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OPTIMAL ITEM CALIBRATION FOR COMPUTERIZED ACHIEVEMENT TESTS
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Item calibration is a technique to estimate characteristics of questions (called items) for achievement
tests. In computerized tests, item calibration is an important tool for maintaining, updating and developing
new items for an item bank. To efficiently sample examinees with specific ability levels for this calibration,
we use optimal design theory assuming that the probability to answer correctly follows an item response
model. Locally optimal unrestricted designs have usually a few design points for ability. In practice, it
is hard to sample examinees from a population with these specific ability levels due to unavailability or
limited availability of examinees. To counter this problem, we use the concept of optimal restricted designs
and show that this concept naturally fits to item calibration. We prove an equivalence theorem needed
to verify optimality of a design. Locally optimal restricted designs provide intervals of ability levels for
optimal calibration of an item. When assuming a two-parameter logistic model, several scenarios with
D-optimal restricted designs are presented for calibration of a single item and simultaneous calibration of
several items. These scenarios show that the naive way to sample examinees around unrestricted design
points is not optimal.

Key words: achievement tests, computerized tests, item calibration, optimal restricted design, two-
parameter logistic model.

1. Introduction

Achievement tests are an important part, e.g., of higher education to quantify the proficiency
of examinees. An alternative of growing importance to traditional paper-and-pencil tests is com-
puterized adaptive tests (CAT). Examinees perform the achievement tests at the computer and
everyone receives a sequence of questions, called items. The advantage of CAT is that the items
received can depend on the answer to previous items, e.g., examinees with many correct answers
can be given more difficult questions subsequently which can then characterize their ability in
more detail. By this, questions which are too hard or too easy for an examinee are avoided and
“a high-quality estimate of the examinee’s proficiency can be made using as few as half as many
items than in a fixed-form test” (Buyske, 2005).

A prerequisite before administrating a CAT is the existence of a collection of items, an item
bank. Based on the item bank, the CAT-algorithm can choose appropriate items for the examinees.
This means that the characteristics of items, e.g., the difficulty, need to be determined before they
are included into a CAT. This determination of item characteristics is called calibration of items. A
common situation is that achievement tests are done periodically, e.g., year by year. Then the task
is to update an item bank continuously with new items. Zheng (2014) pointed out the importance
of this item replenishment and stressed the need for efficient and accurate calibration of the new
items.

In principle, one could perform separate calibration studies where some voluntary test takers
answer to new items. However, this is usually a quite costly option and it can be more feasible to

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11336-019-
09673-6) contains supplementary material, which is available to authorized users.

Correspondence should be made to Mahmood Ul Hassan, Stockholm University, Stockholm, Sweden.
Email: scenic555@gmail.com

1101
© 2019 The Author(s)

https://doi.org/10.1007/s11336-019-09673-6 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog/?doi=10.1007/s11336-019-09673-6&domain=pdf
http://orcid.org/0000-0003-2889-0263
http://orcid.org/0000-0003-4161-7851
https://doi.org/10.1007/s11336-019-09673-6
https://doi.org/10.1007/s11336-019-09673-6
https://doi.org/10.1007/s11336-019-09673-6


1102 PSYCHOMETRIKA

add instead a small calibration part to an ordinary achievement test. The items from the calibration
part are then available in achievement tests in future examination periods. This principle is, e.g.,
applied in the Swedish Scholastic Assessment Test (Universitets- och högskolerådet, 2019) which
is administered as paper-and-pencil test. Adding similarly new items to be calibrated to a CAT
has been called online calibration (Stocking, 1988) and Zheng (2014) reviews methods for it.
Irrespectively if added to a paper-and-pencil, to a CAT, or to a non-adaptive computerized test,
the calibration part has to be quite small such that the burden of this add-on part on the examinees
is negligible.

We assume that an ordinary computerized test is performed (CAT or non-adaptive) and that
the abilities of the examinees arewell determined by their answers to a larger part of the operational
items. We focus here in this work on the calibration part for new items which are seeded into the
later part of operational items in a computerized test. A set of new items should be tested in the
calibration and we consider here the situation that we can allocate to each examinee a small, fixed
number of these new items. Our aim is to allocate these items to examinees in a good way such
that we obtain high-quality estimates for the item characteristics.

For designing the calibration part, we will apply optimal design theory, see e.g., Atkinson,
Donev and Tobias (2007). The use of optimal design theory for item calibration has been discussed
previously and designs have been elaborated, see e.g., Berger (1992), Buyske (2005), Lu (2014),
Zheng (2014), van der Linden and Ren (2015), Ren, van der Linden and Diao (2017).

In contrast to problems in traditional optimal design setup, we have in this context not the
possibility to select examinees with desired proficiency freely within a design space. This would
theoretically require the access to a large number of examinees with specific abilities, a problem
discussed, e.g., by Zheng (2014), van der Linden and Ren (2015) and Ren et al. (2017). The
problem is avoided if sequential optimization is done. Then, for a given examinee, the best
calibration item is chosen. Some achievement tests, however, test examinees in parallel and a
sequential optimal design cannot be applied. In the Swedish Scholastic Assessment Test, for
example, more than 60,000 examinees participate on each of two test dates per year. We consider
here such aparallel testing situation,wherewehave at one test date a givenpopulationof examinees
for the item calibration: the examinees participating in the computerized test. Based on an assumed
proficiency distribution of these examinees, we will apply in this work restricted optimization to
this distribution. Restricted optimization (also called constrained or bounded optimization) has
been discussed in other contexts than achievement tests by Wynn (1982), Sahm and Schwabe
(2000). This type of restricted optimal designs has to our knowledge not been applied for item
calibration despite that it is the natural adaption of traditional optimal design to finite populations
(Wynn, 1982). We are able with this method to gain general insights how item calibration can be
optimized.

In the following Sect. 2, we describe the assumed model and the optimal design theory
used. We will then present a new equivalence theorem which provides us with a condition to
check whether a certain restricted design is optimal or not. This theorem is very general, e.g.,
applies to general item response models. In Sect. 2, we also describe the algorithm developed
for computation of optimal designs. In Sects. 3 and 4, we compute optimal designs in several
scenarios. In these scenarios, we present situations with up to three items to calibrate. In real
applications, the number of items usually is much larger. We discuss in Sect. 5 an easy way to
apply our results for realistic situations.We summarize our insights and concludewith a discussion
(Sect. 6) where we point out directions of future research. The proof of our equivalence theorem
is elaborated in an “Appendix”.
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2. Model for Optimal Item Calibration

2.1. Model for Item Calibration

Item response theory (IRT)modeling has been shown to be a flexible tool for item calibration.
The idea of IRT is the assumption that each examinee has an ability θ ∈ � = R and that the
probability for an examinee with ability θ to correctly response to item i (i = 1, . . . , n) follows
a non-decreasing function

pi (θ) = P (Y = 1|θ, βi ) , (1)

where Y = 1 indicates a correct and Y = 0 an incorrect response to an item. The function pi
depends on a parameter vector βi . An assumption which often is made is θ ∼ N (0, 1) for the
population of examinees. The basic goal of item calibration is to establish a bank of items with
known item parameters βi . The efficiency of an item calibration depends on prior knowledge of
item parameters (βi ) and ability levels of examinees (θ ) sampled from the population who are to
be allocated to the item.

Example 1. An important IRT model used in practice for optimal item calibration is the two-
parameter logistic model. The probability for an examinee with ability θ to correctly response to
item i (i = 1, . . . , n) with item parameters βi = (ai , bi ) is defined as

pi (θ) = P (Y = 1|θ, ai , bi ) = 1

1 + e−ai (θ−bi )
, (2)

where ai ∈ (0,∞) is called discrimination parameter, and bi ∈ R is called difficulty parameter
of an item. In practice, typical ranges of item parameters might be bi ∈ [−3, 3], ai ∈ [0.3, 3],
see Buyske (2005).

