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Abstract. The aim of this paper is to prove that the Ricci curvature Ric,, of
a complete hypersurface M", n> 3, of the Euclidean sphere $"*!, with two distinct
principal curvatures of multiplicity 1 and n — 1, satisfies sup Ricy, > inf f(H), for a
function f depending only on 7 and the mean curvature H. Supposing in addition that
M" is compact, we will show that the equality occurs if and only if H is constant and
M" is isometric to a Clifford torus §"~!(r) x S'(+~/1 —r2).
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1. Introduction. Let M” be a n-dimensional complete, oriented Riemannian
manifold and ¢: M — S"*! a minimal isometric immersion of M into the unit
Euclidean sphere S$"*!. When n =3, T. Hasanis and D. Koutrofiotis [5] proved that
sup Ricy, z% and, that if M? is compact, the equality occurs if and only if ¢(M?)
is isometric to the Clifford torus Sl(\/g) X SZ(\/g). Later, L. Haizhong [6] showed
that if M3 is compact and 0 < Ricy, < % then ¢(M?) is isometric to the Clifford torus
Sl(\/g) X Sz(\/g). On the other hand, T. Hasanis and T. Vlachos [4] proved that
sup Ricys > n — 2, for any dimension n. Moreover, for even dimension n=2m they

proved that the equality occurs if and only if ¢(M™) is isometric to the Clifford torus
S’"(%) X S”’(%). In the odd case n=2m + 1, the authors obtained a topological

result. More precisely, they showed that the universal covering of M" is homeomorphic
to totally geodesic sphere S”.

It is known that the supremum of Ricci curvature of a Clifford torus
S"1(r) x S'(v/1 — r?) with nonnull mean curvature H (constant) is given by
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When H =0 we have 1* = ”n;l and the supremum is = —~.
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Let k;, i=1,...,n, denote the principal curvatures of an immersion
@ : M" — S"T!_1If there exist smooth functions A, i : M — R such that

)\Zkl,...,km H*:km-&-lw--skn»

and A(p) # u(p), for all p € M, we say that ¢ has two distinct principal curvatures of
multiplicity m and n — m. Clifford tori S"~"(r) x S”(~/1 — r2) = S"*+! are examples of
these kind of immersions.

We will prove the following result.

THEOREM 1. Let M", n>3, be a n-dimensional complete, oriented Riemannian
manifold, and ¢ : M" — S"! be an isometric immersion whose mean curvature H is
bounded. Suppose that ¢ has two distinct principal curvatures with multiplicity 1 and
n—1. Then

sup Ricy > f(sup |H|), (1

where

_n(n—2) n ) 1 B
S = p— [1+2(n_1)x 2(n_1)\/n2x4+4(n l)xz].

Moreover, if M" is compact, the equality in (1) occurs if and only if H is constant and

, _ h—1

oMM =S8 x S' (V1 =1, =

n

In order to prove the Theorem 1 we will make use of the following result obtained
by the author et al. [1].

THEOREM 2. Let ¢ : M" — S™', n>3, be a closed and orientable hypersurface. If
the Ricci curvature of M" is nonnegative and the fundamental group m\(M") of M is
infinite, then o(M™) is isometric to a Clifford torus S"~'(r) x S'(+~/1 = r2).

2. Preliminaries. Let M" be a n-dimensional and oriented Riemannian manifold.
We consider an isometric immersion ¢ : M” — S"*! of M" into the unit Euclidean
sphere S"*!. We denote by N the unit normal field to ¢. The Gauss mapping
n:M"— S"™! of ¢ is defined as follows: for each p € M", n(p) is the end point of
the vector obtained by translating N(p) parallel in R"*? so as its initial point is the
origin of R™2. Identifying M" and ¢(M™)locally, we have, for tangent vectors X to M",
that (VyN)" = —A4X, where V is the connection of $"*!, 4 is the Weingarten operator
of ¢ and v denote the tangent component to M” of a vector v tangent to S"*!. We
can see easily that dn(X)= —AX. If 4 is nonsingular, then the map n: M" — S"+! is
an isometric immersion when we endow M” with the metric (, ), given by

(X, V), =(4AX, AY),

where (, ) denote the induced metric of M” by ¢. Moreover, the Weingarten operator
of the immersion 7 is A~ and the equalities

(A7'X, V), = (X, AY) = (AX, Y)
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imply that ¢ and n have the same principal directions. More precisely, if {e1, ..., e,}
is an orthonormal basis which diagonalizes 4, then {j\’—‘], ..., 5%} is an orthonormal
basis with respect to metric ( , ), that also diagonalizes A, where A1, ..., A, are the

principal curvatures of ¢. Hence the principal curvatures of n are -, .. ., % and the
sectional curvatures &, of (M", (, ),) with respect to the 2-planes spanned by principal

directions are given by

1 .. .,
k*(ei,e_/)=1+m, Lj=1,...,n, i#].

