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LINEAR OPERATORS PRESERVING SIMILARITY CLASSES 
AND RELATED RESULTS 

CHI-KWONG LI AND STEPHEN PIERCE 

ABSTRACT. Let Mn be the algebra o f n x n matrices over an algebraically closed 
field F of characteristic zero. For A 6M„, denote by S(A) the collection of all matrices 
in Mn that are similar to A. In this paper we characterize those invertible linear operators 
<j> on Mn that satisfy <f>{S) Q S or <f>(S) Ç S, where S = S(A\ ) U • • • U S(Ak) for some 
given A\,..., Ak E Mn and S denotes the (Zariski) closure of S. Our theorem covers a 
result of Howard on linear operators mapping the set of matrices annihilated by a given 
polynomial into itself, and extends a result of Chan and Lim on linear operators com
muting with the function/(JC) = JC* for a given positive integer k > 2. The possibility of 
weakening the invertibility assumption in our theorem is considered, a partial answer 
to a conjecture of Howard is given, and some extensions of our result to arbitrary fields 
are discussed. 

1. Introduction. Let Mn be the algebra of n x n matrices over an algebraically 
closed field F of characteristic zero. For A E Mn, denote by S(A) the similarity class 
of A, i.e., the collection of all matrices in Mn that are similar to A. In this paper we 
characterize those invertible linear operators <f> on Mn that satisfy <j)(S) Q S or <j>(S) Ç 5, 
where S = S(A\) U • • • U 5(A^) for some given A\,... ,Ak E Mn and S denotes the 
(Zariski) closure of 5. Such mappings will be referred to as invertible S preservers and 
S preservers, respectively. 

Some special cases of our problem have been considered by other authors. In [W], 
Watkins characterized invertible 5(A) preservers for a diagonal matrix A with distinct 
eigenvalues. If A is a rank n — 1 nilpotent matrix, then S{A) is the set of all nilpotent 
matrices, and the invertible S(A) preservers of such an A was characterized in [BPW]. In 
[H], Howard considered invertible linear operators that map the set of matrices annihi
lated by a given polynomial/(JC) with at least two distinct roots into itself. It is not hard 
to check that the set considered by Howard can be written as a finite union of similarity 
classes. Thus Howard's result is covered by ours. We also characterize those nonzero lin
ear operators that commute with a given polynomial/(JC). This extends a result of Chan 
and Lim [CL1] on linear operators commuting with the function/(x) = xk for some 
given positive integer k > 2. 
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We prove our main theorem in Section 2 and discuss some of its consequences in Sec
tion 3. In Section 4, we consider the possibility of removing the invertibility assumption 
in our results. Partial answers to a conjecture in [H] are given. In Section 5, we charac
terize those linear operators on Mn with F = C that commute with an analytic function, 
and mention some extensions of our results to more general fields. 

We shall use {E\\,E\2,... ,Enn} to denote the standard basis of Mn, and use M'n to 
denote the collection of matrices in Mn with zero trace. 

2. Main theorem. If S is a union of similarity classes of scalar matrices, then a 
linear operator 0 on Mn satisfies </>(S) Q S if and only if (j>(I) = \il for some suitable 
/i G F. For other cases, we have the following theorem. 

THEOREM 2.1. LetAu..., A* e Mn and S = S(Ai)U • • • U S(Ak) g {XI : A G F}. 
An invertible linear operator <j> on Mn satisfies <j>(S) Q S or <£(5) Q S if and only if one 
of the following conditions holds. 

(i) SQM'n and <j> is of the form 

Xt-+(\iX)D + LIS~1 (X - (tvX)l/n)S 

or 
X M (tr X)D + fir1 (X* - (tr X)I/n)S, 

for some D E Mn\ Mf
n, invertible S 6 Mn, and [i E F such that (/i5(Ai),..., /i5(Afc)) is 

a permutation of (S(A\),..., 5(A^)J. 
(U) S £ M'n and <j> is of the form 

X \-> i/(trX)l/n + v>S~l (X - (trX)I/n)S 

or 
X H-* i/(trX)l/n + fiS~l (Xf - (trX)I/n)S, 

for some invertible S E Mn, and v,[i G F such that (5(Ai),..., S(Akfj is a permutation 

of (5(A0, . . . , 5(A*)), where At = i/(pAi)I/n + M(A/ - (tr A,-)//n) for i = 1, . . . , k. 
Furthermore, in conditions (i) and (ii), the element v E F satisfies vp — \ for some 

positive integer p; and [x can be any nonzero element in F if all (A,- — (tr Ai)l/n) 's are 
nilpotent matrices, otherwise \xq = 1 for some positive integer q. 

