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PERIODIC SOLUTIONS OF CERTAIN NONLINEAR

PARABOLIC DIFFERENTIAL EQUATIONS IN

DOMAINS WITH PERIODICALLY

MOVING BOUNDARIES

YOSHIO YAMADA

Introduction

In this paper we consider the periodic problems for certain nonlinear
parabolic differential equations in domains with periodically moving
boundaries. The typical problem, which is going to be discussed in the
present paper, is to solve the following:

u(x, t) = 0 on Γ ,
lu(x, 0) = u(x, T) on Q(0) = Q(T) ,

where β is a (possibly multi-valued) maximal monotone operator in R1

X R1 Q is a bounded domain in Rl x (0, T) with the periodically mov-
ing boundary Γ and Q(t) is the section of Q at t.

To approach our problems, we establish, in § 1, the existence and
uniqueness theorem (Theorem 1.4) for the abstract nonlinear differential
equation of the form

du(t)/dt + dφKuit)) B f(t) , 0 < t < T ,

in a real Hubert space H. Here, dφι is the subdifferential of a lower
semicontinuous convex function φt from H into (— oo, +co] with the t-
dependent effective domain Diφ1).

In § 2, by use of the results in § 1, we show the existence and unique-
ness of periodic solutions for the above nonlinear parabolic differential
equation and the modified Stokes equation in domains with periodically
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moving boundaries. We employ the method used in the previous paper [8]
and treat the problems directly in non-cylindrical domains without
any change of variables.

The author wishes to express his hearty thanks to Professors H.
Fujita and K. Masuda for their kind advices and encouragements.

§1. Abstract theory

Let H be a real Hubert space with the inner product ( , •) and the
norm || ||. Let {φ1} (0 < t < T) be a family of proper lower semicontin-
uous (l.s.c.) convex functions from H into (-co, +oo]. For each 0 < ί
< Γ, we put

= {ueH;<pH:u)< +00} ,

dφ^u) = {w eH; <pl(y) — φ*(u) > (w,v — u) for all v e

D{dφι) = {ue ZV) dψ'iu) * φ} .

The set Diφ*) is called the effective domain of <pl and the set dψ%u) is
called the sub differential of ψι at u. It is well known that dψι is a
maximal monotone operator in H x H.

In this section we consider the periodic problem for the abstract
nonlinear differential equation associated with the time-dependent sub-
differential operators;

(du(t)/dt + dφ'ivffl) 3 fit) , 0 < t < T ,

We now define a strong solution of (P.P).

DEFINITION 1.1. Let u: [0, Γ]~>Jϊ. Then u is called a strong solu-
tion of (P.P) if (i) u e C([0, T] H) i.e. w is strongly continuous on [0, T],
(ii) ^(0) = u(T), (iii) ^ is strongly absolutely continuous on any compact
subset of (0, T) and (iv) u(t) is in D(dφι) for a.e. t e [0, Γ] and it satis-
fies

du(t)/dt + dφ'Cutt)) 9 fit) for a.e. t e [0, T] .

In what follows, we often make the following assumptions (A.I)-
(A.3) on {φ1} (0 < t < T).

(A.I) There exist constants δQ>0 and 0 < α < 1 such that if r > 0 and
0 < ί0 < Γ> then, for each xoe D(φt0) such that ||go|| < r, there exists an
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PARABOLIC DIFFERENTIAL E QUATIONS 113

iϊ-valued function x on I(t0) = [max {0, tQ — δ0}, min {t0 + δQ, T}] satisfying
(i) ||α?(t) - a?oll < \9r(t) - gΛQl (φto(x0) + Kry for t e I(tQ),
(ii) φKx(f)) < φt0(xQ) + \hr(jt) - hr(t0)\ (φto(xo) + Kr) for t e I(tQ),
where Kr is a non-negative constant and gr and hr are absolutely
continuous functions on [0, T] such that g'r e L2(0, T) in case 0 < a < 1/2
and gTr e L1'1-®, T) in case 1/2 < a < 1.

(A.2) lim inf £®> = £(t) , 0 < t < Γ ,

= +oo.