2.2. Optimal Unrestricted Design

A design for item calibration is a rule how to sample desired ability levels of examinees for
estimation of unknown item parameters. We have here n different items to calibrate and assume
that each examinee can calibrate at most one of those (see Sect. 5 for the case when each examinee
calibrates k > 1 items). First, we are interested in unrestricted designs, meaning that we have
no restrictions in availability of examinees with specific ability levels; the space of examinees’
abilities is called � = R. Using continuous designs [see Chapter 9 in Atkinson et al. (2007)],
we represent designs by probability measures ξ over the design space χ = � × {1, . . . , n}. A
(θ, i) ∈ χ means here that examinees with ability θ are sampled for item i . The restriction ξi of
ξ to � × {i} describes how abilities of examinees should be chosen for item i .

We assume to sample examinees with mi distinct ability levels θi1, θi2, . . . , θimi in � with
sample proportions (weights) wi1, . . . , wimi ≥ 0 for all items i , such that

∑n
i=1

∑mi
j=1 wi j = 1.

Here, wi j is the sample proportion of examinees assigned to each distinct ability level θi j for item
i and

∑mi
j=1 wi j is the proportion of examinees assigned to item i .

In order to search for a good item calibration design ξ , we follow classical optimal design
theory and focus on the design’s Fisher information matrix for the item parameters. This matrix
indicates the precision of the model parameters estimators.

The model (1) is a generalized linear model (GLM). Its logit link ηi (θ) = log
(

pi (θ)
1−pi (θ)

)

is assumed to be differentiable in βi . Further, we assume that ∂ηi (θ)
∂βi

are continuous in θ . The
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standardized information matrix of item parameters β = (β1, . . . , βn) (Fisher’s information
matrix divided by number of observations) is a block-diagonal matrix

M(ξ) = diag(M1(ξ1), . . . , Mn(ξn)) with Mi (ξi ) =
mi∑

j=1

wi jνi (θi j )

(
∂η(θi j )

∂βi

) (
∂η(θi j )

∂βi

)T

,

where νi (θ) = pi (θ)(1− pi (θ)) is the weight function for this GLM [see Chapter 22 in Atkinson
et al. (2007)].

In optimal design theory, we optimize some appropriate convex function
 ofM(ξ). A design
ξ∗ is called 
-optimal if ξ∗ = argminξ 
{M(ξ)}. The information matrix M(ξ) depends on
the unknown model parameters βi , i = 1, . . . , n. If a researcher has a best guess or initial values
about the model parameters, the optimal design can be constructed based on these initial values.
Such an optimal design is referred to as a locally 
-optimal design (Atkinson et al., 2007).

We will consider directional derivatives which tell how the information of a design ξ changes
in a direction of another design λ:

F
(ξ, λ) = lim
α↓0

1

α
[ 
{M((1 − α)ξ + αλ)} − 
{M(ξ)}].

Especially, when λ is the measure δ(θ,i) with unit weight at design point θ for item i , we can
quantify how much the criterion changes when a small amount of observations in θ are added for
item i .Wewrite then F
(ξ, θ, i) = F
(ξ, δ(θ,i)).Anoptimality criterion
 is called differentiable
if all directional derivatives can be expressed as integral over directional derivatives with respect
to δ(θ,i): F
(ξ, λ) = ∫

χ
F
(ξ, θ, i) λ(d(θ, i)), see e.g., Whittle (1973). We assume in this paper

that criterion 
 is differentiable.
The General Equivalence Theorem (Kiefer & Wolfowitz, 1960) is an important result which

gives us a way to check whether a design is 
-optimal among all designs. It states the equivalence
of the following three conditions for the design ξ∗ :

• The design ξ∗ minimizes 
{M(ξ)}.
• The minimum over (θ, i) ∈ χ of F
(ξ∗, θ, i) ≥ 0.
• The minimum over (θ, i) ∈ χ of F
(ξ∗, θ, i) = 0 and it is achieved at the support-points

(θ, i) of the design ξ∗.
Several optimality criteria 
 (e.g., E-, A-, G- and D-optimality) have been proposed in the

literature (Pukelsheim, 2006). TheD-optimality criterion is one of themost popular and intensively
studied criteria in optimal designmethodology (Berger, 1992; Silvey, 1980; Berger, King&Wong,
2000). It is also most frequently used in online items calibration literature (Chang & Lu, 2010;
Jones & Jin, 1994; Zhu, 2006). Buyske (1998) has justified the use of a specific L-optimality
to reduce parameter drift in online calibration. From the above-mentioned criteria, A-, D-, and
L-optimalities are differentiable.

Example 2. We consider again the important two-parameter logistic model (2) and present link
function, derivative, information matrix, and directional derivative for D-optimality, since we will
illustrate our method with this model in Sects. 3 and 4. The link function is: ηi (θ) = ai (θ − bi )
having the derivative

∂ηi (θ)

∂βi
=

[
∂ηi (θ)
∂ai

∂ηi (θ)
∂bi

]

=
[

(θ − bi )
−ai

]

where βi = (ai , bi ).
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The information matrix is:

Mi (ξi ) =
mi∑

j=1

wi jνi (θi j )

[
(θi j − bi )2 −ai (θi j − bi )

−ai (θi j − bi ) a2i

]

.

We use the D-optimality criterion in Sects. 3 and 4 which maximizes the determinant of the
standardized information matrix M(ξ) so that the generalized variance of the parameter estimates
is minimized (Atkinson et al., 2007). Equivalently to maximizing the determinant |M(ξ)| we can
minimize 
{M(ξ)} = − log |M(ξ)| = −∑n

i=1 log |Mi (ξi )| and the directional derivative for
this criterion is then given by

FD(ξ, θ, i) = 2 − pi (θ)(1 − pi (θ))
[
(θ − bi ) −ai

]
Mi (ξi )

−1[ (θ − bi ) −ai
]T

.

The directional derivative is an important part of the General Equivalence Theorem. Later in
Sects. 3 and 4 we use directional derivatives for verifying the optimality of our restricted design
with the Equivalence Theorem for Item Calibration which will be presented in Sect. 2.3.

2.3. Optimal Restricted Design

Our aim is to select the best subsamples of examinees for each of n new items in order to
optimize item calibration. Since we cannot sample a large number of examinees with specific
abilities, we cannot apply directly the optimal design based on the method described in Sect. 2.2.
However, we can use themain optimal design ideas described before but restrict the set of available
designs using an approach initially described by Wynn (1982).

Let g be a continuous density on � which describes the examinees participating in the com-
puterized test. A calibration design is described by sub-densities h0, h1, . . . , hn ≥ 0 on � where
h1, . . . , hn describe the sub-population of examinees to be assigned to Item 1, . . . , n, respectively,
and h0 describes the non-sampling distribution. These sub-densities hi should describe together
the whole available population g:

n∑

i=0

hi (θ) = g(θ) for all θ ∈ �. (3)

Further, we allow to use the proportion s ∈ (0, 1] of examinees for calibration (where s can be 1 if
there are several items to calibrate, n ≥ 2). This restriction means for the non-sampled population
h0:

∫

�

h0(θ) dθ = 1 − s. (4)

We collate the densities h0, h1, . . . , hn into a single density h on χ̃ = � × {0, 1, . . . , n} defined
by h(θ, i) = hi (θ). The density h defines a probability measure ξ on χ̃ by ξ(A) = ∫

A h(x) dx
for sets A ∈ χ̃ , but we use here in our notation h to represent the design.