To illustrate our theorem, we exhibit some examples of S whose invertible preservers 
are of the form (i) or (ii) in Theorem 2.1: 

1. If S = S(E\2), then an invertible S preserver is of the form in (i), where \i can be 
any nonzero element in F. 

2. If S — S(E\2 + £21), then an invertible S preserver is of the form in (i) with 
jx = ± l . 

3. If S = S(I + £12) U S(~I + E\i), then an invertible S preserver is of the form in 
(ii) such that v = ±1 and \x can be any any nonzero element in F. 
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4. If 5 = S(l + En + £21) U S(—I + En + En), then an invertible S preserver is of 
the form in (ii) with v = ±1 and p — ±1 . 

We establish several lemmas to prove Theorem 2.1. The key step in our proof is to 
reduce the general problem to the case when S is a collection of nilpotent matrices {cf. 
Lemma 2.3). Then we apply some elementary theory of linear algebraic groups to get 
the desired conclusion. We first state the following lemma (see [H, Lemma 1], [Hum, 
pp. 58-61]). 

LEMMA 2.2. Let A E Mn. Then 
(a) S(A) is an irreducible algebraic set in Mn, and the set of smooth points of S{A) 

is 5(A). 
(b) The set of nonsmooth points of S{A) is a finite union of other similarity orbits 

sm 
LEMMA 2.3. Let S satisfy the hypothesis of Theorem 2.1, and let ¥ be the collection 

ofX E Mn such that there exists B E S satisfying B+pX E S for all \x E F. Then T ^ {0} 
is a union of similarity classes of nilpotent matrices. Moreover, if(j> is an invertible linear 
operator on Mn mapping S into itself then </> maps ¥ onto itself 

PROOF. Suppose A E S is nonscalar. Then A can be written as R~l{D + N)R for 
some diagonal matrix D and nonzero nilpotent matrix N. Clearly, R~lNR E T and hence 
7 ^ { 0 } . 

Notice that for every B in 5, the characteristic polynomial of B is the same as one of the 
A(, and hence B has the same eigenvalues as A,. If X E Î" has a nonzero eigenvalue, then 
for any B E S there exists \x E F such that B + p,X does not have the same eigenvalues as 
Aj for all j = 1 , . . . , k. Thus X must be nilpotent. It is clear that if X E T then S(X) Ç T. 
Thus the first assertion in the lemma follows. 

Now suppose (j> is an invertible linear operator on Mn mapping S into itself. Since S 
is an algebraic set, by the result of Dixon [D] we may assume that (/>($) = 5. It is now 
clear that if X E T then both Y = <j>(X) and Z = (f>~l(X) also belong to T. Hence the 
result follows. • 

LEMMA 2.4. Suppose <j> is an invertible linear operator on M'n mapping the set of 
rank one nilpotent matrices into itself Then <j> on M'n is of the form X \—• IJLS~1XS or 
X1—• pS~xXfSfor some nonzero \i E F and some invertible S E Mn. 

PROOF. Under our assumption, we can use the arguments in [BPW, pp. 43-45] to 
get the conclusion. • 

LEMMA 2.5. Let T be a union of similarity classes of nilpotent matrices. Assume 
that T ^ 0. If (j> is an invertible linear operator on M'n such that </>CT) Ç T, then there 
exists an invertible S E Mn and a nonzero scalar \i E F such that </> on M'n is of the form 
A i-> ixSTxAS orA^ p^A'S. 

