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PERIODIC SOLUTIONS OF CERTAIN NONLINEAR
PARABOLIC DIFFERENTIAL EQUATIONS IN
DOMAINS WITH PERIODICALLY
MOVING BOUNDARIES

YOSHIO YAMADA

Introduction

In this paper we consider the periodic problems for certain nonlinear
parabolic differential equations in domains with periodically moving
boundaries. The typical problem, which is going to be discussed in the
present paper, is to solve the following:

(ou g0 (oupou

at glaxi<axi axi)+ﬁ(”)af onQ,

u(w,t) =0 on I,

u(x’ 0) = u(xy T) on Q(O) — Q(T) ’

where g is a (possibly multi-valued) maximal monotone operator in R!
X R'; @ is a bounded domain in R? X (0, T) with the periodically mov-
ing boundary I" and Q(t) is the section of @ at ¢.

To approach our problems, we establish, in §1, the existence and
uniqueness theorem (Theorem 1.4) for the abstract nonlinear differential
equation of the form

du®)/dt + dp'w@) s f®, 0<t<T,

in a real Hilbert space H. Here, d¢p' is the subdifferential of a lower
semicontinuous convex function ¢’ from H into (—oo, 4 o] with the ¢-
dependent effective domain D(¢’).

In §2, by use of the results in § 1, we show the existence and unique-
ness of periodic solutions for the above nonlinear parabolic differential
equation and the modified Stokes equation in domains with periodically
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moving boundaries. We employ the method used in the previous paper [8]
and treat the problems directly in non-cylindrical domains without
any change of variables.

The author wishes to express his hearty thanks to Professors H.
Fujita and K. Masuda for their kind advices and encouragements.

§1. Abstract theory
Let H be a real Hilbert space with the inner product (-, -) and the

norm |-||l. Let {¢*} (0 <t < T) be a family of proper lower semicontin-
uous (I.s.c.) convex functions from H into (—oo, +o0]. For each 0 < ¢
< T, we put

D(p") = {ue H; ¢(w) < 40},
0o'(w) = {we H; ¢o'(v) — ') > (w,v — u) for all v e D(p)},
D(@0¢") = {u e D(¢"); 3p*(w) = ¢} .

The set D(¢*) is called the effective domain of ¢* and the set dp‘(u) is
called the subdifferential of ¢' at u. It is well known that od¢° is a
maximal monotone operator in H X H.

In this section we consider the periodic problem for the abstract
nonlinear differential equation associated with the time-dependent sub-
differential operators;

{du(t) /dt + dp*(u(®)) 3 f(P) , 0t T,

(P.F) w(0) = w(T) .

We now define a strong solution of (P.P).

DEFINITION 1.1. Let %:[0,7]— H. Then u is called a strong solu-
tion of (P.P) if (i) ue C([0,T]; H); i.e. u is strongly continuous on [0, T,
(i) #(0) = w(T), (iii) » is strongly absolutely continuous on any compact
subset of (0,7) and (iv) u(t) is in D(@¢") for a.e. t€[0,T] and it satis-
fies

du(t)/dt + de*(u(®)) o () for a.e. te[0,T].

In what follows, we often make the following assumptions (A.1)-
(A3) on {1} (Ot D).

(A.1) There exist constants d, >0 and 0 < « <1 such that if » > 0 and
0<t<7T, then, for each x,e D(¢p*) such that |z,|| < 7, there exists an
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H-valued function z on I(t,) = [max {0, ¢, — d,}, min {¢, + &, T}] satisfying
(1) 2@ — 2l < 19:0) — g.()| (p™(z0) + K,)* for teI(ty),

()  @®) < @) + |h,(8) — R ()| (") + K,)  for tel(ty),

where K, is a non-negative constant and g, and h, are absolutely
continuous functions on [0, 7] such that ¢, € L*(0,T) in case 0 < a < 1/2
and g, e LYV**(0,T) in case 1/2 < a < 1.

(A.2) liminf €™ — 40, o<t
lull-e |||

N

T,

T
where / is a measurable function on [0, 7] such that J. L()dt = + oo.
0

(A.3) D(e") < D(¢") .