Let �
g
s be the set of all such designs h where the hi fulfill restrictions (3) and (4). The

standardized information matrices for item i of a design hi (i = 1, . . . , n) are given by

Mi (hi ) =
∫

�

pi (θ)(1 − pi (θ))

(
∂η(θ)

∂βi

) (
∂η(θ)

∂βi

)T hi (θ)

s
dθ.
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We now search a locally 
-optimal design in the set of restricted designs, �
g
s . Like in the

unrestricted case (see Sect. 2.2), we can characterize an optimal design using an equivalence
theorem. We derive a new equivalence theorem for the case of calibration of multiple items. This
equivalence theorem uses again a directional derivative F
(h, θ, i) for design h in direction of
the one-point measure in (θ, i).

For a given design h∗, we define the minimum L̃ over, the directional derivatives: L̃(h∗, θ) =
mini=1,...,n F
(h∗, θ, i). Further, we define for a given sampling proportion s

c∗ = argmax
c

{∫

�

1L̃(h∗,θ)≤c g(θ) dθ ≤ s

}

, (5)

where 1A is the indicator function being 1 on a set A and 0 otherwise. Let L be the at c∗ truncated
function L̃ , L(h∗, θ) = min{L̃(h∗, θ), c∗}. When formally defining F
(h∗, θ, 0) = c∗, we can
write

L(h∗, θ) = min
i=0,1,...,n

F
(h∗, θ, i). (6)

Theorem 1. (Equivalence Theorem for Item Calibration) Let h∗ ∈ �
g
s be a design and c∗ and

L be defined according to (5) and (6) and let 
 be differentiable. Then: h∗ is 
-optimal in �
g
s if

and only if

F
(h∗, θ, i) = L(h∗, θ) for h∗-almost all (θ, i) ∈ χ̃ . (7)

We provide a formal proof in “Appendix A”.
The use of this equivalence theorem in applications is: For checking if a given candidate

design h∗ is optimal, compute and plot the n directional derivatives F
(h∗, θ, i), i = 1, . . . , n
over �. The design is optimal if the sampling is only for items when their directional derivative
is smallest and (in case s < 1) if it is below some constant c∗ which separates the regions of
sampling (dir. dev. ≤ c∗) from the regions of non-sampling (dir. dev. ≥ c∗). We will use this
theorem for the examples in Sects. 3 and 4.

A consequence of the theorem is that the optimal design usually samples the full available
population on ability intervals for a single item. Only if two (or more) directional derivatives
coincide on an interval, it can be optimal to sample these two (ore more) items for the same ability
interval.

Example 3. We focus now specifically on D-optimality, 
{M(ξ)} = − log |M(ξ)| and the two-
parameter logistic model (2). Sahm and Schwabe (2000) argue for the logistic regression model,
that FD(h, ·, i), i 	= 0, has at most three local extrema for all designs h: up to two local minima
and one local maximum. Further, FD(h, θ, i) < 2 for all θ ∈ �, limθ→±∞ FD(h, θ, i) = 2, and
FD(h, ·, i) is a continuous function and not constant on any interval. From these results mentioned
by Sahm and Schwabe (2000), we can conclude in the case of a single item to calibrate, n = 1,
that one can search the optimal design specifically in the designs which sample everyone in (at
most) two intervals,

[θ1L , θ1U ] ∪ [θ2L , θ2U ] with − ∞ < θ1L ≤ θ1U ≤ θ2L ≤ θ2U < ∞, (8)

and no one outside these intervals. This design has sub-probability density h1(θ) = g(θ) ·
1[θ1L ,θ1U ]∪[θ2L ,θ2U ](θ). The shape of the directional derivatives discussed above tells specifically
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for the case s < 1 that it is (from a theoretical point of view) never D-optimal to sample the
examinees with the lowest and with the highest ability. However, we will see in examples that the
optimal design chooses sometimes examinees with very low or very high abilities. If s = 1, one
can show that the D-optimal design allocates examinees with the lowest and the highest ability to
the item with the lowest discrimination ai .

2.4. Optimization Algorithm

The optimization algorithm for optimal restricted designs for the one and two item case is
presented below. An idea how to extent to larger numbers of items n will be visible from the case
n = 2—however, complexity will increase.

2.4.1. Optimization Algorithm for n = 1 Item For the two-parameter logistic model, a two-
interval design is optimal. The standard routine for the construction of locally D-optimal two-
interval designs (8) is summarized as:

• Step 1: Choose a starting design h0 = g · 1[θ01L ,θ01U ]∪[θ02L ,θ02U ] which has density g on two

intervals [θ01L , θ01U ] and [ θ02L , θ02U ] and density 0 otherwise. One may choose the intervals
in the starting design around the optimal unrestricted design points which are shown in
Sect. 3.

• Step 2: Solve the constrained optimization problem: maximize |M(ξ)| or minimize
− log |M(ξ)| for parameters θ1L , θ1U , θ2L , θ2U

subject to equality constraint
θ1U∫

θ1L

g(θ)dθ +
θ2U∫

θ2L

g(θ)dθ = s [based on (3) and (4)]
and
subject to inequality constraint θ1L ≤ θ1U ≤ θ2L ≤ θ2U .

• Step 3: Finally for assurance, check whether this two-interval design is really D-optimal
by computing the directional derivative of the D-criterion and by checking whether the
condition in the Equivalence Theorem for Item Calibration is fulfilled.

Note that the equality constraint is not required in Step 1; Step 2 will then ensure it.

2.4.2. Optimization Algorithm for n = 2 Items If n = 2 or larger, the number of intervals
needed for each item is not necessarily bounded by 2. We start with allowing K = 2 intervals for
each item in any possible order, determine the restricted D-optimal design (given the additional
restriction of up to K intervals) and check with the Equivalence Theorem for Item Calibration if
the design is optimal. If it is not optimal, we repeat these steps for K + 1. In more detail:

• Step 1: Choose a starting design ξ0 which has density g on K intervals

for 1st item: I11 = [θ011L , θ011U ], . . . , I1K = [θ01K L , θ01KU ],
for 2nd item: I21 = [θ021L , θ021U ], . . . , I2K = [θ02K L , θ02KU ] and density 0 otherwise.

• Step 2: Solve the constrained optimization problem: maximize |M(ξ)| = |M1(ξ1)| ·
|M2(ξ2)| or minimize

− log |M1(ξ1)| − log |M2(ξ2)| (9)

subject to equality constraint
n∑

r=1

K∑

t=1

∫

Irt

g(θ)dθ = s and

https://doi.org/10.1007/s11336-019-09673-6 Published online by Cambridge University Press
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subject to inequality constraint I11 . . . I1K I21 . . . I2K ⇔ θ11L ≤ θ11U ≤ · · · ≤
θ12L ≤ θ12U ≤ θ21L ≤ θ21U ≤ · · · ≤ θ22L ≤ θ22U .

Similarly we check other possible ordering of intervals. For K = 2, we have six
inequalities constraints I11 I12 I21 I22, I11 I21 I12 I22, I11 I21 I22 I12, I21 I22 I11 I12, I21 I11 I22 I12,
I21 I11 I12 I22. We select the inequity constraint which gives minimum value in (9).

• Step 3: Finally for assurance, it is essential to check whether this K -interval design is
reallyD-optimal by computing the directional derivative of theD-criterion and by checking
whether the condition in the Equivalence Theorem for Item Calibration is fulfilled. If the
design is not optimal, set K = K + 1 and go to Step 1.

The number of inequalities constraints is generally
(2K
K

)
. In the computations we made for

the examples in Sect. 4, it was sufficient to use K = 2 and K = 3.
Since it is allowed that two or more interval boundaries coincide, the designs which need less

than K intervals are special cases of a K -interval design. Hence, when increasing K , (9) cannot
increase; it is decreasing until the right K is found and would then be constant for larger K . If
some interval boundaries coincide in the determined optimal design, we can finally reduce the
number of intervals of it.

