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1. Introduction

Let & be a family of sets, {FJa e A}. By the graph G(ij r) of the system J*\
we mean the graph whose set of vertices is !F and in which the vertices Fa,
Fp e IF are adjacent (that is, are joined by an edge) if and only if Fa # Ffi and
F* n Ffi ^ C> where D denotes the empty set.

DEFINITION 1. Let IF be a family of sets, a subfamily {Fx, F2 • • •, Fn} of IF
forms a path, or a C/KHVI, between Ft and FB in the graph G(IF) if and only if
F f n F j + 1 # • for all i = 1,- • •, n—1. A graph is said to be connected provided,
for every pair of vertices there is a path between them.

DEFINITION 2. The distance d(Fa, Ffi) between two vertices Fa and Ff of a
graph is the number of edges in a shortest path between these vertices (if no such
path exists, we define d(Fx, F0) = +oo; of course d(Fa, Fx) = 0). The diameter
of a graph is the supremum of d(Fa, Fp), where (Fx, Fp) runs over all pairs of ver-
tices of the graph.

DEFINITION 3. A semiring is a non-empty set R equipped with two binary oper-
ations, called addition + and multiplication (denoted by juxtaposition), such that
R is multiplicatively a semigroup, additively a commutative semigroup and mul-
tiplication is distributive across the addition.

We have the following well-known theorem.

THEOREM A [1 ]. For any graph G there exists a system IF of sets such that
the graph G is isomorphic with the graph G(jF).

Theorem A shows that the general case is not very interesting. It would be
of interest to know more information about the graph G{JF\ when the members
of IF have an algebraic structure. The first step in this direction was taken by
Bosak [1].

Throughout this paper, let S be a given semigroup and Sf be the system of all
proper subsemigroups of S; let R be a given semiring and 0t the family of all
proper subsemirings of R.
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Bosak [1 ] proved the following theorem.

THEOREM B. Let S be a periodic semigroup with more than two elements. Then
its graph G(S^) is connected and the diameter D(S) of this graph is equal to:

(i) 0 ifSis a cyclic group of prime order;
(ii) 1 if S has a single idempotent, but S is not a cyclic group of prime order;

(iii) 3 if there exist in S two idempotents u # v such that S = <«, v} (that is,
S is the semigroup generated by the idempotents u, v as its generators);

(iv) 2 in the remaining cases.

Bosak then raised the following open problem: Does there exist a semigroup
with more than two elements whose graph is disconnected?

Lin [2] answered Bosak's problem by proving the following theorem:

THEOREM C. The graph of every semigroup with more than two elements is
connected.

In [3 ] we discussed the graph G(0t) of a semiring R and posed the following

CONJECTURE. The graph of every semiring with more than two elements is
connected.

Although we could not prove our conjecture for an arbitrary semiring R,
we did prove it for the cases (i) R is left unital (ii) R is normal (iii) R is commutative
(iv) R is uncountable.

In § 2 we prove that for some special semirings R the diameter D(R) of the
graphs G{9£) is g 3.

2. The diameter of the graph of a semiring

In this section we discuss the diameter of the graphs of some special types of
semirings.

THEOREM 1. The diameter of the graph of a left unital semiring with more than
two elements does not exceed three.

PROOF. Let R be such a semiring with left unit e. Let Rl and R2 be any two
disjoint proper subsemirings of R, and let a e Rx and b e R2 be two arbitrary fixed
elements. We shall construct a path, in G(M), of length at most three between
Rt and R2. Clearly, either {Rt, <a, 2e>, <2e, b}, R2} is a path, or else <a, 2e> = R,
or <2e, by = R (throughout this paper, (xt ,•••, xny means the subsemiring
generated by xlt • • • xn, as its generators). Let us assume <a, 2e} = R; the case
<2e, by = R can be handled similarly.

It is sufficient to construct a proper subsemiring Ra of R such that Rt n Ra # •
and Rx n <e> # • . Since if this has been established, then similarly there must
exist Rfi in G(i%) such that Rfi n <e> ^ • and Rp r\ R2 # D. Consequently,
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{Rt, Rx, Rp, R2} will be a path of length 3. To this end, we divide the rest of the
proof into the cases (1) 2e = e and a2 = a, (2) 2e = e and a2 =£ a, and (3) 2e # e.