In order to show the existence of a strong solution of (P.P), we
use the results on the initial value problem

{du(t)/ dt + ' uN >/, 0<t<T,

1.v.p) w0) = a .

As to the problem (I.V.P.) we have:

ProOPOSITION 1.2 (ef. Yamada [8, Theorem I1). Let feL*0,T; H)
and let {¢'} (0 <t < T) satisfy the assumption (A.1). Then, for each
a e Cl (D(p") (Cl = closure) there exists a wunique strong solution wu of
(I.V.P) with the following properties.

(i) For every 0 <t < T,ul) s in D(p") and ¢'(u(t)) is absolutely con-
tinuous on (0, T]. Moreover, ¢'(u(t)) e L'(0, T) and te*(u(t)) € L=(0, T).
(i) t“*du/dte L*0,T; H).

In particular, if a e D("), then u satisfies:

(i) For every 0 <t < T, w®) is in D(p) and ¢'(u(t)) is absolutely con-
tinuous on [0, T1].
() du/dte L¥0,T; H).

Proof. We can prove this proposition with a slight modification of
the proof of Theorem I in [8].

Remark 1.3. The problem (I.V.P) has been considered by many
authors under the various assumptions on {¢’} (see e.g. Kenmochi [5]).
However, in this paper we put the assumption (A.1) on {¢’} so that
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we can apply the results to nonlinear parabolic differential equations in
non-cylindrical domains.

Now using Proposition 1.2 we can obtain the following results on
the problem (P.P).

THEOREM 1.4. Let feL*0,T; H) and let {¢*} (0 <t < T) satisfy the
assumptions (A.1)-(A.3). Then there exists a strong solution u of (P.P)
with the following properties.

(i) For every 0 <t < T, ud) is in D(p") and ¢'(u(t)) is absolutely con-
tinuous on [0, T].
(i) du/dte L¥0,T; H).

In particular, if d¢° is strictly monotone for each 0 <t < T, then

the strong solution w of (P.P) is uniquely determined.

Remark 1.5. Nagai [7] also treated the problem (P.P) in the form
of the variational inequality and showed the existence of a periodic
solution under the appropriate assumptions on {¢'}.

Proof of Theorem 1.4. The uniqueness is evident by the strict
monotonicity of d¢’.

We shall sketch only the proof of the existence part; the method
of the proof is similar to that of Nagai [7, Theorem 1]. For each
a € Cl(D(p") let u, be the strong solution of (I.V.P). We define a single-
valued mapping S by Sa = u,(T) for a e Cl (D(¢")). Then by Proposition
1.2, the assumption (A.3) and the monotonicity of d¢’ we see that S is
the nonexpansive mapping such that S(Cl (D(¢")) € D(¢"). Therefore, if
we can show that S has a fixed point in Cl (D(¢"), then using Proposi-
tion 1.2 we obtain the conclusions of Theorem 1.4.

To prove that S has a fixed point in Cl(D(¢")) we use a fixed point
theorem due to Browder and Petryshyn (see Lemma 1.6 below), which
discusses the Picard iterates {z,} for S;

Lpor = STy, , 2, € Cl1 (D(¢") given .
For brevity we put u, = u,,. Noting «,(T) = Sz, we have
”un(T) - un(o)” = stn - xn“ = ”Snﬂxo - S"woll S sto - xo”

for all n. Consequently, the existence of a fixed point of S in Cl(D(¢")
follows from the next two lemmas.
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LeEMMA 1.6 (Browder and Petryshyn [3, Theorem 1]). Let S be a
nonexpansive selfmapping of a nonempty closed convexr set C of H.
Then S has a fized point in C if and only if for any x,e C the sequence
of Picard iterates {x,} starting at z, (i.e. ,., = Sz, is bounded in
H.

LEMMA 1.7 (cf. Benilan and Brezis [1, Lemma 3.1] and Nagai [6,
Lemma 1]). Under the assumptions (A.1)-(A.2) let feL*0,T; H) and
let {u,} be a sequence of strong solutions of the equations

du,@)/dt + op'(u.,@) o f@, 0<t<T,

satisfying ||4,(0)| — [[u(T)|| < C for all n. Then the sequence {u,} s
bounded in C([0,T]; H).