PROOF. There is no harm in assuming that T is closed, otherwise replace T by (T. 
We use induction on the dimension of ¥. Let T ' be the set of nonsmooth points of T. 
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This is closed and is invariant under </>. Thus, we can replace T by T' unless T ' = 0. 
This occurs if and only if T consists of rank one matrices. Thus </> preserves rank one 
nilpotent matrices and the result follows by Lemma 2.4. • 

PROOF OF THEOREM 2.1. The " i f part is clear. To prove the "only i f part, notice that 
<I>(S) Q 5 implies </>($) Q 5. Thus we may assume <̂ >(5) Q 5. Define T as in Lemma 2.3. 
Then <j> maps T onto itself. By Lemma 2.5, <f> on M'n is of the form X \—• iiS~lXS or 
X >—» ^iS~lXtS for some invertible S E Mn and some nonzero \i E F. For simplicity, 
we assume <j>(X) = [iX for all X E M'n. If not, consider j>QC) = S<j>{X)S~l or S^ÇC)S~l 

instead of (j>. 
Since <j> is invertible and satisfies <f>(S) Q 5, we have </>($) = 5 by a result of 

Dixon [D]. Notice that 5 = S(B\ ) U • • • S(Bm) for some # i , . . . , Bm E Mn by Lemma 2.2. 
We conclude that U(S(Bi))9..., (j>(S(Bm))) is a permutation of (5(#i),. • •, 5(5m)). In 

particular, f (£(5(Ai)),..., </>(5(A*)) j is a permutation of (5(Ai),... , ̂ (A^)). 

Suppose S C M'n. Let D = (t>(T)/n. If all A/ are nilpotent, then </>(5(A/)) = S(jiAi) 
for any nonzero / i E F . Suppose not all A, are nilpotent, say A\ is not nilpotent. Since 
S(<f>r(Ax)) = S(iirAi) G {S(Ai) : i = 1,...,*} for all r = 1,2,..., it follows that 
5(//Ai) = S(fisA\) for some 1 < r < s. Thus //5~rAi and Ai have the same eigenvalues 
that are not all equal to zero. Thus \xq = 1 for some positive integer q as asserted by the 
last statement of the theorem. 

Now suppose S Ç, M'n. We claim that D = <j>(I) is a scalar matrix. To prove our 
claim, let X E S with trX ^ 0. Notice that the maximal component in S containing 
X must be of the form 5(A) for some A E {Ai,... ,A^}. Furthermore, since X and A 
have the same characteristic polynomial, tr A = trX ^ 0. If (̂ >(j>(A)) = 5(A;), then 
(j) will map the set of smooth points of 5(A) onto the set of smooth points of S(Af). If 
A is a scalar matrix, then S(A) is a singleton. Thus S(A') is also a singleton, and hence 
(j>(A) = A' is a scalar matrix. Therefore our claim follows. Suppose A is not a scalar 
matrix. Since R~lAR is a smooth point of S(A) for any invertible R E Mn, it follows 
that (j>(R-lAR) = (j>(R-lÂR) + (tr A)<f>(I)/n = ^(R~lÂR) + (tr A)D/n is a smooth point 
of S(A'\ where A = A - (trA)///i. Thus fi(R~lAR) + (fiA)D/n is similar to A' for all 
invertible /? 6 Mn. If D = (j>(I) is not a scalar matrix, then there exists an invertible U 
such that U~lDU is in upper triangular form with its (1,2) entry equal to one. Since A 
is not a scalar matrix, A is similar to an upper triangular matrix An such that the (1,2) 
entry of A^ equals r\ for any given r\ E F. Let R E Mn (depending on 77) be such that 
U~lR-lÂRU = WÂvW-\ where W = En+ E2\ + E"=3 En. By a suitable choice of 77, 
the spectrum of ii(R~lÂR) + (tr A)D/n will be different from the spectrum of A', which 
is a contradiction. Thus D must be a scalar matrix as we claimed. 