In order to show the existence of a strong solution of (P.P), we
use the results on the initial value problem

V P ) (du(t)/dt + dψ'iuit)) 3 fit) , 0 < t < T ,

| ( 0 ) - a .

where £ is a measurable function on [0, T] such that
Jo

(A.3) D(φτ) c

As to the problem (I.V.P.) we have:

PROPOSITION 1.2 (cf. Yamada [8, Theorem I]). Let feL2(0,T;H)
and let {φ1} (0 < t < T) satisfy the assumption (A.I). Then, for each
a e Cl (D(φQ)) (Cl = closure) there exists a unique strong solution u of
(I.V.P) with the following properties.
(i) For every 0 < t < Γ, u(t) is in D(φι) and φKuit)) is absolutely con-
tinuous on (0, T]. Moreover, φ^uit)) e L!(0, Γ) and tφKuit)) e L°°(0, T).
(ii) t1/2du/dteL\Q,T;H).

In particular, if a e D(φ°), then u satisfies:
(i)' For every 0 < t < T, u(t) is in Diφ*) and (pl(u(t)) is absolutely con-
tinuous on [0, Γ].
(ii)' duldteL\Q,T;H).

Proof. We can prove this proposition with a slight modification of
the proof of Theorem I in [8].

Remark 1.3. The problem (I.V.P) has been considered by many
authors under the various assumptions on {φ1} (see e.g. Kenmochi [5]).
However, in this paper we put the assumption (A.I) on {φ1} so that
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we can apply the results to nonlinear parabolic differential equations in
non-cylindrical domains.

Now using Proposition 1.2 we can obtain the following results on
the problem (P.P).

THEOREM 1.4. Let f e L2(0, T H) and let {ψ1} (0 < t < T) satisfy the
assumptions (A.1)-(A.3). Then there exists a strong solution u of (P.P)
with the following properties.
(i) For every 0 < t < T, u(t) is in D(ψι) and φι(u(t)) is absolutely con-
tinuous on [0, T].
(ii) du/dteL2(0,T;H).

In particular, if dφt is strictly monotone for each 0 < t < T, then
the strong solution u of (P.P) is uniquely determined.

Remark 1.5. Nagai [7] also treated the problem (P.P) in the form
of the variational inequality and showed the existence of a periodic
solution under the appropriate assumptions on {ψ1}.

Proof of Theorem 1.4. The uniqueness is evident by the strict
monotonicity of dφK

We shall sketch only the proof of the existence part; the method
of the proof is similar to that of Nagai [7, Theorem 1]. For each
a e Cl (D(φΰ)) let ua be the strong solution of (I.V.P). We define a single-
valued mapping S by Sa = ua(T) for a e Cl (D(φ0)). Then by Proposition
1.2, the assumption (A.3) and the monotonicity of dφι we see that S is
the nonexpansive mapping such that S(C\ (D(φ0))) c D(φ°). Therefore, if
we can show that S has a fixed point in Cl (D(φ0)), then using Proposi-
tion 1.2 we obtain the conclusions of Theorem 1.4.

To prove that S has a fixed point in Cl (D(φ0)) we use a fixed point
theorem due to Browder and Petryshyn (see Lemma 1.6 below), which
discusses the Picard iterates {xn} for S;

xn+1 =z Sxn , x0 € Cl (D(φ0)) given .

For brevity we put un = uXn. Noting un(T) = Sxn we have

\\un(T) - un(0)\\ - \\SXn - Xn\\ = l l^+ 1^o - S X | | < \\Sx0 - soil

for all n. Consequently, the existence of a fixed point of £ in Cl (D(φ°))
follows from the next two lemmas.
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PARABOLIC DIFFERENTIAL EQUATIONS 115

LEMMA 1.6 (Browder and Petryshyn [3, Theorem 1]). Let S be a
nonexpansίve selfmapping of a nonempty closed convex set C of H.

Then S has a fixed point in C if and only if for any xQeC the sequence

of Picard iterates {xn} starting at x0 (i.e. xn+1 = Sxn) is bounded in

H.