The constrained optimization problem in our algorithm was solved by using the R-package
nloptr (Borchers, 2013) with Sequential (least-squares) Quadratic Programming (SQP) algo-
rithm.We use the algorithm for the examples presented in Sects. 3 and 4. The number of iterations
of the SQP algorithm can vary considerably for each case, but a final solution is obtained in all
cases very quickly within one minute.

2.5. Relative Efficiency of Designs

The relative D-efficiency (RED) of a design h(1) compared to another design h(2) is

RED = RED(h(1), h(2)) =
[

|M(h(1))|
|M(h(2))|

] 1
2n

=
⎡

⎣

∏n
i=1 |Mi

(
h(1)
i

)
|

∏n
i=1 |Mi

(
h(2)
i

)
|

⎤

⎦

1
2n

(10)

where 2n is the number of parameters, see Berger and Wong (2009). An RED-value less than 1
indicates that design h(2) is better than design h(1) in terms of D-optimality. In terms of sample
size, this means that design h(1) approximately needs (RE−1

D − 1) ∗ 100% more examinees to be
as efficient as h(2).

We could assign the items randomly irrespectively of the ability such that each examinee has
probability s/n to calibrate a specific item. This so-called random design has densities hri = sg/n
for i = 1, . . . , n. In the examples, wewill be interested, e.g., in the relative efficiency RED(hr , h∗)
of the random design compared to the D-optimal restricted design h∗. Many researchers have
compared optimal design efficiency with a random design in item calibration studies, see e.g.,
Buyske (2005). We consider a random design as a benchmark for comparison.

Another important design for comparison is the symmetric design. It divides first the sample
proportion s equally to all, say m, unrestricted design points and a proportion s/m should be
sampled around a design point θ∗. A value d is computed such that the desired proportion s/m

of examinees is in the symmetric interval (θ∗ − d, θ∗ + d), i.e.,
∫ θ∗+d
θ∗−d g(x) dx = s/m. The

symmetric design is only well defined as long as the intervals from the design points do not
overlap.
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3. Results for Calibration of One Item

We consider now three new items to calibrate for our item bank. Assuming a two-parameter
logistic model (2), the best guess items parameters ai and bi of these items are:

• Item 1: Discrimination a1 = 1, difficulty b1 = 0.5;
• Item 2: Discrimination a2 = 1.5, difficulty b2 = −1.2;
• Item 3: Discrimination a3 = 1.6, difficulty b3 = 2.

Usually, the number of items to calibrate is larger than the number which can be allocated to
a single examinee. Imagine, e.g., a situation where we have ten times more new items than can be
calibrated by an examinee. Focusing first on a specific new item, it should therefore be assigned
to approximately 10% of the examinees. In this section, we illustrate scenarios where we choose
a proportion s < 1 of examinees to calibrate a single item, n = 1. We ignore in this section
that items cannot be treated separately as they might need the same examinees for calibration. In
Sects. 4 and 5, we will calibrate then several items simultaneously.

Abdelbasit and Plackett (1983) showed that for the two-parameter logistic model the locally
D-optimal design for a single item with best guess values a and b for discrimination and difficulty
has two distinct equally weighted design points or ability levels θ = b± 1.543

a . The corresponding
probabilities of correctly answering the question at these points, θ1 and θ2 say, are p(θ1) = 0.176
and p(θ2) = 0.824. This means that the unrestricted locally D-optimal design recommends to
choose half of the examinees for calibration with ability θ1 = b− 1.543

a and half with ability
θ2 = b + 1.543

a .
We assume in the examples in Sects. 3 and 4 that the examinees in the computerized test

have standard normal distributed abilities. We compute locally D-optimal restricted designs with

restriction g(θ) = 1√
2π

e(− θ2
2 ). However, the method including the Equivalence Theorem in

Sect. 2.3 is valid even if another assumption for the abilities is preferred. Since we compute here
locally optimal designs, we have made investigations in the supplementary materials where we
see robustness as long as the parameters are not severely misspecified.

3.1. Calibration of Item 1

In the first scenario, we consider an item with best guess for the difficulty parameter b = 0.5
and item discrimination parameter a = 1 (Item 1). We want to select 10% of the population of
examinees to calibrate this item in the item bank. The unrestricted optimal design recommends to
sample 5% examinees with ability level 0.5− 1.543

1 = −1.043 and 5% with 0.5+ 1.543
1 = 2.043.

The best guess probability for correct response and the optimal unrestricted design points are
shown in the upper panel of Fig. 1a.

It is hard to select a sample of examinees with these specific ability levels as there might be
no such examinees available or we have a limited number of examinees with these ability levels.
We sample instead the examinees from the available distribution in an optimal way using the
techniques described in Sect. 2.3. For the restricted optimal design, we assume that the population
of examinees has a standard normal ability distribution and we sample a proportion s = 0.1 of
this population. The calculated optimal restricted design recommends to sample 5% examinees
from the population with ability level between (−1.215,−0.984) and 5% between (1.600, 2.577),
see the middle panel of Fig. 1a. The intervals are not equal in length: We have limited available
examinees around the high unrestricted ability level 2.043 compared to the low level −1.043. So
we need a longer interval around the unrestricted ability level 2.043 to select 5% examinees of
population. The intervals are also asymmetrical around the unrestricted design points and extend
more toward the extreme abilities since less examinees are available there.
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(a) Locally D-optimal unrestricted and restricted (s = 0.1) design for calibration of Item
1. Upper panel: black line represents the two-parameter logistic model curve and two blue
lines indicate the ability levels of the locally D-optimal unrestricted design; Middle panel:
two shaded parts of normal distribution represent the two intervals for ability levels of
the locally D-optimal restricted design; Lower panel: Directional derivative (black line) for
locally D-optimal restricted design for Item 1, lower and upper interval limits of design
(black dots), reference line c∗ (blue) separating sampling and non-sampling area

(b) Locally D-optimal restricted designs for s = 0, 0.05, . . . , 0.95

Figure 1.
Locally D-optimal restricted designs for Item 1 (Color figure online).
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Figure 2.
Determinant of information matrix of locally D-optimal restricted design for calibration of Item 1 for sample proportion
s = 0, 0.05, . . . , 0.95, 1. The blue line indicates themaximum value of determinant of the informationmatrix of two-point
unrestricted design (Color figure online).

The directional derivative for this two-interval design is shown in the lower panel of Fig. 1a
with black line and interval limits are marked on it with red dots. Since these four points of the
two-interval design are on one blue reference line and the intervals of the population sample have
directional derivative below the reference line, the Equivalence Theorem for Item Calibration
described in Sect. 2.3 confirms the optimality of this two-interval design (the blue reference line
corresponds to c∗ in the theorem).

We computed the optimal restricted design for other sample proportions than s = 0.1. We
show the results in Fig. 1b for s = 0, 0.05, 0.1, . . . , 0.95, where s = 0 is the limiting case of
unrestricted optimal design. We see there that we still have a two-interval design if we want
to sample 95% of the population. This two-interval design becomes one interval if we sample
96% of the population. Figure 2 shows the determinant of the information matrix of the locally
D-optimal restricted design for Item 1 for sample proportion s = 0, 0.05, . . . , 0.95, 1. The case
s = 0 corresponds to the locally D-optimal unrestricted design, s = 1 to the random design. The
loss of information for Item 1 is moderate if the population proportion is between 0.0 and 0.2.