Suppose (f>(I) = 1//. Using arguments similar to the previous case, we can find an 
A E S with nonzero trace and show that (^(SiAJ) = 5(^(trA)I/n + fjPÂ) = S(A) for 
some positive integer/7, where A = A—(tr A)I/n. Thus i/p = l.IfA—(tr A)// nis nilpotent 
for any A E 5, then we are done. If there exists A E 5 such that A = A — (tr A)I/n 
is not nilpotent, then one can use arguments similar to the previous case to show that 
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c^(5(A)) = S(yp(ti A)I/n + pPA) = S(A) for some positive integer r. Hence prA and A 
have the same eigenvalues, and thus pq = 1 for some positive integer q as asserted. • 

3. Related results. In this section we discuss several consequences of Theorem 2.1. 
First of all, it covers a result due to Watkins [W]. There is a slight error in the statement 
of the theorem in [W]. By private communications with W. Watkins, we know that the 
statement and proof of the theorem in [W] can be easily modified to give the following 
result. 

COROLLARY 3.1. Suppose A is diagonalizable and has n distinct eigenvalues. An 
invertible linear operator <j> on Mn satisfies MS{A)\ Ç 5(A) if and only if </> satisfies 
condition (i) or (ii) in Theorem 2.1. 

Notice that if A is a nilpotent matrix with rank n— 1, then 5(A) is the set of all nilpotent 
matrices. Denote by M'n the collection of matrices in Mn with trace zero. We have the 
following result which was proved in [BPW]. 

COROLLARY 3.2. An invertible linear operator <f> on M'n maps the set of nilpotent 
matrices into itself if and only if<j> on M'n is of the form X »—• pS~lXS orXt—* pS~xXtS 
for some nonzero \x G F and some invertible S € Mn. 

As mentioned in the introduction, our main result covers a theorem of Howard [H] 
concerning the linear operators on Mn mapping the set of matrices A satisfying/(A) = 0 
for a given polynomial/(x) that has at least two distinct roots. In the following theorem, 
part (c.ii) is due to Howard [H] (see also [CL1, Theorem 3]), and part (ci) deals with the 
case which is not treated in [H]. 

THEOREM 3.3. Letf be a polynomial over F of degree at least two. Denote by J the 
set of all matrices X in Mn satisfying f(X) = 0. An invertible linear operator <j> on Mn 

satisfies ^(^T) Ç <J if and only if one of the following holds. 
(a) f{x) = xk and <j> is of form (i) in Theorem 2.1, where p can be any nonzero element 

in F. 
(b) f(x) = (JC — a)k with a ^ 0, and (j> is of form (ii) in Theorem 2.1, where v = 1 

and p, can be any nonzero element in F. 
(ci) n = 2,f has at least two distinct roots, and <j> is of the form (ii) in Theorem 2.1, 

where v, p E F with i/p = 1 and pq = 1 for some positive integers p and q such 
that (x — a)(x — /3) is a factor off if and only if (x — u(a + /?)/2 + pipe — /J)/2J • 
(x - v(a + /?)/2 - p(a - /3)/2)) is a factor off. 

(c.ii) n>3,f has at least two distinct roots, and (j> is of the form (ii) in Theorem 2.1, 
where pq = 1 such that fix) = xrg(xq) for some polynomial g. 

PROOF. The "if" part can be readily verified. For the "only i f part, notice that J — 
S(A\) U • • • U 5(Ajt) for some A\,..., Ak E Mn. By Theorem 2.1, we conclude that <j> is 
of the form (i) or (ii) in Theorem 2.1. 

Suppose/(jc) = xk. Then clearly, <$> satisfies condition (i) with D = </>(I)/n. Suppose 
f(x) = (JC — a)k with a ^ 0. Then A - (tr A)I/n is nilpotent for all A € J. Thus </> is 
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of the form (ii) in Theorem 2.1 for some z/, \x E F, where p, can be any nonzero element. 
Clearly, ai E 7 and (j>(al) = ai. Thus v = 1. 

Suppose / has at least two distinct roots. Then there exists A E 7 with nonzero 
trace, and there exists A' E ^Fsuch that A' — (tr A')l/n is not nilpotent. Thus <j> satisfies 
condition (ii) of Theorem 2.1 for some z/,/x E F with vp = 1 and pq — 1 for some 
positive integers p and #. Since 4> permutes the similarity classes 5041),..., 5(/U), we 
get condition (ci) if n = 2. If « > 3, we claim that i/ = p.If it is not true, let A = 
diag(ai, a2 , . . . , 0C2) E 7 be such that ot\ ^ a2. Notice that all <j>(A), <j>2(A),... E 7 are 
of the form diag(/?i, /?2» • • • » /?2) with /?i 7̂  /?2- Since there are finitely many matrices in 
7 of the above form, there exists a positive integer s such that < (̂A) = A. Now by the 
arguments in [H, 175-176] one can show that pjv and (1 — pjv)jn are both roots of 
unity to get a contradiction. Thus we must have p = v as asserted. • 

