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EXPONENTIAL DICHOTOMY OF
STRONGLY DISCONTINUOUS SEMIGROUPS

P. PrReDA AND M. MEGAN

In this paper we give necessary and sufficient conditions for
exponential dichotomy of a general class of strongly continuous
semigroups of operators defined on a Banach space. As a
particular case we obtain a Datko theorem for exponential

stability of a strongly continuous semigroup of class Co

defined on a Banach space.

1. Introduction

Let X be a real or complex Banach space. The norm on X and on the
space L(X) of all bounded linear operators from X into itself will be
denoted by |[l*]| . T(t) will stand for & semigroup of linear operators on

X which is of class CO ;3 that is, T(¢) is strongly continuous on

R+=[O,°°) and T(0)x =z for all x in X .

Throughout in this paper we suppose that the set

(1.1) X, ={z €x: 7z ¢ L))

is a closed complemented subspace of X . Here Lm(X) denotes the Banach
space of X-valued functions f almost defined on R+ , such that f is
strongly measurable and essentially bounded. If X is a complementary
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subspace of X1 then we denote by Pl a projection along X2 (that is,

p. €L(X) , P

1 =P,KerPl=X2)andby P,=I-P

2 .
1 1 1 a projection

along Xl .
We also shall denote

(1.2) Tl(t) = T(i:)Pl and Ta(t) = T(f;)P2 .

DEFINITION 1.1. fThe Co semigroup T(t) 1is said to be

(i) eaxponentially stable if and only if there are N, Vv > 0
such that

(1.3) ()| = me ™™ for a1l t =0 ;

(ii) exponentially dichotomic if and only if there exist

Nl, N2, V > 0 such that
-V (t—to
(1.4) Iz, ()l < Wpe I, (¢,) =l
and
v(t-t)
(1.5) I7,(8)ll = dge Iz, (25}

for all ¢t 2 to >0 and x € X .

Clearly, if 7(t) is exponentially dichotomic and X, = X (that is,

P2 =0 ) then T(t) is exponentially stable. In this case is well known

the following theorem due to Datko (see [5] and [é1]).

THEOREM 1.1. A necessury and sufficient condition that a strongly

continuous semigroup T(t) of class C, defined on a Banach space X be

exponentially stable is that for some p € [1, =) the integral
(1.6) me I17(£)z|Pdt < for all z € X .
0

In this note the above result is extended in a natural manner to the

general class of exponentially dichotomic CO semigroups of linear
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operators defined on a Banach space X .

The case T(t) = exp(4t) , where A4 1is a bounded linear operator has
been considered in (2], [3], [4], {7] and [10]. The problem of exponential
dichotomy of Cb-semigroup on Banach spaces has also been studied in [9],

[11] and {12].

2. Preliminary results

The following simple lemmas will be needed in the sequel in proving

the main results.
LEMMA 2.1. Let f, g : R, ~ R, be two continuous functions.
(z) If

(2.1) inf g(t) <1 and f(t) = g(t—to]f(to) forall t=t
t=0

0 =0

then there are N, v > 0 such that

-v(t-t,)

(2.2) flt) = me f[to) for all ¢ 2 t,2 0 .

(ii) If

(2.3) sup g(¢) >1 and f(¢) = g(t-to]f(to) for every t =t =0,
t=0

then there exist N, Vv > 0 such that

v(t-t,)

(2.4) f(t) = me flty) forall tzt,;=0.

>
02
Proof. See [7].
In the sequel for p ¢ [1, ) we denote by

w ,if p=1,
(2.5) p' =
/p-1) , if p>1 .

LEMMA 2.2. For every a > 0 there exists b > 0 such that

l/p '
(2.6) Ft 2 btl/p forall t=0 .