Since Lemma 1.7 can be proved in the same way as Lemma 3.1 in
[11, we complete the proof of Theorem 1.4.

§2. Applications

In this section we apply Theorem 1.4 to the periodic problems for
certain nonlinear parabolic differential equations in domains with peri-
odically moving boundaries. We solve these problems directly in non-
cylindrical domains without any change of variables. Our main interest
lies in the methodological part rather than in the specific results. We
shall give two examples to explain how Theorem 1.4 is applied to
them.

2.1. Nonlinear parabolic differential equation with principal part
in divergence form

To treat the periodic problem stated in the introduction we take an
appropriate Hilbert space and define a family of ¢-dependent l.s.c. con-
vex functions {¢’}. Then we formulate the original problem in the form
(P.P) and solve (P.P).

Now we shall state the problem more precisely. Let T be a posi-
tive number and, for each 0 < ¢ < T, let Q(t) be a bounded domain in
R with the boundary I'(t). When ¢ moves over (0,7), Q(f) generates
an (z,t)-domain Q = | U,,.r (Q(t) X {t}) and I'(t) generates an (z, t)-hyper-
surface I' = Uycser (") X {t}; I' is the lateral boundary of Q. As-
suming Q(0) = Q(T) we consider the problem
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(ou _ g 0 ((oup=ou
ot z--Z:axz<axi axi) thwss  on @,
2.1)
U = on I,
w(x, 0) = w(z, T) on Q) = Q) ,

where p > 2 and g is a (possibly multi-valued) maximal monotone oper-
ator in R' X R' such that D(3) s 0.

We now make the assumptions on the (z,t)-domain Q.
(Q.1) For each 0 <t < T, I'(t) consists of ¢ simple closed hypersurfaces
' ®)@=12,..-.,4) which are sufficiently smooth (say, of class C?» and
satisfy

dist (I",(0), I',(1) > & for every 0 <t < T and e 5,

where ¢, is a positive constant and dist (-, -) denotes the n-dimensional
distance.

(Q.2) Let Q(s,t) = Uscre: (@) X {rD. Then the (z, t)-domain @ is cov-
ered by m slices Q¢ + 8, (3, >0,7=1,2,-..,m) such that, for each
1<i<m,Q,;,t, + d;) is mapped onto a cylindrical domain Q(t;) x (¢;,
t; + 6, by a diffeomorphism @; which is smooth (say, of class C° up
to the boundary and preserves the time coordinate t.

Remark 2.1. The assumption (Q.2) is satisfied, if for each 1 < a < 4,
I, = Upcier (B X {t) is covered by a finite number of open patches
and, in each patch, I, can be represented by ) = (xl, x5, -+, 2, 1, 1)
under a suitable choice of coordinates (z, 7, ---, %) in R®, where + is
a smooth function (say, of class C*) of n variables (x{, z;, - - -, z,_,, ©) (cf.
Fujita [4]).

To apply Theorem 1.4 to the problem (2.1) we take an open ball B
in R? such that the closure of Q(¢) (in R?) is contained in B for every
0 <t <T and treat the problem (2.1) in L*(B). In this section we use
the following notations; when « is a real-valued function on @, we put

% = the natural extension of u, i.e., # =u on @
and 4 =0 on {B X (0,HN\Q ,

and define the spaces

C(I0, T1; Wyr(QM®)) = {u; 4 e C(I0, T1; Wp?(B)) and u(-,t)
e Wyr(Q@)) for every 0 <t < T},
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and so on.

Now we note that we may assume p(0) 50 without loss of gener-
ality. Therefore, since g is a maximal monotone operator in R' X R!
such that 5(0)s0, we can find a proper l.s.c. convex function y on R!
satisfying dr = g and min {y(z); z ¢ R} = r(0) = 0.

Then we have the following theorem.

THEOREM 2.2, Let feL*Q). Then there exists a unique solution
% of the problem (2.1) satisfying wue C([0, T1; Wiyr(Q®)), y(w) € L=(0, T';
LM Q@) and du/dt € LX(Q).