It would be nice to have a simple description for the condition on the polynomial/ 
in terms of/? and q in (ci). Next we study those linear operators </> on Mn that satisfy 
cj)(f(X)) = f(<f>(X)) for all X EMn. ¥orf(x) = ** with k > 2 this problem was studied 
in [CL1, Theorem] without the invertibility assumption on <j> (see Section 4). 

THEOREM 3.4. Let f be a polynomial over F of degree at least two. An invertible 
linear operator (j> on Mn satisfies <f>(f(X)\ = f(è(X)) for all X if and only if (j> is of the 
form (ii) in Theorem 2.1 with v = \x satisfying / / = 1 such thatf(x) = xgix*) for some 
polynomial g. 

PROOF. The " i f part can be easily verified. For the only if part, let/^x) = f(x) — 
r\x for any 77 E F and let 7i\ be the collection of X E Mn satisfying fv(X) = 0. If <j> 
commutes with/ and if X E j^ then/ , , (<£(*)) =f(4>(X))-T)<i>(X) = <j>(f(X))-<j>(r)X) = 
<l>{fri(X)) — 0- Thus <t>(7]) Q 7] for all 77 E F. In particular, we can choose 77 G F such 
that frjix) is not of the form (x — a)k for any a E F. Thus </> satisfies condition (i) or (ii) 
of Theorem 2.1. Furthermore, suppose <j> is of the form X1—• iiS~lXS or X »—• p/S~lXtS 
such that /z =̂  1 is a &-th root of unity. Then f(x) = x'gOc*) for some polynomial k. It 
follows that/jCx) = xrg(jc) — r]x is of the form xsg(xk) for all 77 E F. Thus k must be a 
factor of r — 1 and the result follows. • 

4. Removal of invertibility assumption. In this section we consider the possibility 
of removing the invertibility assumption in our results obtained in the previous sections. 
First we consider the following example showing that the invertibility assumption is 
necessary in general. 

EXAMPLE. Suppose A is nonscalar and tr A ^ 0. Then one can construct many sin
gular S(A) and S(A) preservers. For instance, if B = (by) E S(A) is in upper triangular 
Jordan form, one can define (j> by 

X •-> (tr Xj tr A)B + ]£ Fy(X)£y 

for any linear functionals F y on Mn. One easily checks that such a (/> is singular and 
preserves 5(A) and S(A). 
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Nonetheless, we conjecture that: 
I. Suppose 5 satisfies the hypotheses of Theorem 2.1. If 0 is a linear operator on 

Mn with rank((/>) > n(n — l ) /2 + 1 such that <j>(S) Ç 5 or </>($) Q 5, then <j> is 
invertible. 

If we know more about the matrices A\,..., Â  in the definition of 5, we might be able 
to reduce the lower bound of the rank requirement and prove that 5 or 5 preservers are 
invertible. In particular, we believe that: 

II. If A GMj is nonzero, then all S(A) preservers are invertible on M'n. 
III. If A £ M'n is not nilpotent, then all S(A) preservers are invertible on M'n. 
The following result gives some support to Conjectures II and III. 

THEOREM 4.1. Suppose A G M'n is a nonderogatory matrix and not nilpotent. If <j> 
is a linear operator on M'n satisfying (j>(S(Ayj Ç S(A) or (f>(S(A)j Ç 5(A), then <j> is 
invertible. 