Proof. It is easy to see that for
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b = (ap'/p)P'P’
the above inequality holds.
LEMMA 2.3. Let A = {[t, to] € Ri 1t = to} s p €[1, ®») and let

f + & >R_ be a continuous function with the property that there exist
¢, & >0 such that

t '
(2.7) { fle, to)ds < c(t-to)l/p f(t, to)
It
0
and
t+1
(2.8) f flu, t)du = a
It
for all t = to . Then there are N, v > 0 such that
v(t—to)l/p
(2.9) £l ) = ve for every t =z ty +1

Proof. If we denote by

t
(2.10) ¢, t,) = th " fles ty)ds and h{t, t)) Icl. [t—to)l/P

0

then from the inequalities (2.7) and (2.8) we obtain

(2.11) o+ g(t, ty) =e(t-t,) 5
which implies
-h(t,t) -h(t,t )
3 ’ 3 i)
(2.12) '5; (—ae 0 ‘ = E (g(ta to)e ]
By integration on [t0+l, t] it follows that
-h(t,t.) -h(t,t )
(2.13) P ZL " < g(¢, to)e 0

and hence using the inequality (2.11) we obtain
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h(t,t '
(2.14)  ae P/% (£:%) sa+gt, t) s c(t-to)l/p - Flts t) -

From Lemma 2.2 and the preceding relation it follows that there exists

N > 0 (independent of t and to ) such that

h (t,to] /2

for all t = to +1 .

(2.15) Fle, ty) = re
The lemma is proved.

LEMMA 2.4. I1Ff T(t) is a % semigroup on a Banach space X then
there exist M > 1, w >0 such that

wt

(2.16) ()] = Me for each t =0,
(2.17) Ir(tg+)zll < M lz(e)all < el (t2) I
to+l
(2.18) PP . f () z|Pdt = IIT(t0+l]x||p s
t0
and
tb+l
(2.19) Iz, (o)l P = PP - J I (8)zl| Pat ,
%o
forall ¢t,z20, z€X, t¢ [to, t0+1] and p € (1, =) .

Proof. It is well known (see, for example, (1], pp. 165-166) that

there are M > 1 and

(2.20) ® = inf ;ﬂt(t—)—
t=0
such that (2.16) holds.
From
(2.21) Iz (,#2)all = liz(tgr1-t) lizce)zl = meliz(e)zl
and
(2.22) Iz(e)zll = (-t ) Iz ()l < Mz (¢ )<l
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the relation (2.17) results.
The inequalities (2.18) and (2.19) follow immediately from (2.17).
LEMMA 2.5. Let T(t) be a C, semigroup on the Banach space X

and let Pl respectively P2 be the projection along the closed

complemented subspace X, defined by (1.1) respectively X

1 =X G)Xl .

2
Then we have that

(2.23) Tl(t) PlTl(t) for every t =0 ,

(2.24) T,(t)x # 0 forall t=0 and x § X ,

and
(2.25) if Tl(t)x #0 forevery t =0 then T(t)x # 0 for all
t=0.
Proof. TFor (2.23) it is sufficient to prove that the subspace X_ is
an invariant subspace for T(t) .

Indeed, if =x € Xl and ¢t = 0 then from

A

(2.26) |IT(s)T(8)all = NT(t+s)zll = IT(EIT(s)l = Me™® sup 7(s)a]
820

it follows that T(t)x € Xl .
If there exist ¢t =2 0 and =z § X, such that Tz(t)x = 0 then from
(2.27) T(s)x = Tl(s)x for all s = ¢t

and Tl(°)x € Lw(X) it follows that =z € X, . This contradiction proves
the property (2.24).
The implication (2.25) is obvious from the equality

(2.28) X nX, = {o} .

3. The main results
We are now ready to prove the following

THEOREM 3.1. Let T(t) be a strongly continuous semigroup of

.
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operators of class Co defined on the Banach space X . Then T(t) 1is

exponentially dichotomic if and only if there exist ¢, p 2 1 such that

t
(3.1) ( Iz, (¢-s) |Pds < P
Jo
and
(3.2) J{: I7,()zlFdu = P« |z ()2l

for all t=0 and x € X .