CASE 1: 2e = e and a2 = a.

(1.1) a = e. In this case we choose Ra = <a> = <e>

(1.2) a # e. In this case we have semiring R = [e, a, ae, e+a, e+ae, a + ae,
e + a+ae}, with the following multiplication table (the addition table, which may
be constructed easily is omitted for the sake of space saving).

e
a
ae
e+a
e+ae
a+ae
e+a+ae

e

e
ae
ae
e+ae
e+ae
ae

e+ae

a

a
a
a
a
a
a
a

ae

ae
ae
ae
ae
ae
ae
ae

e+a

e+a
a+ae
a+ae
e+a+ae
e+a+ae
a+ae
e+a+ae

e+ae

e+ae
ae
ae
e+ae
e+ae
ae

e+ae

a+ae

a+ae
a+ae
a+ae
a+ae
a+ae
a+ae
a+ae

e+a+ae

e+a+ae
a+ae
a+ae
e+a+ae
e+a+ae
a+ae
e+a+ae

From the above multiplication table, we find the following two 'master' proper
subsemirings:

{a, ae, e+ae, a + ae, e+a, e+a+ae}
and

{e, ae, e + ae, a + ae, e + a, e + a + ae)

Since the union of these two proper subsemirings contains R, the graph
G{3t) is connected and D(R) = 3.

CASE 2. 2e = e and a2 # a. In this case we chose Ra = <e, a3}, unless
Rx = R. Assume R = <e, a3). Since a e R, we have the following possibilities:

(2.1) a = e. This cannot happen, since a2 # a.
(2.2) a = a3h +a3u +• • • +a31", where /,-, i = 1, • • •, n, are positive integers.

Let p(a) = aill~'i+ • • • +a3'""1. Then (2.2) gives a = ap(a); which
implies p2(a) = p(a) and the proof follows from Case 1 by replacing a by p{a).

(2.3) a = e + q(a3) + r(a3)e, for some q(a3) and r(a3) in <a3>. Since
aeRi n (e + R) and e = 2ee (e + R) n <e>; we may choose Rx = e + R, unless
e + R = R. Assume e + R = R. For xe R, there exists ye R such that x = e+y;
and e + x = e + (e+y) = 2e+y = e+y = x. Thus, e functions as the additive
zero for R. Hence from (2.3) we get a = q{a3) + r{a3)e. By multiplying this last
expression by a, we get a2 = a2Q(a) where Q(a) = a 3 ! l - 1 + • • • +a3l"~\ for
some integers lly • • •, ln.

This implies that Q2(a) = Q(a). Thus the proof follows from Case 1 by
replacing a by Q(a).
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(2.4) a = e + q(a3). 
(2.5) a = q(a3) + r(a3)e. 
(2.6) a = r(a3)e 
(2.7) a = e+r(a3)e. 
The subcases (2.4), (2.5), (2.6), and (2.7) are similar to the subcase (2.3), the 

proof for these cases is therefore omitted. 

CASE 3. e + e 5̂  e. In this case we have R = <2e, a}, because otherwise we 
choose Rx = <2e, a ) . Since e e R, e can be expressed as: 

(3.1) e = 2me for some integer m > 1. 

Let e1 = (2m—l)e, then e1+e1 = ex and e\ = et. Since (2m — 1)a = e 
Rt n etR and (2w — l ) e e e ^ n <e>. We must have i? = e t ( i f R # eji?, we 
choose = e t i?). Since e\ = e x and exR = R, it is easily seen that el is a left 
unit for R with ^ + e x = e x , and the proof follows from cases 1 and 2. 

(3.2) e = f(a) for some / ( a ) e <a>. 

Since e = / ( a ) , we have R = <2e, a} c Rt ji= R, a contradiction. 

(3.3) e = p{a)e for some p(a) € <a>. 