PROOF. Obviously if (j>(S(AJ) Ç 5(A), then </>(5(Â]) Ç ~S(Â), so we assume condi

tion <t>(S(A)) Ç 5(A). Since A is non-derogatory, one easily checks that the set *T defined 

in Lemma 2.3 is the set of all nilpotent matrices in M'n. Furthermore, if <i>yS{Ay) Ç S(A) 

then (£(T) Q T. 
Now suppose B G M'n is nonzero and <j>(B) — 0. Then {e.g., see [JS]) there exists 

R E Mn such ihdXR~xBR has diagonal entries equal to the eigenvalues of A. Let R~XBR = 
U + L, where U is upper triangular and L is strictly lower triangular. Then TV = RLR~l is 
nilpotent and B + N € S(A). But then <j>(B +N) = <j>(N) is nilpotent and belongs to S(A). 
Since S(A) has no nilpotent matrices, this contradiction concludes the proof. • 

Notice that if A is a non-derogatory nilpotent matrix, i.e., A is a rank n — 1 nilpotent 
matrix, then S(A) is the set of all nilpotent matrices. In such case, there are examples 
of singular S(A) preservers (e.g., see [BPW]). However, in view of Conjecture II, we 
believe that all S(A) preservers are invertible. In fact, if A is a rank one nilpotent matrix, 
then S(A) is the set of all rank one nilpotent matrices. By the next result, we see that for 
such an A, any S(A) preserver is invertible. 

THEOREM 4.2. Let 1 < k < n and let £* ^£ the set of all nonzero nilpotent matrices 
with rank at most k. A linear operator <j> on M'n satisfies <£(£i) Q £* if and only if ' <j> is 
of the form X i—• p,S~lXS orX\—+ /JLS"1 X1 S for some nonzero \L E F and some invertible 
S€Mn. 

PROOF. The " i f part is clear. For the converse, notice that Z = 1* U {0} is a ho
mogeneous algebraic variety. By the assumption on <j> and by Lemma 3 in [CL2], we 
conclude that <j> is invertible on M'n. The result then follows from Theorem 2.1. • 

Suppose/ is a polynomial over F with at least two distinct roots. Denote by J the set 
of X G Mn satisfying/(X) = 0. Howard in [H] conjectured that: 

IV. If /(0) ^ 0, then a linear operator <j> on Mn with n > 3 satisfying (j>(!F) Ç J is 
invertible. 
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Clearly, if xr divides/(jt), then <j> defined by 

r>i>j>l 

for some linear functionals Fy is a singular linear operator that satisfies (j>(!F) Q 7-
Nevertheless, we believe that: 

V. Iff(x) = xrg(x) is such that g(0) ^ 0 and if <j>(J) C f, then either (j>(Mn) C J 
or <j> is invertible. 

The following theorem gives some support to Conjecture IV. 

THEOREM 4.3. Letf be a polynomial overf of degree at least two such thatfiO) =£ 0. 
Denote by J the set of matrices X E Mn satisfying f(X) = 0. Suppose there exists a 
nonderogatoryA E *Jwith tr A = 0. If '<j> is a linear operator on Mn such that (j>(^F) Ç !F, 
then (/> is invertible unless n = 2 andf(x) = x2 — a2 for some nonzero a. 

PROOF. Suppose/, ^F, A and <f> satisfy the hypotheses of the theorem. Since/(0) ^ 0 
and f(A) = 0, where trA = 0, A has at least two distinct eigenvalues. Hence/ has at 
least two distinct roots. 

First, we show that <j>(M'n) Ç M'n. Suppose N is a nilpotent matrix. Then there exists 
A similar to A such that A + p,N E S(A) Ç J for all /i E F. As a result, if T is defined as 
in Lemma 2.3, then T is the set of all nilpotent matrices. Since (/>(T) Ç T and the span 
of 1 is M'ni we get the desired conclusion. 

Second, we show that <j> is invertible on M'n. If it is not true, then there exists a nonzero 
B E M'n such that <j>(B) = 0. Using the arguments in the proof of Theorem 4.1, we can 
find a nilpotent matrix N such that B + N E 5(A) Ç J. It follows that <j>(B + N) = <j>(N) 
is a nilpotent matrix and does not belong to J as/(0) ^ 0. Thus our assertion is true. 