LEMMA 1.7 (cf. Benilan and Brezis [1, Lemma 3.1] and Nagai [6,
Lemma 1]). Under the assumptions (A.1)-(A.2) let f e L2(0, T H) and
let {un} be a sequence of strong solutions of the equations

dun(t)/dt + dψ'iUnit)) 3 f(t) , 0 < t < T ,

satisfying ||wn(0)|| — ||wn(Γ)|| < C for all n. Then the sequence {un} is
bounded in C([0, Γ] if).

Since Lemma 1.7 can be proved in the same way as Lemma 3.1 in
[1], we complete the proof of Theorem 1.4.

§ 2. Applications

In this section we apply Theorem 1.4 to the periodic problems for
certain nonlinear parabolic differential equations in domains with peri-
odically moving boundaries. We solve these problems directly in non-
cylindrical domains without any change of variables. Our main interest
lies in the methodological part rather than in the specific results. We
shall give two examples to explain how Theorem 1.4 is applied to
them.

2.1. Nonlinear parabolic differential equation with principal part
in divergence form

To treat the periodic problem stated in the introduction we take an
appropriate Hubert space and define a family of ^-dependent l.s.c. con-
vex functions {φ1}. Then we formulate the original problem in the form
(P.P) and solve (P.P).

Now we shall state the problem more precisely. Let T be a posi-
tive number and, for each 0 < t < T, let Q(t) be a bounded domain in
Rl with the boundary Γ(t). When t moves over (0, T), Q(t) generates
an (x, ί)-domain Q = U0<t<τ (Q(ί) X {ί}) and Γ(t) generates an (x, ί)-hyper-
surface Γ = Uo<ί<r (Γ(t) X {£}) Γ is the lateral boundary of Q. As-
suming Q(0) = Q(Γ) we consider the problem
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)u A d
on Q ,

(2.1) άt z=l(jx'Xdx<
u = 0 on Γ ,

.rate, 0) = M(S, T) on Q(0) = Q(Γ) ,

where p > 2 and β is a (possibly multi-valued) maximal monotone oper-
ator in R1 x R1 such that D(β) a 0.

We now make the assumptions on the (a?, ©-domain Q.
(Q.I) For each 0 < t < Γ, Γ(t) consists of ^ simple closed hypersurfaces
Γa(f) (a = 1,2, , ί) which are sufficiently smooth (say, of class C2) and
satisfy

dist (Γα(©, Γβ(t)) > ε0 for every 0 < t < T and a * β ,

where ε0 is a positive constant and dist ( , •) denotes the ^-dimensional
distance.
(Q.2) Let Q(s, © = Us<r<t (Q(r) x {r}). Then the (x, ©-domain Q is cov-
ered by m slices Q(ti9 tt + δi) (δί > 0, i = 1,2, , m) such that, for each
1 < i < m, Q(ti9 ti + δi) is mapped onto a cylindrical domain Q(ί*) x (ti9

U + δi) by a diίfeomorphism Φ̂  which is smooth (say, of class C3) up
to the boundary and preserves the time coordinate t.

Remark 2.1. The assumption (Q.2) is satisfied, if for each 1 < a < £,
Γa = Uo<ί<r (Γa(t) X {t}) is covered by a finite number of open patches
and, in each patch, Γa can be represented by x'n — ψ(x'ί9 x'2, - —, xf

n-n ©
under a suitable choice of coordinates (xf

19 x
f

29 , x'n) in Rn, where ψ is
a smooth function (say, of class C4) of n variables (x'19 x'29 , a£-i> © (cf.
Fujita [4]).

To apply Theorem 1.4 to the problem (2.1) we take an open ball B
in Rl such that the closure of Q(© (in βj) is contained in B for every
0 < t < T and treat the problem (2.1) in L\B). In this section we use
the following notations; when u is a real-valued function on Q, we put

ύ = the natural extension of u, i.e., ύ = % on Q

and # = 0 on {B x (0, T)}\Q ,

and define the spaces

C([0, Γ] T7ί p(Q(ί))) = & « e C([0, Γ] W^{B)) and M(. , t)
for every 0 < t < T} ,
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and so on.
Now we note that we may assume β(0) 3 0 without loss of gener-

ality. Therefore, since β is a maximal monotone operator in JB1 X Rι

such that ,8(0)9 0, we can find a proper l.s.c. convex function γ on R1

satisfying dγ = β and min [γ{x) x e R1} = γ(ff) = 0.
Then we have the following theorem.