Proof. To formulate the problem (2.1) in the form of (P.P) as-
sociated with subdifferential operators, we first define l.s.c. convex func-
tions on L*B) by

o

1 n

1 j >
os(w) = | P B0,

+ o0 if e LY(B), u& Wy?(B)

“dx  if we Whr(B)

and

rs(w) = {L’( (@)dx if we LA(B), y(u) e L'(B)
B p———t
if ue LZ(B)a ](u) & LI(B) .

Then we can show dpz = Az, where Az is a maximal monotone operator
in L*B) X L*B) defined by

au

9
Agh = AU = — __(
? z;axi 0;

p=2 8u)
o,

with the domain D(Ajp) = {ue Wy?(B); fu e L*(B) in the sense of the

distribution} (cf. Lions [6, chap. 2,2]). We can also show 9y = Bz, where

Bz is a maximal monotone operator in L*(B) X L*(B) defined by

D(Bp) = {u e L*(B); there exists a v e LXB) such that
v(x) € f(u(x)) a.e. xe B},
Bs(w) = {v e L*(B); v(x) € f(u(x)) a.e. z¢c B} for ue D(Bp) .

Moreover, using the results of Brezis [2, Proposition 2.17] we see that
Ap + Bz is also a maximal monotone operator in L*B) X LAB) which
satisfies
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2.2) 185 |zem < [(Ap + Be)' Wiz Tor ue D(Ap) N D(Bp) .
We next define a closed convex subset K(t) of L*B) by
Kt ={uecLl!B);ux) =0 a.e. xeB\Q®)}

and denote its indicator function by Ix; i-e., Ixq W) = 0 if v e K(¢) and
Ig(w) = +oo if ue K(0).

We put ¢'(w) = op(w) + ya(w) + Ik, (w). Then ¢ is a proper ls.c.
convex function on LA%B) with the effective domain D(¢*) = Wy?(B)
N D(yp) N K(t). Since we can show by the assumption (Q.1) that u € D(¢?)
if and only if %|zgu =0 and wulg, € Wi?(Q®) N D(rquy), we see that
o'(w) 1s equal to pg,(Ulow) + 70y (lowy) for each u e D(¢?). Therefore, we
find that, when % and f are in L*B),

D¢
{ue 0¢") if and only if
J € 0pt(u)

2.3) Ulpewy = 0

Ulgwy € D(Ag)) N D(Bgry)
Tlaw € Agw®lowy + Baw®lgw) -

(Note that Ay + Bowy is 2 maximal monotone operator in L*Q(%))
X LXQ(t)).) Consequently we can formulate the problem (2.1) in the
form

{dﬁ(t) Jdt + ) o @), O0<t<T,

@4 wW(0) = 4(T) ,

where f is the natural extension of f. The required solution % of (2.1)
is given by u = dl,.

Now we shall verify the assumptions of Theorem 1.4. We begin
with the verification of the assumption (A.1). Let £,¢[0,T] be fixed.
Then by the assumption (Q.2) there exists a positive constant §, < min g,

1<ism
such that
Q(max {t, — &, 0}, min {¢, + 8, TP < Q;, L, + 87 for some 1.

Since Q(¢;, t; -+ d;) is mapped onto the cylindrical domain Q(¢;) X (&;, ¢; + 6,)
by the diffeomorphism @; which preserves the time coordinate ¢, the
image (&,7) € Q(t;) X (¢, t; + 0, of (x,t) € Qmax {t, — &, 0}, min {¢, + 6, T}
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by @; is represented by
E=X(x,t) and z=t¢,

where both X and its inverse X' are smooth functions up to the
boundaries. We now take an arbitrary v,e D(¢**) and put for each
t e I(t,) = [max {t, — 8, 0}, min {£, + &, T}

V(XX (2, 1), T0) if xe Q@)
v(x, t) = .
{0 if xe B\Q() .