3.2. Calibration of Item 2

Now we discuss another scenario where we want to calibrate Item 2 with best guess for
difficulty parameter b = −1.2 and discrimination parameter a = 1.5. To calibrate this item, we
want to sample 25% of examinees population (s = 0.25). The unrestricted design recommends
to sample 12.5% of examinees at each of the ability levels −2.229 and −0.171. Again we use
restricted optimal design because of unavailability or limited available examinees with these
specific ability levels. To calibrate this item, we sample 11.48% from the population of examinees
between ability levels (−3.592, −1.200) and 13.52% between (−0.061, 0.282), see Fig. 3a with
design and directional derivative plot. In this scenario, the selected sample proportion of the
population for the two intervals is not equal. Another remarkable fact is that the upper interval
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not contains the upper value of the optimal unrestricted design. So sampling around this optimal
unrestricted design point definitely produces a non-optimal restricted design. Since around θ = 0
more examinees are available compared to ability level −2.229, the upper interval has a shorter
length compared to the lower. However in this case, the symmetric design needs only 1.98%
more examinees to have the same efficiency than the restricted D-optimal design, i.e., it is an
efficient design; the random design needs 45.45% more examinees. When investigating other
sample proportions s, we see that the optimal two-interval design will become a one-interval
design if we want to sample a proportion of 90% or more of the population to calibrate the item.
Results for other s are presented in Fig. 3b. For Item 2, we show the determinant of the information
matrix of the locally D-optimal restricted design for different sample proportions in Fig. 4. The
loss of information for Item 2 is moderate with population proportions between 0.0 and 0.2.

3.3. Calibration of Item 3

In the third scenario, we want to sample 35% of the examinees population (s = 0.35) in order
to calibrate Item 3 with best guess for difficulty parameter b = 2 and discrimination parameter
a = 1.6. The unrestricted optimal design recommends to choose 17.5% sample proportion of the
population at each of the ability levels 1.035 and 2.965. The restricted optimal design samples
21.23% from the population of examinees between ability levels (0.043, 0.611) and 13.76%
between (1.091, 5.417), see Fig. 5a with design and directional derivative plot. Both intervals
have unequal length and different sample proportions of the examinees population. The lower
limit of the upper interval is quite close to the lower point of the optimal unrestricted design.
This seems reasonable as limited examinees are available around the high ability level 2.965.
So to select the examinees this lower limit of the upper interval moves toward the left as more
examinees are available to this side. To counter this, the lower interval is quite below from the
lower point of the optimal unrestricted design. Similarly as for Item 2, the lower interval does here
not contain the lower unrestricted design point. This effect happens for items with difficulty b not
in the center of the ability distribution. The value of difficulty where this effect starts depends on
the discrimination a. In the supplementary materials, we provide figures showing combinations
of a and b where an unrestricted design point is not contained in the restricted optimal design.

In terms of sample size, the random design needs 59.66% more examinees to have the same
efficiency as a restricted D-optimal design. If we would try to select examinees symmetrically
around the points of the unrestricted design, we have the problem that the intervals around the two
design points overlap, i.e., the symmetric design is not usable directly. For sampling proportion
s = 0.2, the symmetric design has no overlapping intervals; in that case, the symmetric design
needs 12.95% more examinees to have the same efficiency than the restricted D-optimal design.
Investigating other sample proportions s, the optimal two-interval design will become a one-
interval design if we sample a proportion of 55% or more of the population, see Fig. 5b. Figure 6
indicates that the loss of information is considerable for Item 3 if the population proportion is
between 0.0 and 0.2.

3.4. Relative Efficiency of the Optimal Design

Table 1 shows the relative efficiency of the random design versus the D-optimal restricted
design for each of the three items. The D-optimal restricted design is generally very efficient
compared to the random design gaining up to 34% sample size for Item 1, up to 56% for Item
2, and 144% for Item 3 for giving the same precision of estimates. Additionally for the D-
optimal restricted and randomdesigns,we provide figureswith the determinants of the information
matrices for the three items in the supplementary materials. Table 2 shows efficiencies for the
symmetric design. For Item 1 which has a difficulty close to the mean ability of the population,
the symmetric design is quite efficient needing only up to 1.95%more examinees compared to the
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(a) Locally D-optimal unrestricted and restricted (s = 0.25) design for calibration of Item
2. See Figure 1a for description of panels.

(b) Locally D-optimal restricted designs for s = 0, 0.05, . . . , 0.95

Figure 3.
Locally D-optimal restricted designs for Item 2.
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Figure 4.
Determinant of information matrix of locally D-optimal restricted design for calibration of Item 2 for sample proportion
s = 0, 0.05, . . . , 0.95, 1. The blue line indicates themaximum value of determinant of the informationmatrix of two-point
unrestricted design (Color figure online).

restricted D-optimal design. For Item 2 and 3, the intervals of the symmetric design would overlap
for larger s; therefore, the design is only possible for s ≤ 0.55 and s ≤ 0.2, respectively. For
these items having one unrestricted optimal design point where only few examinees are available,
there is a higher sample size gain of the optimal compared to the symmetric design for some s
(up to 6.80% for Item 2 and 12.95% for Item 3).

4. Results for Calibration of Two or More Items

We now present scenarios for calibration of two items. We start with briefly mentioning the
locally D-optimal unrestricted design. One can show that it is D-optimal to sample exactly half of
the examinees for each of the two items.Within each item, the one-item optimal designmentioned
in Sect. 3 is the best choice. This means, the locally D-optimal design for calibration of two items
is to sample 25% of the examinees with ability levels θ = b1 ± 1.543

a1
for Item 1 and 25% of the

examinees with ability levels θ = b2 ± 1.543
a2

for Item 2.
We compute now locally D-optimal restricted designs assuming that the examinees partici-

pating in the computerized test have standard normal distributed abilities. We use Item 1, 2, and
3 from Sect. 3 and compute the optimal design when at least two of these three items should be
calibrated simultaneously.

In a first case (Sect. 4.1), the optimal designs for each of the two items are not overlapping.
In more challenging cases (see Sects. 4.2 and 4.3), it can be seen that some examinees would be
needed for both items – they compete with each other. Then, the optimal design will determine
the best allocation to either of the items. The result can be a two-interval solution for both items
(Sect. 4.2); in this case, the algorithm in Sect. 2.4.2 found the optimal design using K = 2. In
Sect. 4.3, K = 3 intervals were needed for each item. Finally, we compute optimal designs when
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(a) Locally D-optimal unrestricted and restricted (s = 0.35) design for calibration of Item
3. See Figure 1a for description of panels.

(b) Locally D-optimal restricted designs for s = 0, 0.05, . . . , 0.95

Figure 5.
Locally D-optimal restricted designs for Item 3.
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Figure 6.
Determinant of information matrix of locally D-optimal restricted design for calibration of Item 3 for sample proportion
s = 0, 0.05, . . . , 0.95, 1. The blue line indicates themaximum value of determinant of the informationmatrix of two-point
unrestricted design (Color figure online).

all examinees are sampled (s = 1; Sects. 4.4 and 4.5). In Table 3a, the relative efficiencies are
calculated for the random design. Considerable sample size gains exist in all cases (17.30% to
95.57%). Table 3b shows efficiencies for the symmetric design in cases where intervals do not
overlap. We see that in many cases including all cases for calibrating Item 1 and 3, we cannot
apply the symmetric design directly due to overlapping.

4.1. Calibration for Non-competing Items

In this first situation, we consider Item 1 (a = 1, b = 0.5) and Item 2 (a = 1.5, b = −1.2)
for calibration. We are interested to sample 10% population of examinees to calibrate these two
items in the item bank.