THEOREM 2.2. Let feL2(Q). Then there exists a unique solution
u of the problem (2.1) satisfying ueC([O,T];Wl>KQ(t))),γ(u)eL~(Q,T;
LKQ(t))) and du/dteL\Q).

Proof. To formulate the problem (2.1) in the form of (P.P) as-
sociated with subdifferential operators, we first define l.s.c. convex func-
tions on L\B) by

ί±f Σ
l+OO

du P dx if u e Wl**(B)

, + oo if u G L2(S), u § Wl>v(B)

and

ί ί γ(u(x))dx if u e L\B), γ(u) e L\B)
TB(U) = UB

[ + oo if u e L\B), γ(u) $ U{B) .

Then we can show dψB = AB, where AB is a maximal monotone operator
in L\B) x L\B) defined by

with the domain D(AB) = {u e Wl>p(B) #tu e L\B) in the sense of the
distribution} (cf. Lions [6, chap. 2,2]). We can also show dγB = βB, where
βB is a maximal monotone operator in L\B) x L2(B) defined by

D(βB) = {ue L\B) there exists a v e L\B) such that

v(x) e β(u(x)) a.e. xeB) ,

βB{u) = {ve L\E) v(x) e β(u(x)) a.e. a? e B} for w e i?(/9s) .

Moreover, using the results of Brezis [2, Proposition 2.17] we see that
AB + βB is also a maximal monotone operator in L\B) x L\B) which
satisfies
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(2.2) \\βBiu)\\LHB) < \\{AB + βBΠu)\\LHB) for ueD(AB) Π D(βB) .

We next define a closed convex subset Kit) of L\B) by

Kit) = {ue L\B) ufcO = 0 a.e. x e B\Q(t)}

and denote its indicator function by IK(t) i.e., IK(t)(u) = 0 if ueK(t) and

We put y>*(w) = ^ ( ^ ) + T f̂a) + Iκ«)(u) Then ^£ is a proper l.s.c.

convex function on U(B) with the effective domain Diφ1) = TFJ'̂ CZ?)

Π JD(^B) Π 2£(£). Since we can show by the assumption (Q.I) that u e D(φι)

if and only if u\BχQ{t) = 0 and u\Q{t) e W\^iQ{t)) Π D(γQ{t)), we see that

φ^u) is equal to φQ{t)(u\Qit)) + re<«( l̂β(ί)) f o r e a c h ueD(<pl). Therefore, we

find that, when u and / are in L\B),

if and only if
fedφ'(u)

= o
t)) Π

(Note that AQ{t) + βQ(t) is a maximal monotone operator in L2(Q(t))

X L2(Q(ί))0 Consequently we can formulate the problem (2.1) in the

form

(dύ(t)/dt + dφι{u{t)) 9 fit) , 0 < t < T ,
( 2 4 )

w h e r e / is the natural extension of /. The required solution u of (2.1)

is given by u = ύ\Q.

Now we shall verify the assumptions of Theorem 1.4. We begin

with the verification of the assumption (A.I). Let tQe[O, T] be fixed.

Then by the assumption (Q.2) there exists a positive constant d0 < m i n ^

such that

Q(max {ί0 - 30> 0}, min {t0 + δQ, T}) c Qitif U + δ€) for some i.

Since Qiti9 tt + δi) is mapped onto the cylindrical domain Q(^) x itίy U + δi)

by the diίfeomorphism Φt which preserves the time coordinate t, the

image (£, τ) e QiU) x (fi9 U + 3<) of (x, t) e Q(max {t0 - δ0,0}, min {t0 + δ0, T})
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PARABOLIC DIFFERENTIAL E QUATIONS 119

by Φi is represented by

ξ = X(x, t) and τ = t ,

where both X and its inverse X'1 are smooth functions up to the

boundaries. We now take an arbitrary voeD(<ptQ) and put for each

t e 7(ί0) ΞΞ [max {t0 - δQ, 0}, m i n {tQ + δQ, T}]

, ί), ίo)) if x e Q(ί)

if χeB\Q(jt).