Then we can show that v(-,?) is in D(¢’) and that is satisfies
v(-, 8) — Vollzam < Ci|t — ol SDto(”o)l/p ’ tel(t,),

and
o' (-, 1) < () + C, |t — ! o™(vy) , tel(ty),

for some positive constants C, and C, independent of v, and ¢,, Thus
the assumption (A.1l) is verified.

We next verify the assumption (A.2). Let ¢ [0, 7] and take © € D(¢").
Since ¢ () = @oi,(%lowy) + 7oy Mlowy) = o, (%ewy), We obtain, by using
Poincaré’s inequality,

(2.5) ') > Cs || u|Zaqun = Cs || ulfas »

where C, is a positive constant which depends only on n, p and B.
Hence, since ¢‘(u) = + oo for u & D(¢’), we see that (2.5) holds for every
0<t< T and ueL¥B). Thus the assumption (A.2) is verified.

It is easy to verify the assumption (A.3).

Finally we shall show the strict monotonicity of 9¢’. For each
0<t<Tlet fiedpi(u) @ =1,2) and u, % u,. Then by (2.3) we obtain

(fy — Sty — U rap) = (1 — Sortty — uz)Lz(Q(m

(AQ(z)ul - AQ(»)“Z» Uy — Un) 120qtn
ou,

_j < p28ul_au*1’28u)
e 7=1 \|0%,

87] ox;| o0xy
X (Qﬂ - %>daz =0.
9901 axj

If (f, — foty — U1 = 0 were true, then 58—(% —u,) =0 on Q) for
j
every j. Since u;loq, € WiP(Q(®) (0 = 1,2), we see u, = u,. Thus we have
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shown the strict monotonicity of d¢*.

Therefore, applying Theorem 1.4 to (2.4) we see that there exists a
unique strong solution e C([0,T1; L*(B)) of (2.4) with the following
properties; (a) ¢‘(i(¢)) is absolutely continuous in 0<¢< T and (b)
da/dt e L¥(0, T ; LA(B)). To obtain the conclusions of Theorem 2.2, we have
only to show the mapping ¢ — %(¢) is continuous on [0, T'] in the strong topol-
ogy of Wi?(B). To prove this, we note that () is in D(Bp) for a.e.
te[0,T] by (2.8). Therefore, using the estimate (2.2) we deduce

| B3EEN 1 z2mr = I Bocey () || zacqeen
< 1Aqwy + Baw) @) llzscoin
< NSf@® — du@®)/dt||zaqen
= /@ — da@)/dt||ram  for a.e. tel0,T1,

from which it follows that g%(%) is in L*(0, T ; L%(B)). Consequently, using
the results of Brezis [2, Lemme 3.3] we obtain the absolute continuity
in ¢ of yp(u(®), which implies, together with the property (a), the abso-
lute continuity of ¢z(@(f)). Hence (pos(U(t)))"? = ||4(t)|lws»5, is continu-
ous in 0 <t < T. Moreover, since % e C([0, T]; L*(B)), we see that the
mapping ¢ +— 4(t) is continuous in the weak topology of Wi?(B). Hence
# is in C([0, T1; Wi?(B)) since the space Wy?(B) is uniformly convex.
Thus we complete the proof of Theorem 2.2.

2.2. Modified Stokes equation

Under the same assumptions as in 2.1 we treat the periodic prob-
lem for the modified Stokes equation.
Let u = (u', %% ---, 4™ be an n-dimensional vector function and put

n 2

Vuf = 2,

%=1

ou’
0%

)

2 a( -~ au>
.,Qlu—-_z:___ Vulp-2 = y p=2.
i=13x7;[ l axi =

We consider the problem

%-{-Ma:_—f—gradp* on Q.

(2.6) diva =0 on @,
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u=20 on I,
u,0) = u(x, T) on Q) = Q) .

To apply Theorem 1.4 to the problem (2.6) we introduce the following
notations; let 2 be a bounded domain in R? and put

Co(Q) ={u= @ u, -, u");ueCs),divu = 0},
H,(£2) = the completion of C2(2) under the (L*2))"-norm,
wWhr(Q) = the completion of C2(2) under the (Wy?(2))"-norm, or
equivalently
={u= @, v -, u");u € Wyp?(Q), diva = 0},
P, = the orthogonal projection from (L*(2))" onto H,(2).

