorem 5.7.1.

Moreover, this space of p-adic automorphic forms admits an action of a very large unipotent
group at p, and using this action one can produce a GL2(A

(p)
f )-equivariant projection operator

(a type of Kirillov functor) to Katz p-adic modular forms which can, in turn, be used to deduce
an isomorphism of completed Hecke algebras; this will be explained in future work (cf. also
[How20]). In this way, one will be able to obtain a proof of Theorem A that does not pass
through singular/étale cohomology to show that level and weight families of classical modular
forms give rise to the same completed Hecke algebra.
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