Since p(a) e Rxr\ <2e,/>(a)> and 2e e (2e,p{a)y n <e>, we have = <2e, 
p(a)} (otherwise choose Rx = <2e,/>(a)». Also the equation e = p(a)e gives 
a = p(a)a, which implies that p2(a) = p(a). Since ee R = <2e,p(a)}, we have 
the following possibilities: 

(3.3.1) e = 2me. This case is the same as subcase (3.1) already discussed. 

(3.3.2) e = np(a) for some integer n ^ 1. This case is similar to the sub­
case (3.2). 

(3.3.3) e = 2np(a)e — 2ne. This is the subcase (3.1). 

(3.3.4) e = np(a) + 2mp(a)e. This equation gives e = e2 — np(a)e+ 2mp(a)e 
— (n + 2m)e, which is the subcase (3.1). 

(3.3.5) e = 2me+np(a). We again have e = e2 = 2me+np(a) e = (2m+n)e, 
which is the subcase (3.1). 

(3.3.6) e = 2ne + mp(a)e. 

(3.3.7) e = 2ne+mp(a)+2lp(a)e. 

The cases (3.3.6) and (3.3.7) can be similarly handled. 

(3.4) e = f(a)+p(a)e, for some f(a) and p(a) in <a>. In this case we have 
e = e 2 = f(a)e+p(a)e = [f(a)+p(a)]e = h(a)e, where h(a) = f(a)+p(a) e <a>. 
The subcase (3.3) now applies. 

(3.5) e = 2me+f(a)e for some integer m ^ 1 and f(a) e <a>. 
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Let d= (2m-l)e+f(a)e = d^e where dl = (2m-\)e+f(a). With this
notation, we get e = e + d, and hence

d+d= (2m-\)e+f(a)e + d

= [(2m-\)e+d]+f(a)e

= {2m-\)e+f(a)e

By squaring both sides of the equality e = e+d, we obtain e = e+d2. Conse-
quently,

d+d2 = [f(a)e+(2n-l)e]+d2 = f(a)e+(2n-l)e = d,
while

d+d2 = d+[(2m-l)e+f(a)e]2

= d+ (2m -1 fe+2(2m -1 )f(a)e +f2 (a)e

= [d+(2m-\)2e] + 2(2m-\)f(a)e+f2(a)e

= (2m -1 fe + 2(2m-\ )f(a)e +f2 (a)e

= d2

Thus d = d2.
Let Rdl = {x\xeR and (x+dt)e = 2ke for some positive integer k}. If

x t , x2 e Rdl, then x1+dl = 2A:xe and x2+dt = 2k2e. Consequently

(Xi+Xz + d^e = (x1+x2)e + d

= (Xi+x2)e + 2d = (x1+dl)e + (x2+dl)e

= 2(k1+k2)e,

and

= (xie+d)(x2e+d)

x1x2e + x1d+d2 + dx2e + d2, since rf2 = 2d2

xlx2e + (xl+d]d+dx2e + d2e, sincere = d2

x1x2e + (x1+ d)ed+ d(x2 + d)e

xlx2e + 2kled+d(2k2e)

x1x2e + 2k1 d+2k2d

xlx2e+d

(xlx2+dl)e.
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Since 2e e Rdl, Rdl =£ • . Consequently Rdl is a subsemiring of R. Also

[dy+f\a)]e = d+p{a)e

= (2m-l)[(2m-l)e+f(a)e]+f2(a)e

= (2m —1 fe +f(a) [(2m -1 )e +f(a)]e

= (2m-l)2e+f(a)d

= (2m-\)2e + (2m-\)d+f(a)d, since e+d = e

= (2m - 1 fe + [(2m -1 )e +f(a)e]d, since ed = d

= (2m-lfe+d2

= (2m-l)2e.
Thus,

= 2(2m-l)2e.

Therefore, 2/2 (a)eRdl.
Now 2f2(a)e Rt n Rdl and 2e e Z?̂  n <e>, we have i?dl = R (otherwise

choose Ra = Rj^.
Since ee R = Rdl,we have (e + d^e = 2ke for some positive integer k. There-

fore,
2ke = (e + dy)e = e + dxe = e + d = e

and the proof follows from subcase (3.1).