To complete our proof, we show that <j>(I) £ M'n, and hence <j> is surjective. 
Since <j> is invertible on M'n and maps nilpotent matrices to nilpotent matrices, by 

Corollary 3.2, <j> is of the form X H-> /iS-1XS o r l ^ p^XS for all X E M'n. For 
simplicity, we assume <f>(X) = \iX for all X £ M'n, otherwise replace <j> by $ defined by 
4>(X) = S<I>(X)S-1 or $(X) = S(t>(Xt)S-\ 

Suppose (f)(1) = Y E M'n. Then Y ^ 0, otherwise <f>(od) = 0 ^ J for any a satisfying 
/ ( a ) = 0, i.e., al E jF, which is a contradiction. Since Y is not a scalar matrix, there 
exists R E Mn such that 7?-117? is in upper triangular form with (1,2) entry equal to one. 

We consider two cases. 

CASE 1. There are two distinct roots a, )3 off such that a+(n — 1 )/? ^ 0. Let C E J 
be such that R~lCR = aEu + /3(F22 + • • • £/m) + flE2\- By a suitable choice of 77, the 
matrix </>(C) = <£(C - (tr Ql/n) + (tr Q<Kl)/n = /x(C - (tr C)///i) + (tr QY/n has an 
eigenvalue which is not a root of/, and hence (/>(Q ^ J, which is a contradiction. 

CASE 2. If Case 1 does not hold, then n = 2 and/ only has roots a and —a. If 
fix) ^ i 2 - a2, we may assume that ai + £12 E jF. Furthermore, we may assume that 
R~lYR = En -E12. Let C = R-l(î](En -E11)-vExl-y]1Elx)R. ThenX = al + Ce 7, 
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but 77 can be chosen so that <j>(X) has eigenvalues not equal to ± a . Thus <j>(X) fi J, which 
is a contradiction. Combining the two cases, we conclude that tr <j>{I) ^ 0 as asserted. • 

Note that if n = 2 and f(x) = x2 — a2 for some nonzero a, then </>(X) = 
(trX)(E\\ — E22)/2 + (X — (trX)//2) is a singular linear operator on M2 satisfying 

Finally, consider those linear operators that commute with a given polynomial/. We 
have the following theorem. 

THEOREM 4.4. Letf be a polynomial over F of degree at least two. Ifcj) is a linear op
erator on Mn satisfying <t>\f(X)j = f(</>(X)) for all X G Mn, then either (i) <j> is invertible, 
or (ii)f(O) = 0 and <j> is the zero map. 

PROOF. We may assume that/(x) is a monic polynomial of degree k with k > 1. 
By the assumption, for any X G Mn and any À G F we have f[<j){\XJ) = <j)(f{\X)}. 
Comparing the coefficients of Xk on both sides, we conclude that </>(Xk) = (j>(X)k for all 
X 6 Mn. By the results in [CL1], either <j> is invertible or </> is the zero map. Suppose 
/(0) ^ 0. Comparing the constant terms, i.e., the coefficients of A0, on both sides of 

XX)) = (j>(f(XX)\ we conclude that <j>(I) = / and hence </> cannot be the zero map. 
The result follows. • 

For other results supporting our conjectures, see [BrS], [BeP] and [CL1]. 

5. Other extensions. One can use the idea in the proof of Theorem 4.4 to study 
linear operators on Mn with F = C that commute with an analytic function. Notice that if 
f(z) = E^o a$ls a n anatyti° function on C and if <j> is a linear operator on Mn commuting 
with/, then for any e and any A E Mn, we have 

$ > ^ ( A y =f($(eA)) = <t>(f(eA)) = ^ f l ^ A 1 ) . 
/ i 

Thus (j) commutes with the functions/(z) = zl whenever at ^ 0. Consequently, we have 

THEOREM 5.1. Suppose f is an analytic function on C. A nonzero linear operator 
(j) on Mn with F = C commutes with f if and only if <f> is of the form X i—• fiS~lXS or 
X i—• iiS~xXlSfor some invertible S G Mn(C) and some \i G C such that /i/(z) = f(nz) 
for all zeC. 

It has been pointed out by M.H. Lim that one may remove the assumption that F is 
algebraically closed in Theorem 2.1 to get the same conclusion. R. Guralnick observed 
this independently and obtained the detailed proof of Theorem 2.1 for fields of arbitrary 
characteristics. M.H. Lim also extended Theorem 3.3 to any infinite field in which/ 
splits. 
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