Proof. Necessity. We omit the simple verification [using Definition
1.1 (ii)] that if T(%) is exponentially dichotomic then it satisfies the
above inequalities (3.1) and (3.2).

Sufficiency. Suppose that the C. semigroup T(¢) has the

0
properties (3.1) and (3.2).
Let to >0, x € X be fixed.
(i) Pirstly, we suppose that
(3.3) Tl(t)x;éo for all ¢t =0 .

Let f: A~ R+ be the function defined by

1
(3-’4) f(t) t) = N
0 |Tl|t-to;”
From Lemma 2.4 it follows that there exist M, w > 0 such that

(3.5) flu, t) = e'“’/Ml]Plu =a forall u€[t, t+1] and t =zt .

Hence

t+1
(3.6) f flu, t)du =z a ,
t
that is, the inequality (2.8) from Lemma 2.3 holds.

From Lemmas 2.4 and 2.5, using HOlder's inequality, we have
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t t
G ()l [ 1 t)ds = [ 1y (0011, Gt 5o, )as
0 0
¢ ¢ 1/p , ,
= L 7, (t-8)lids = Ut 17, (t-8) |Pds (t—to}l/p < c(t—to)l/P
0 -0

This shows that the inequality (2.7) from Lemma 2.3 is verified.

By Lemma 2.3 there are Ml’ >‘l > 0 such that

A (t—to)l/p
(3.8) I, (t_to) I = Me for all t =t + 1.

From this inequality and

(3.9) Iz (el = N7y (-2 M« Ty (2)=l
we obtain that there is N > 0 such that

-, (¢ )P
(3.10) Iz, (t)xll = Ne Iz, (t)zll o for a1l t =t .

(ii) Suppose now that

(3.11) there exists 8, > 0 such that T, (SO]:L' =0 .
Then
= — - >
(3.12) T, (s)x Ii(s so)fi(so)x 0 for all szs, .

Let ¢, >0 such that T, (t:z: =0 and T (t)z#0 for every
t<t,.
> > > ='
If t = to Ed t:z: or t = tx > to then Tl(t):x: 0 and hence the
inequality (3.10) holds.

Iif t, 2t 2tz 0 then from the preceding case (3.10) is also

verified.
From Lemma 2.1 it follows that there exist IVl, \)l > 0 such that
-v. (t-t,)
1 0-
(3.13) Iz, (£)zl| = Wye iz, (to)xll
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for all t 2t 20 and x € X . This shovs that the semigroup li(t) is
exponentially stable.

For Zé(t) we consider the function g : Bb’ w) -> R+ defined by

(3.14) g(t) = r 17, ()l P .
t

The inequality (3.2) shows that

(3.15) FPq(t) = - HLE)
and hence, by integration, we obtain
(-t}
(3.16) g(t) = g(to) ‘e for all t =t ,
which implies that
(¢-t )P

(3.17) gltye 9O = g(t)) = Flz, ()P .
Therefore

t+1 _ (-2} _
ERTI N (N AP E < o Pl (,)=lP

t

-

for every t 2 to

If we denote by a = Mem then from Lemma 2.4 it follows that

(t-¢
(3.19) o Pl (t)zlPe O = Pz, (2l P
and hence there is N2, v2 > 0 such that

v, (t-t,)

0
(3.20) iz (e)zll 2 Hpe IT,(tp)=ll for all ¢=¢,20 and z€X .

If v = min{vl, vz} then from (3.13) and (3.20) it follows that the

inequalities (1.4) and (1.5) hold and hence T(t) is exponentially

dichotomic.
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THEOREM 3.2. The Co semigroup T(t) 1is eaxpomentially dichotomic

if and only if there are c¢, p = 1 such that

t
(3.21) f I]Tl(t—S)xllpds = Pl
0
and
(3.22) [ iryePad < Pina?
t

forall t=20 and x € X .
Proof. Necessity is obvious from the preceding theorem.