Then as to the problem (2.6) we have:

THEOREM 2.3. Let fe (LAQ))". Then there exists a unique solution

u of (2.6) satisfying ue C([0,T]; Wr2(Q())) and g—';e(Lz(Q))".

Proof. As in 2.1 we introduce an auxiliary open ball B C R* and
treat (2.6) in H,(B). We first define a proper l.s.c. convex function on
H,(B) by

1 f \Pulpdz  if we Wh(B)
opw) ={p Ja

+ o0 if ueH,B) ,ucWwWy*@B).

Since &/ is a maximal monotone operator from W»?(B) on W:?(B)* (the
dual space of W»?(B)), we can show dpp = Az, where Ay is the restric-
tion of .« on H,(B)X H,B) (cf. Lions [6, chap. 2,5]). We next define a
closed convex subset K(t) of H,(B) by

Kit) ={uecH,(B);u=0 a.e. on B\Q({)}

and denote its indicator function by I,.

If we put ¢'(w) = o) + Ig.,(w), then we see from the assumption
(Q.1) that, for each 0 <t < T,ueD(y") if and only if u|pg. =0 and
#lge, € Wr?(Q(). Moreover, we can show that, when » and f are in
H,(B),
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ulpou =0
if and only if {uloy € D(Aq)

Poorflawy = Aquttla -

@ {u € D(a¢")

S e dp'(u)

Therefore, noting (2.7) we can formulate the problem (2.6) in the form

di(t)/dt + dg*@() o Paf), O0<t<T,
{ﬁ«)) = (D) ,

where f is the natural extension of f. The required solution u of (2.6)
is given by u = ilq.

Now we shall verify the assumption (A.1). Let ¢,€[0,T] be fixed
and take an arbitrary v, = (v, v3, - - -, v3) € D(¢*). Using the same nota-
tions as in the proof of Theorem 2.2 we put for each ¢ e I(t,),

Y(x, t) = X~1(X(x’ t)a to)
Y,
Zy

a’ij(w,t)= (xst), 1<i’j<n'

We denote by d;,(z,t) the (¢, j)-cofactor of the n X n-matrix (a;,(«,?)) and
define

. S G, V(Y (@, 1) if ze Q)
vz, t) = {i=1

0 if xeB\Q() .

Then v(z,t) = @'(z, 1), - --,v™x,t) is in D(¢*) for each teI(f). In fact,

@ivo)z, £ = 3 {adﬂ(x,t)vz(Y(x, £))
=1 \ dx;

(2

&, - ov§
+ 3 e, 0@, 28 (¥ (w, )
k=1 axk
= |Jac Y(z, t)| (div v)(Y(x,t) =0 .
Here we used the equalities

iaa(;ﬁ(x,t)=07 1<j<n’
= [

3 @, Donile, ) = 3 Jac Y@, ), 1< k<n.

Therefore, since it is clear that v(-,?)|q., is in (Wp?(Q(¥)))", we see that
v(-,?) is in D(¢"). Moreover, we can show that v(.,t) satisfies
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10(-58) — vollm,m < Cilt — & @ (w0)"? tel(),

and

¢‘(v(-, 1) < 90“’(00) + G|t — 12y Sﬁta(vo) ’ tel(t) ,

for some positive constants C, and C, independent of ¢, and v,, Thus
the assumption (A.1l) is verified.

The rest of the proof of this theorem is quite similar to that of
Theorem 2.2; so we omit the details.

Addendum

After this paper was submitted for publication, the author was in-
formed of the results of A. Inoue and M. Wakimoto, “On existence of
solutions of the Navier-Stokes equation in a time-dependent domain, J.
Fac. Sci. Univ. Tokyo 24 (1977), 303-319”. They treated the initial
boundary value problem for the Navier-Stokes equation in a non-
cylindrical domain, on which they put similar assumptions to ours. How-
ever, their idea is quite different from ours. They transformed the original
problem into the problem in a cylindrical domain by a suitable change
of variables and obtained the existence result for the initial value problem.
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