The unrestricted optimal design suggests to sample 2.5% examinees at each ability levels
−1.043, 2.043 (for Item 1) and−2.229,−0.171 (for Item 2). Since it is in practice hard to sample
the examinees at these specific ability levels due to unavailability or limited availability of number
of examinees, we use restricted optimal design to sample the examinees between some intervals
of ability levels in an optimal way. The unrestricted optimal design recommends us to sample
2.52% and 2.51% examinees from the population between ability levels (−1.114, −1.004) and
(1.804, 2.308), respectively, for Item 1. For Item 2, it suggests to choose 2.47% and 2.50% of
the examinees between ability levels (−2.617, −1.893) and (−0.167, −0.103), see Fig. 7a. The
directional derivative plot in the lower panel of Fig. 7a confirms that the designwith these intervals
limits is optimal: The blue reference line (corresponding to value c∗ in the Equivalence Theorem
for Item Calibration) separates the sampling regions from the non-sampling regions. Further, the
sampling to item i, i = 1, 2, corresponds to the region where the respective item has the smallest
directional derivative.We showoptimal designs for other values of s ∈ {0.1, 0.2, . . . , 1} in Fig. 7b.
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Table 1.
Relative efficiency of random design versus D-optimal restricted design.

Proportion (%) Item 1 Item 2 Item 3

RED RESS(%) RED RESS(%) RED RESS(%)

0 0.7451 34.2076 0.6360 57.2429 0.3616 176.5380
5 0.7463 33.9931 0.6407 56.0771 0.4094 144.2796
10 0.7498 33.3776 0.6531 53.1182 0.4562 119.2079
15 0.7551 32.4376 0.6695 49.3729 0.4964 101.4377
20 0.7618 31.2638 0.6875 45.4549 0.5325 87.7791
25 0.7697 29.9238 0.7062 41.6082 0.5658 76.7462
30 0.7785 28.4552 0.7251 37.9183 0.5969 67.5348
35 0.7882 26.8741 0.7440 34.4095 0.6263 59.6613
40 0.7988 25.1845 0.7629 31.0821 0.6544 52.8130
45 0.8105 23.3856 0.7817 27.9273 0.6813 46.7767
50 0.8232 21.4783 0.8004 24.9334 0.7072 41.4018
55 0.8370 19.4692 0.8191 22.0882 0.7329 36.4384
60 0.8520 17.3720 0.8377 19.3804 0.7563 32.2257
65 0.8680 15.2055 0.8562 16.8001 0.7807 28.0906
70 0.8850 12.9922 0.8746 14.3393 0.8063 24.0296
75 0.9029 10.7552 0.8929 11.9919 0.8331 20.0334
80 0.9215 8.5176 0.9111 9.7539 0.8614 16.0870
85 0.9407 6.3018 0.9292 7.6245 0.8915 12.1685
90 0.9603 4.1296 0.9472 5.5690 0.9238 8.2444
95 0.9802 2.0222 0.9692 3.1792 0.9592 4.2536

Relative efficiency RED versus D-optimal restricted design for calibration of one item. RESS indicates
sample size gain when using optimal restricted design instead of symmetric design.

4.2. Calibration for Competing Items

In this case, we want to select a sample of 50% examinees from the population in order to
calibrate Item 1 (a = 1, b = 0.5) and Item 3 (a = 1.6, b = 2) in the item bank. The unrestricted
optimal design would select 12.5% examinees each at the ability levels −1.043, 2.043 for Item 1
and 12.5%examinees at each ability levels 1.035, 2.965 for Item3. Selecting examinees around the
unrestricted design points in a naive manner faces the problem that there are only few examinees
around the ability levels 2.043 and 2.965. The restricted design recommends us to choose 15.1%
and 13.6% of the population of examinees on the ability intervals (−2.158, −0.967) and (0.836,
1.511) for Item 1 and choose 14.7% and 6.5% of the examinees for Item 3 on the intervals (0.299,
0.721) and (1.511, 5.197), see Fig. 8a. The directional derivative plot in the lower panel confirms
based on the Equivalence Theorem for Item Calibration that this restricted optimal design is
optimal. In each region, the item with the lowest directional derivative is sampled. The two upper
intervals follow directly after each other with boundary point 1.511. This shows that the two
items are competing for examinees around this ability θ = 1.511. The directional derivative of
both items is equal at this point. Examinees with such θ would be good for both items since both
directional derivatives are well below the reference line, but in order to maximize the overall
information, this cut-point was determined. Figure 8b shows optimal designs for other values of
s ∈ {0.1, 0.2, . . . , 1}.
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Table 2.
Relative efficiency of symmetric design versus D-optimal restricted design.

Proportion (%) Item 1 Proportion (%) Item 2

RED RESS(%) RED RESS(%)

0 1.0000 0.0000 0 1.0000 0.0000
5 0.9999 0.0063 5 0.9993 0.0661
10 0.9994 0.0646 10 0.9954 0.4620
15 0.9980 0.1990 15 0.9887 1.1451
20 0.9961 0.3953 20 0.9806 1.9777
25 0.9937 0.6335 25 0.9722 2.8640
30 0.9911 0.8937 30 0.9639 3.7426
35 0.9886 1.1562 35 0.9563 4.5690
40 0.9862 1.4028 40 0.9496 5.3106
45 0.9841 1.6155 45 0.9439 5.9429
50 0.9825 1.7809 50 0.9394 6.4461
55 0.9814 1.8914 55 0.9363 6.8045
60 0.9809 1.9450

65 0.9809 1.9463 Proportion (%) Item 3

70 0.9813 1.9018 RED RESS (%)

75 0.9821 1.8195 0 1.0000 0.0000
80 0.9832 1.7072 5 0.9633 3.8065
85 0.9845 1.5726 10 0.9252 8.0835
90 0.9860 1.4229 15 0.8998 11.1370
95 0.9875 1.2639 20 0.8853 12.9498

Relative efficiency RED versus D-optimal restricted design for calibration of one item. RESS indicates
sample size gain when using optimal restricted design instead of symmetric design.

4.3. Calibration for Items with Several Intervals

Now in this situation we want to choose a sample of 80% examinees from the population
to calibrate Item 2 (a = 1.5, b = −1.2) and Item 3 (a = 1.6, b = 2) in the item bank. The
unrestricted design recommends us to choose 20% examinees each with abilities−2.229,−0.171
for Item 2 and 1.035, 2.965 for Item 3. The restricted optimal design suggests us to select 18.78%,
10.14% and 14.29% of the population of examinees on the ability intervals (−4.069, −0.886),
(−0.329, −0.069) and (0.338, 0.757), respectively, for Item 2. It also recommends to choose
16.01%, 5.05% and 15.72% of examinees from the population on the ability intervals (−0.069,
0.338), (0.757, 0.938) and (1.006, 5.508) for Item 3, see Fig. 9. The directional derivative plot
in the lower panel of Fig. 9 shows together with the Equivalence Theorem for Item Calibration
that this design is optimal for the selection of examinees: We select examinees on intervals below
the blue line for Item 2 or 3 depending on which item’s directional derivative is smallest in these
intervals. In contrast to the preceding example, the competition between the items leads here to
the need of three intervals for each item. Note that in the region from θ = −0.3 to 0.9, the two
directional derivatives are quite close but do not exactly coincide—the minimum is unique except
for the crossing points. Optimal designs for other values of s ∈ {0.1, 0.2, . . . , 1} are presented in
Fig. 10.
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Table 3.
Relative efficiency RED versus D-optimal restricted design for calibration of two or more items.