Then we can show that ^( ,ί) is in D{cpl) and that is satisfies

\\v(-,t) - vo\\LHB) < C x | ί - ί o l p ' W * , ί e/(ί0) ,

and

φ'M , ί)) < ^°(^o) + C2 |t - to | ̂ °(τ;0) , t e /(to) ,

for some positive constants Cλ and C2 independent of v0 and t0. Thus

the assumption (A.I) is verified.

We next verify the assumption (A.2). Let t e [0, T] and take u e D(jpl).

Since φ^u) = ^(«)(^k(ί)) + rQα)N<2α>) > Pβ(ί)(̂ lβ(«)> w e obtain, by using

Poincare's inequality,

(2.5) φ'du) > Cz \\u\\lHQm = C3 | |w||£ i ( l ϊ ) ,

where C3 is a positive constant which depends only on n, p and B.

Hence, since φ^u) = + oo for u § D(^)> we see that (2.5) holds for every

0 < t < T and ueL\B). Thus the assumption (A.2) is verified.

It is easy to verify the assumption (A.3).

Finally we shall show the strict monotonicity of dψι. For each

0 < t < T let fi e dψ^Ui) (i = 1,2) and uλ ^ u2. Then by (2.3) we obtain

^ \Λ-Q{t)Mi ΛQ ( { )ίt2> ^ l M2)L2(Q(ί))

x (^. - MW > o .

If (/i — f2,u1 — u2)LHB) = 0 were true, then — ( ^ — u2) = 0 on Q(£) for
3^

every y. Since ^ | ρ ( ί ) e ΐ^J'p(Q(ί)) (i = 1,2), we see uλ = ^2. Thus we have
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shown the strict monotonicity of dφK
Therefore, applying Theorem 1.4 to (2.4) we see that there exists a

unique strong solution ύ e C([0, T] U(B)) of (2.4) with the following
properties (a) φιWt)) is absolutely continuous in 0 < t < T and (b)
dύ/dt G L2(0, T L2(B)). To obtain the conclusions of Theorem 2.2, we have
only to show the mapping t >-» ύ(t) is continuous on [0, T] in the strong topol-
ogy of Wl>p(B). To prove this, we note that ύ(f) is in D(βB) for a.e.
t e [0, T] by (2.3). Therefore, using the estimate (2.2) we deduce

- du(t)ldt\\mQit))

= ||/(ί) - dύ(t)/dt\\L2(B) for a.e. t e [0, T] ,

from which it follows that β°B(ύ) is in L2(0, T L2(B)). Consequently, using
the results of Brezis [2, Lemme 3.3] we obtain the absolute continuity
in ί of γB(u(t))9 which implies, together with the property (a), the abso-
lute continuity of φB(ύ(t)). Hence (pφB(ύ(t)))1/p = H^CίXlipi.p̂ , is continu-
ous in 0 < t < T. Moreover, since ύ e C([0, T] L2(β)), we see that the
mapping t <->ώ(ί) is continuous in the weak topology of Wl'p(B). Hence
ύ is in C([0, T] W\^(β)) since the space Wl'p(B) is uniformly convex.
Thus we complete the proof of Theorem 2.2.

2.2. Modified Stokes equation

Under the same assumptions as in 2.1 we treat the periodic prob-
lem for the modified Stokes equation.

Let u = (u\ u2, , un) be an n-dimensional vector function and put

We consider the problem

(2.6)

^L + s/u = / - gradp* on Q
dt

div u = 0 on Q
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u = 0 on Γ ,

u(x, 0) = u(x, T) on Q(0) = Q(Γ) .

To apply Theorem 1.4 to the problem (2.6) we introduce the following

notations; let Ω be a bounded domain in R% and put

Cr(fl) = {» = (w1, ^2, , un) w* e Co-ίfl), div u = 0},

#„(£) = the completion of CΓ(β) under the (L2(β))w-norm,

wy(Ω) = the completion of C7(Ω) under the (Wl>p(Ω))n-noγm, or

equivalently

= {u = (u\u2,'--,un) u* 6 TFJ^(β), d i v u = 0},

P Λ = the orthogonal projection from (L2(Ω))n onto Hβ(β).