Sufficiency. From the hypothesis (3.21) it results that
(3.23) r ||Tl(s)x||pds =& o |zff for all =z € X .
0

From Theorem 1.1 and (2.23) it follows that Ii(t) is an exponentially
stable semigroup. Hence there is Nl’ vl > 0 such that

-v_(t-t)

(3.24) Nz ()l = Iz (et ) - D7, (e)ell s me +° Oz, (¢ )=l

for all t = tO 20 and x € X .

Then using this inequality and the proof of the preceding theorem we

obtain that T(%t) is exponentially dichotomic.

As a particular case (when Pb =0 ) we obtain Datko's result:

COROLLARY 3.1. Let T(t) bea Cb semigroup of linear operators
defined on the Banach space X . The following statements are equivalent:
(i) T(t) <s exponentially stable;

(it) there are e, p = 1 such that
(3.25) r o) Pat < & ;
0

(111) there exist ¢, p =2 1 such that
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(3.26) f” HT(t)x”pdt <P . Hx”p for all =z € X .
0

Proof. 1Is obvious from Theorems 3.1 and 3.2.

REMARK 3.1. 1In the proofs of Theorem 3.1 and that of the equivalence

(1) <* (i1} from the preceding corollary we have not used Datko's theorem.

THEOREM 3.3. A necessary and sufficient condition for the CO semi-

group T(t) to be exponentially dichotomic is the existence of positive

constants m, ¢ and p = 1 such that

(3.27) r HTl(u—t)deu s,
t
(3.28) 7, (¢+1)zll = mlT,(t)z] ,
and
(3.29) fm Iz (8)zlPds = Plry ()l ,
‘o

forall t20 and x € X .
Proof. Necessity is a simple verification.
Sufficiency. From
t t
(3.30) I, (¢-s) Pds = I7. (s)1Pds < fm IT. (u-t) Pdu = &
1 1 j 1
0 0 t
and the proof of Theorem 3.1 it follows that the inequality (3.13) holds.

Let to >0 and x € X . Let now f Dbe the real function

t
(3.31) FiR YR, D) = fo 1T, (o)zlPds .

From the above inequality (3.29) we have that
(3.32) flt) = - é-%(tﬂ

and hence by integration it follows

_c—pe(t—to)/cp

(3.33) e FlEgtt) = f(8) = &P o iy (e)zfP
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for every t2t0+1.

On the other hand from (2.18) and (3.29) it results that there exists
m > 0 such that
t +1
0 -
f IITe(s)xllpds e pIIT2 [to+l)x||p
t
0

v

(3.34) flegn)

v

rrtz:’(ll_p"T2 (to}:x:"p , where a = Mew .

Finally, we obtain

v, (t-2.)
2 ("%
Ne - Nz, ()=l S

v

(3.35) I7,(¢)l]

for all tzto+l and x € X , where

P/ 1
(3.36) v,=2.2¢ P gng v, == .
3 c 2 pcp
If t,=t=t,+1 then from (2.17) and {3.35) we obtain
(¢, +1) "2 (-t,)
I (t.+1)zl] WNe N, v_[(t-t
2'% 2 0
(3.30) Iz ()=l 2 > 23— |z, [t )el 2 2 e - Iz, (2,)=I
and hence
Ny Vplt-t,
(3.38) Iz (t)zll =z 5 e I7,(t,)all for a11 ¢tz ¢, 20 ana =z €X .

= = i \Y)
If N,=N/a and V mln{l,

satisfied and hence T(t) 1is exponentially dichotomic.

\)2} then (1.%4) and (1.5) are

COROLLARY 3.2. Let T(t) be a CO semigroup of linear operators

defined on a Banach space X . Then T(t) tis exponentially dichotomic if
and only if there exist m, ¢ >0 and p =1 such that

(3.39) j: Iz, (u-t)afdu < & - =l ,

t
(3.40) EACE TR AR
0
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(3.41) IIT2(t+l):cl| > m||T2(t)x|| s

forall t=20 and x € X .

]

(2]

[3]

(4]

(51

(61

[71

[&1]

[91

Proof. Similar to the proof of Theorem 3.2.
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