Proportion (%) Item 1, 2 Item 1, 3 Item 2, 3

RED RESS(%) RED RESS(%) RED RESS(%)

(a) Relative efficiency of random design versus D-optimal restricted design
0 0.6884 45.2694 0.5191 92.6486 0.4796 108.5273
10 0.6915 44.6164 0.5528 80.8993 0.5113 95.5664
20 0.6997 42.9275 0.5896 69.6201 0.5444 83.6903
30 0.7107 40.7010 0.6226 60.6242 0.5748 73.9856
40 0.7238 38.1549 0.6531 53.1150 0.6032 65.7839
50 0.7404 35.0594 0.6821 46.5996 0.6304 58.6238
60 0.7597 31.6309 0.7104 40.7728 0.6585 51.8552
70 0.7810 28.0483 0.7399 35.1514 0.6871 45.5363
80 0.8037 24.4270 0.7715 29.6245 0.7137 40.1228
90 0.8275 20.8469 0.8048 24.2492 0.7392 35.2876
100 0.8525 17.2983 0.8398 19.0805 0.7665 30.4547

Proportion (%) Item 1, 2 Item 2, 3

RED RESS(%) RED RESS(%)

(b) Relative efficiency of symmetric design versus D-optimal restricted design
0 1.0000 0.0000 1.0000 0.0000
10 0.9996 0.0370 0.9796 2.0784
20 0.9972 0.2772 0.9571 4.4781
30 0.9930 0.7070 0.9404 6.3430
40 0.9885 1.1670 0.9289 7.6589

RESS indicates sample size gain when using optimal restricted design instead of symmetric design.

4.4. Calibration of Two Items Using the Whole Population

Nowwewant to select all the available examinees in order to calibrate Item 2 and 3 in the item
bank. The optimal unrestricted design suggests to choose 25% each of all available examinees at
the ability levels −2.229 & −0.171 for Item 2 and 25% each for Item 3 at the ability levels 1.035
& 2.965. When we use restricted optimal design, we should choose 30.98% of the examinees
on the ability interval (−∞, −0.496) and 23.28% on (0.081, 0.723) for Item 2. For Item 3, it
suggests to choose 22.27% examinees on (−0.496, 0.081) and 23.47% on (0.723, ∞). (With an
exact computation, the last interval is obtained to be (0.723, 10); examinees with higher ability
should receive Item 2. However, the probability for an ability≥ 10 is basically 0.) The directional
derivative in the third panel of Fig. 9 shows that this design is optimal for selection of examinees:
We choose examinees for Item 2 or 3 whenever the directional derivative is smallest. The random
design requires 30.45% more examinees to be as efficient as the locally D-optimal restricted
design.

4.5. Calibration of All Three Items Using the Whole Population

Finally, we calibrate Item 1, 2 and 3 simultaneously using the population of examinees
participating in the computerized test. The optimal unrestricted design recommends us to select
approximately 16.67% of all available examinees at each of six optimal unrestricted design points
of ability. For the optimal restricted design, we remarked in Sect. 2.3 that examineeswith very high
abilities should be assigned to the item with the lowest discrimination, here Item 1. For numerical
computation, we assign therefore intervals I10 = (−∞, θ10U ] and I1(K+1) = [θ1(K+1)L ,∞)

https://doi.org/10.1007/s11336-019-09673-6 Published online by Cambridge University Press

https://doi.org/10.1007/s11336-019-09673-6


1120 PSYCHOMETRIKA

to Item 1; between these intervals, we calculate an optimal K -interval design. It turns out that
K = 2 is sufficient here. The optimal restricted design suggests us to choose 11.97% and 23.17%
of the total available examinees on the ability interval (−5.147,−1.176) and (−0.424, 0.170) for
Item 2. Besides the intervals (−∞,−5.147) and (5.975,∞) where almost no examine falls in,
we choose 21.62% and 16.02% of examinees for Item 1 on the intervals (−1.176,−0.424) and
(0.754, 1.513). Lastly, on the intervals (0.170, 0.754) and (1.513, 5.975) we select 20.70% and
6.82% of examinees for Item 3, see forth panel of Fig. 11. According to the Equivalence Theorem
for Item Calibration the directional derivatives in the last panel of Fig. 11 show that the restricted
design is optimal for selection of examinees based on their estimated abilities. The random design
needs 32.04% more examinees to have the same efficiency as the restricted D-optimal design.

An alternative way of calibration would be the administration of all three items to all available
examinees. The main “cost” of it is the increased testing time for each examinee which is three
times larger (if we make the simplifying assumption that all items require the same testing time).
The information from this design is three times the information of the random design and we
can therefore use efficiencies with respect to the random design to compute efficiency of the all-
examinees-all-items design versus the restrictedD-optimal design. Aswritten above, the restricted
D-optimal design has 32.04% sample gain, or in other words, it has 1.3204 times the information
of the random design. Therefore, the all-examinees-all-items design has 3/1.3204 = 2.27 times
the information of the restricted D-optimal design despite needing three times more time. Since
one has in reality more than three items to calibrate (see Sect. 5), the time gain is usually important
to achieve.

5. Scaling Up the Method for Large Banks of New Items

An assumption we made was that each examinee can calibrate (at most) one item. We had
examples with an item bank of three items. Realistic situations have often large banks of new
items, and it is desired that each examinee calibrates several items. We will show now how one
can easily use the methods described for realistic situations. We assume that the maximal number
k of items which an examinee can calibrate is given by practical circumstances, e.g., the time
necessary for the test. The number of new items n to calibrate is> k, such that we need to allocate
them to different examinees. Let us assume for simplicity that n is a multiple of k. We divide the
n items into k blocks of n/k items each. Each examinee is supposed to calibrate exactly one item
per block. The blocking might be done taking content of items into account or simply randomly.
We compute now for each of the n/k-item block the optimal restricted design separately. This
gives us the optimal calibration with the additional restriction of this blocking.

We can compute the D-efficiency of the random design compared to the restricted optimal
design for each block. It follows from formula (10) that the overall efficiency of the random design
compared to the blocked restricted optimal design is the geometric mean of the block efficiencies.

6. Discussion and Conclusion

Item calibration is an important tool for maintaining, updating and developing new items for
an item bank. In the case of a two-parameter logistic model, the unrestricted D-optimal design
for calibration of one new item has two optimal ability levels of examinees (θ = b± 1.543

a ) where
one should sample equal proportions of the examinee population at these points. In practice, it is
impossible to sample equal proportions of examinees from these optimal points of ability due to
unavailability or limited availability of examinees. Sampling symmetrically around the optimal
ability levels works in some situations. But in many cases, it is not clear how to define such

https://doi.org/10.1007/s11336-019-09673-6 Published online by Cambridge University Press

https://doi.org/10.1007/s11336-019-09673-6


MAHMOOD UL HASSAN AND FRANK MILLER 1121

(a) Calibration of Item 1 and 2 by 10% of the examinees. Upper panel: black and red
lines represent the two-parameter logistic model curves. The vertical lines indicate the
ability levels of the locally D-optimal unrestricted design; Middle panel: two shaded red
and black parts of normal distribution represent the intervals for ability levels of the locally
D-optimal restricted design for these items; Lower panel: Black and red line curves represent
the directional derivatives while black and red dots marked on it depict the lower and upper
interval limits of the locally D-optimal restricted design of these items. The blue line is a
reference line and where we sample when the directional derivative is below in this line.

(b) Locally D-optimal restricted designs for sample proportion s = 0.1, 0.2, . . . , 1

Figure 7.
Locally D-optimal restricted designs for simultaneous calibration of Item 1 and 2.
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7a.(a) Calibration of Item 1 and 3 by 50% of examinees; description see Figure

(b) Locally D-optimal restricted designs for sample proportion s = 0.1, 0.2, . . . , 1.

Figure 8.
Locally D-optimal restricted designs for simultaneous calibration of Item 1 and 3.
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Figure 9.
Calibration of Item 2 and 3 using 80% of examinees and the whole population of examinees, see Fig. 7a.
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Figure 10.
LocallyD-optimal restricted designs for simultaneous calibration of Item2and3 for sample proportion s = 0.1, 0.2, . . . , 1.

symmetric designs, e.g., if optimal ability levels are too close to each other. To avoid possibly
inefficient ad hoc solutions, we have used restricted optimal designs to calibrate new items where
we used optimal intervals instead of points to sample the examinees from the population.