Then as to the problem (2.6) we have:

THEOREM 2.3. Let fe (L2(Q))n. Then there exists a unique solution

u of (2.6) satisfying weC([0,T]; FFj *(Q(t))) and ^Le(L2(Q))n.

dt

Proof. As in 2.1 we introduce an auxiliary open ball B c R% and

treat (2.6) in Hσ(B). We first define a proper l.s.c. convex function on

HXB) by

ίJL f \Fu\pdx if ueWl>p(B)
KU) — Ip JB

U oo if » e H.(B) , ΪI

Since s/ is a maximal monotone operator from W)'P(B) on Wl>p(B)* (the

dual space of fF^CB)), we can show 9 ^ = AB, where AB is the restric-

tion of si on Hσ(B)χHσ(B) (cf. Lions [6, chap. 2,5]). We next define a

closed convex subset K(t) of Ha(B) by

JΓ(t) = {» e ff,(B) « = 0 a.e. on B\Q(t)}

and denote its indicator function by IKw

If we put (pl{u) = ψBiu) + /jr(ί)(tf)> then we see from the assumption

(Q.I) that, for each 0 < t < T9ueD(φι) if and only if u\B\Q{t) = 0 and

»lβ(o e ^ ' P (QW) Moreover, we can show that, when w and / are in
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(2.7) { if and only if
[fedφKu)

Therefore, noting (2.7) we can formulate the problem (2.6) in the form

(dύ(t)ldt + dφKύit)) 3 PBf(t) , 0 < t < T ,

\«(0) = u(T) ,

where / is the natural extension of /. The required solution u of (2.6)

is given by u = u\Q.

Now we shall verify the assumption (A.I). Let toe[O, T] be fixed

and take an arbitrary ι?0 = (v], v2

0, , v$) e D(φto). Using the same nota-

tions as in the proof of Theorem 2.2 we put for each t e I(t0),

Y(x, t) = X-\X(x, ί), ί0)

π (Ύ f\ __ 3Yj ( .\ Λ < ΐ n < Ύt

We denote by α^(#, t) the (i, /)-cofactor of the n x n-matrix (aί3(x, t)) and

define

_ I Σ &dx> t)v&Y(x, t)) if x e Q(ί)

[θ if xeB\Q(t) .

Then ι;(#,£) = (v1^, ί), -,vn{x, t)) is in D(φι) for each tel(to). In fact,

(div ι>)(a;, ί) = Σ

,ί))}
= I Jac Y(x, t)\ (div re)(r(», ί)) = 0 .

Here we used the equalities

Σ 6 (̂&, ί)αfci(a?, ί) = 5Jfc I Jac Y(x, t)\ , 1 < j , fcΣ
Therefore, since it is clear that v(',t)\Q{t) is in (Wi'p(Q(t)))n, we see that

ι?( ,t) is in D(φ*). Moreover, we can show that »(•,*) satisfies
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lliK . ί ) - ΌO\\H.W < CA\t - i0 |p i o(»o)1 / p , te/(t0) ,

and

9>f(i?( ,«) < φto(vo) + C6\t-t0\ φtQ(vQ) , t e /(ί0) ,

for some positive constants C4 and C5 independent of t0 and ι;0. Thus
the assumption (A.I) is verified.

The rest of the proof of this theorem is quite similar to that of
Theorem 2.2; so we omit the details.

Addendum

After this paper was submitted for publication, the author was in-
formed of the results of A. Inoue and M. Wakimoto, "On existence of
solutions of the Navier-Stokes equation in a time-dependent domain, J.
Fac. Sci. Univ. Tokyo 24 (1977), 303-319". They treated the initial
boundary value problem for the Navier-Stokes equation in a non-
cylindrical domain, on which they put similar assumptions to ours. How-
ever, their idea is quite different from ours. They transformed the original
problem into the problem in a cylindrical domain by a suitable change
of variables and obtained the existence result for the initial value problem.
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