LEMMA 1. Let ¢ : M" — S"' be an oriented hypersurface of S™' with bounded
mean curvature. Suppose there exists a constant «, with o« <n — 1, so that the Ricci
curvature of M" satisfies everywhere Ricyy <a(, ). Then, the principal curvatures of M"
satisfy |A;| > B, for some positive constant B. It follows that the Gauss mapping n of the
immersion ¢ is an isometric immersion and that if M" is complete in the induced metric
by @, then (X, Y),=(AX, AY) is also a complete metric on M".

The proof of the Lemma 1 can be found in the paper of T. Hasanis and
D. Koutroufiotis [5].

3. Proof of Theorem 1. Let us put sup Ricy; =« and suppose, by contradiction,
that o < f(sup |H|). Then, since f(x) is decreasing for x > 0, we have

a < f(sup |H]) <

%<n—l. )

Consequently, we can apply the Lemma 1 to conclude that the principal curvatures A
and u of ¢ are non-zero and that (M", (, ),) is complete. We will denote by ey, ..., e,
the principal directions with respect the principal curvatures A; = A and A5, ..., A, = i,
respectively. Since

Ricy(e)) =n—1+nHxr; — )L%

and Ricy,s <, it follows that

n n?

or

v<TH \/”2H2+ 1
1_2 4 n .

Since A + (n — 1)u=nH, by changing the orientation of M, if necessary, we may
assume that

n n?
Az SH+\TH +n—1-a 3)
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and

2
,u,ng— %H2+n—1—a. 4)

On the other hand, we have

A=nH—-m—-Du
n(n—1)
2

2
> nH — H—f-(n—l)\/nsz—}-n—l—a

:—n(n2_3)H+(n—l)\/%sz—i—n—l—a. ®)

Then, (4) and (5) yield

< (—n(n_3)H+(n—1)\/nZ2H2+n—l—a)

2
“H \/HZHZ 1
X <§ V7 +n— —a)
= —g(H), (6)
where
2(n —
g(x) = (n— 1)2—(”—l)a+yx2—n(n—2)x\/§x2+n—l—oz.

It is obvious that g(x) is decreasing everywhere. Moreover, it satisfies
g(sup|H|) > 1. )
In fact, this inequality is equivalent to
(n— 1)*e? —n(n — 2)2(n — 1) + n(sup |H|)*]a + n*(n — 2)*[1 + (sup |H|)*] > 0.

This is true, since the minor root is f(sup |H|) and « < f(sup |H]).
The sectional curvature k, of the Gauss mapping n of the immersion ¢, with
respect to the plane generated by e; and ¢; (j > 1), taking into account of (7), satisfies

1 —
B > gup HD—1 _ o 0.
g(H) g(sup [H])

where § is a positive constant. On the other hand, for i > j > 1 we have

1
k*(elaej)=1+m >1

1
ki(ei,e)) =14+ — > 1.
i € MZ

Since the sectional curvature of hypersurface of a space form attains its absolute
extrema at planes spanned by principal directions, the sectional curvatures of
(M", {, ).) are bounded from below by a positive constant. Hence we may apply
Bonnet-Myers Theorem to conclude that M” is compact and its fundamental group
1 (M™) is finite.
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For n >4, since n has only two principal curvatures of multiplicity 1 and n — 1,
we conclude that (M™", (, ),) is conformally flat (see [3, Theorem 7.11]) and without
umbilical points. Since M" is compact, we may apply Theorem 1.4 of M. do Carmo
et al. [2], to derive that M" is homeomorphic to a product S"~'(r;) x S!(r,). Therefore,
w1 (M") is infinite, which implies a contradiction. For n=3, we obtain the same
conclusion since 7 is conformally flat ([1]) without umbilical points. This proves the
first part of the theorem.

Now, we will suppose that M" is compact and sup Ricy, = f(sup | H]), i.e.,

Ricy(X) <o < f(sup|H|), VXeTM, |X|=1L1

Hence, we have @ <n — 1 and in an analogous way to the first part of proof, we
conclude
1 H|) -1
fer, ) = 14+ —— = SCWPIAD =T 0y
A g(sup |H])
However, we note that it can happen that g(sup |H|) — 1 =0 since now « < f(sup |H|).
On the other hand we have

1
k*(e[,e,)=1+—2>l, j>i>1. ®)
: I

It follows that the Ricci curvature of n is nonnegative. Since M is compact and 5
has two distinct principal curvatures of multiplicity 1 and n — 1, we can show by the
same argument as the first part of the proof that 71 (M) is infinite. Then we can apply
Theorem 2 for 5 to conclude that n(M") is a Clifford torus S"'(rg) x S'(y/1 — r¢?)
with constant mean curvature. In particular, we have that the principal curvatures
1/A and 1/u of n are constants. Hence, A, u and H are constants. Consequently,
@(M") is a Clifford torus S"~'(r) x S'(+~/1 —r2). Since sup Ricy, = f(H), it follows
that 7> > (n — 1)/n, which completes the proof of the theorem. O
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