In this paper, we derived locally optimal designs. Their quality might depend on the quality
of the prior guess about the item parameters. If the true item parameters are a little different from
the prior guess, we have seen robustness; however, if the difference is large, the locally optimal
design might be a bad choice. Therefore, alternatives to local optimality, Bayesian or maximin
optimality, can be applied, see e.g., Atkinson et al. (2007), Chapter 17 and 18. Combination of
these general optimal design approaches with the restricted optimality considered here could be
an area of future research.

Further, an opportunity in computerized calibration is to re-estimate the item parameters
from the ongoing calibration and to apply a sequential optimal design, see Lu (2014), van der
Linden and Ren (2015) and Ren et al. (2017). This sequential and the Bayesian (or minimax)
approach can also be combined. However, in tests, e.g., the Swedish Scholastic Assessment Test,
all examinees are tested more or less simultaneously. If calibration items are added to tests where
all examinees are tested more or less in parallel, we think therefore that a minimax or Bayesian
approach should be used in a non-sequential context.

In this manuscript, we assume that abilities of examinees are well determined in the oper-
ational part of the test before it is decided which item to calibrate depending on their ability.
We ignore here the fact that we use estimated abilities and not true abilities, but there is some
uncertainty around the estimates: The examinee might be a bit better or worse than the estimated
ability (the examinee might have had bad or good luck in the examination). However, the abilities
should be reasonably well estimated if the operational part of the achievement test is large and
calibration items are added toward the end of this test. Note that Ren et al. (2017) suggested to
seed the new items into the final part of the test and He et al. (2019) concluded in their situation
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Figure 11.
Calibration of Item 1, 2 and 3 by all examinees, see Fig. 7a.

that even middle positions worked equally well. Nevertheless, for handling the uncertainty in
abilities, it is conceptually possible to use the here described restricted optimal design approach
in connection with using posterior distributions of abilities [see e.g., Section 2.1. of Ren et al.
(2017)] rather than point estimates.

While our developed theory applies generally to item response models and to convex and
differentiable optimality criteria, we have in the examples considered a two-parametric logistic
model togetherwithD-optimality. Itmight be interesting to explore the structure of optimal designs
for other models. For example including a third parameter modeling a guessing probability has
been advocated in this context of achievement tests, see e.g., van der Linden and Ren (2015).
Further, the examinees’ abilities might not adequately be characterized by a one-dimensional
ability parameter. Then a multidimensional IRT model might be considered. Optimal estimated
designs for these models will be considered in future research where other optimality criteria will
be considered as well.

Finally, we assumed in the Equivalence Theorem for Item Calibration that each examinee at
most can calibrate one item. We described how this can be applied in a situation where everyone
calibrates more items. This leads however to an optimal design under a blocking restriction.When
there is no content-reason for a specific blocking and when the blocks are created randomly, it
might be desirable to improve the design even more and to drop the blocking restriction. An
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extension of the Equivalence Theorem such that optimization can be done without the blocking
restriction is a task for future research.
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A. Appendix: Proof of Theorem in Sect. 2.3

We have to prove: “h∗ is 
-optimal in �
g
s ⇔ (7)”. Condition (7) means: Ph∗({(θ, i) ∈ χ̃ :

F
(h∗, θ, i) > L(h∗, θ)}) = 0.
“⇐” Let h̃ ∈ �

g
s be arbitrary. We have

F
(h∗, h̃) =
n∑

i=1

F
(h∗, h̃i ) =
n∑

i=1

∫

�

F
(h∗, θ, i)h̃i (θ) dθ.

Since F
(h, θ, i) ≥ L(h, θ), we have

F
(h∗, h̃) ≥
n∑

i=1

∫

�

L(h∗, θ)h̃i (θ) dθ =
∫

�

L(h∗, θ)

n∑

i=0

h̃i (θ) dθ −
∫

�

L(h∗, θ)h̃0(θ) dθ.

Since L ≤ c∗ h∗-almost surely and the integral over h̃0 is 1 − s,

F
(h∗, h̃) ≥
∫

�

L(h∗, θ)g(θ) dθ − c∗(1 − s) =
∫

�

L(h∗, θ)

n∑

i=1

h∗
i (θ) dθ

(7)=
n∑

i=1

∫

�

F
(h∗, θ, i)h∗
i (θ) dθ =

n∑

i=1

F
(h∗, h∗
i ) = F
(h∗, h∗) = 0

(the last equation follows directly from the definition of the directional derivative). This means
that we have shown F
(h∗, h̃) ≥ 0 for any design h̃ ∈ �

g
s and the optimality of h∗ follows from

a theorem of Whittle (1973), see also Theorem 3.6 of Silvey (1980) and Theorem A (i) of Sahm
and Schwabe (2000).
“⇒” We will show this implication by contradiction. If (7) is not fulfilled, then there is some
j ∈ {0, 1, . . . , n} with Ph∗

j
({θ : F
(h∗, θ, j) > L(h∗, θ)}) > 0 meaning that there are some

j, k ∈ {0, 1, . . . , n}, j 	= k, with Ph∗
j
({θ : F
(h∗, θ, j) > F
(h∗, θ, k)}) > 0. Case 1: j, k ∈

{1, . . . , n}. There has to be some set �0 ⊆ � with F(h∗, θ, j) > F(h∗, θ, k) for all θ ∈ �0 and
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Ph∗
j
(�0) > 0, i.e., item j is sampled on �0 despite there is another item, k, which has a smaller

directional derivative. We construct a new design h∗∗ by moving all sample mass on �0 from
item j to item k:

h∗∗(θ, i) = h∗(θ, i) if θ ∈ �\�0 or i 	∈ { j, k},
h∗∗(θ, k) = h∗(θ, k) + h∗(θ, j) and h∗∗(θ, j) = 0 if θ ∈ �0.

It is clear that h∗∗ ∈ �
g
s . We have then

F
(h∗, h∗∗) = F
(h∗, h∗) +
∫

�0

{
F
(h∗, θ, k) − F
(h∗, θ, j)

}
h∗∗(θ, j) dθ < 0

where the inequality holds since F(h∗, h∗) = 0 and since the integral is negative due to the fact that
F
(h∗, θ, k)−F
(h∗, θ, j) is negative. Since we have found an h∗∗ ∈ �

g
s with F
(h∗, h∗∗) < 0,

it follows that the design h∗ cannot be
-optimal in�
g
s , according to the theoremofWhittle (1973).

Case 2: j = 0, k ∈ {1, . . . , n}. There has to be some set �0 ⊆ � with c∗ > F
(h∗, θ, k)
for all θ ∈ �0 and Ph∗

0
(�0) > 0, i.e., there is some positive non-sample probability where the

directional derivative of item k is below c∗. From the definition of c∗ follows that if one samples
everywhere where L̃ < c∗, then the sampling mass is ≤ s. Therefore, if no full sampling is done
on �0 ⊆ {θ : L < c∗}, there has to be sampling on {θ : L = c∗}. Formally, this means that
we can find �1 ⊆ {θ : L = c∗} such that

∫
�0

h0(θ) dθ = ∫
�1

(g(θ) − h0(θ)) dθ. We can then
construct a competing design ξ∗∗ by moving sampling mass from �1 to item k on �0:

h∗∗(θ, 0) =
n∑

i=0

h∗(θ, i) and h∗∗(θ, 1) = · · · = h∗∗(θ, n) = 0 if θ ∈ �1,

h∗∗(θ, k) = h∗(θ, k) + h∗(θ, 0) and h∗∗(θ, 0) = 0 if θ ∈ �0,

h∗∗ = h∗, otherwise.

One can show h∗∗ ∈ �
g
s ; F
(h∗, h∗∗) < 0. Non-optimality of h∗ follows like in Case 1.

Case 3: j ∈ {1, . . . , n}, k = 0. A competing design h∗∗ with F
(h∗, h∗∗) < 0 can be constructed
similarly like in Case 2.
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