(3.6) e = 2me+f(a) for some positive integer m and f(a) e <a>. In this case
e = e2 = 2me+f(a)e, and which reduces to (3.5).

(3.7) e = 2me+f(a) + 2np(a)e. We again have

e = e2 = 2me+(f(a)+2np(a))e

= 2me + h(a)e, where A(a) e <a>

and this case also reduces to (3.5).

THEOREM 2. The diameter of the graph of a commutative semiring R with more
than elements does not exceed three.

PROOF. Let Rt and R2 be two disjoint proper subsemirings of R, and let
ae Rl and b e R2 be any two fixed elements. Then [Rt, aR, Rb, R2} is a path of
length three between Rt and R2, unless aR = R or Rb = R. Assume aR = R
(the case Rb = R may be handled similarly). Since R is commutative, we have
R = aR = Ra. It follows that there exists an element ee R such that a = ea. For
each x e R, R = aR implies that there exists an element y e R such that x = ay.
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Thus,
ex = e(ay) = (ea)y = ay = x,

which shows that R is left unital and thus, by Theorem 1, the diameter of the
graph G{@) is g 3.

THEOREM 3. The graph of a semiring R with more than two elements, having
ascending chain condition (A.C.C.) or descending chain condition (D.C.C.), is
connected and the diameter D(R) does not exceed three.

PROOF. Let Rt and R2 be two disjoint proper subsemirings of R and let ae R1

and b e R2 be two fixed elements. We observe that {Rx, aR, Rb, R2} is a path of
length at most 3 between Rt and R2 unless aR = R or Rb = R. Assume aR — R
(the case Rb = R may be similarly handled). Since 2a = a+a e Rt n (R + R) and
2b = b + b e R2 n (R + R), {Rl7R + R, R2} is a path between Rt and R2 unless
R + R = R. Let us assume that R + R = R.

Let
A = {x\x 6 R and xR = R}.

It is easily seen that A is a subsemiring of R and a e A.
Suppose b $ A, i.e. bR e M. In this case {Rlt Ra, bR, R2} is a path between

i?i and R2, unless Ra = R. Assume Ra = R. We then have

Ra — R = aR,

which implies that R is left unital and the proof follows from Theorem 2.
On the other hand if be A, then [Rlf A, R2) is a path between i?t and R2,

unless A — R. Let us assume that A = R.

CASE 1. R satisfies A.C.C.

Since aR = R, there exists a sequence {xf} c R such that a = axl = a2x2 — • • •,
where xt = axi+l for i = 1, 2, • • •. We then have i?a <= i?Xj <= Rx2 <=•••. Since
i? satisfies A.C.C. there exists an n such that Rxn = Rxn+1, which implies
that xn = axn+l e i?xn+1 = Rxn. Thus there exists an element ee R such that
xn = exn. We also have xnR = R (since ,4 = R). Let JC 6 R. There existsy e R such
that x = xny and ex = e(xn}>) = {exn)y = xny = x. Thus e is a left unit for R and
the proof follows from Theorem 1.

CASE 2. jR satisfies D.C.C.

It R satisfies D.C.C, we see from Ra => Ra2 => Ra3 =>•••, that for some m;
RcT = Ram+i. Thus am+1 e Ram = Ram+1, which implies that there exists an e*
such that am+1 = e*am+ x and by the same argument as in Case 1 we can show that
e* is a left unit for R and the proof follows from Theorem 1.

REMARK. In [3] we showed that the graph of a semiring R with two elements
is not necessarily connected.
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The following example shows that the diameter D(R) of the graph of semiring
R is equal to three.

EXAMPLE. Let R = {e, a, b} be a semiring with the following addition and
multiplication tables. The graph G{3%) is illustrated in Fig. 1.

+
e
a
b

e

e
b
b

a

b
a
b

b

b
b
b

e
a
b

e

e
a
b

a

a
a
a

b

b
a
b

Figure 1

le.b)

(e)
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