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We study the dynamics of a thin liquid sheet that flows upwards along the sides of a
vertically aligned, impacting plate. Upon impact of the vertical solid plate onto a liquid
pool, the liquid film is ejected and subsequently continues to flow over the solid surface
while the plate enters the water. With increasing impact velocity, the liquid film is observed
to rise up faster and higher. We focus on the time evolution of the liquid film height and
the thickness of its upper rim and discuss their dynamics in detail. Similar to findings in
previous literature on sheet fragmentation during drop impact, we find the rim thickness
to be governed by the local instantaneous capillary number based on gravity and the
deceleration of the liquid sheet, showing that the retraction of the rim is primarily due
to capillarity. In contrast, for the liquid film height, we demonstrate that the viscous
dissipation in the thin boundary layer is the dominant factor for the vertical deceleration
of the liquid sheet, by modelling the time evolution of the film height and showing that
the influences of capillarity, gravity and deceleration due to the air phase are all negligible
compared with the viscous term. Finally, we introduce characteristic viscous time and
length scales based on the initial rim thickness and show that the maximum height of the
film and the corresponding time can be determined from these viscous scales.
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1. Introduction
The flow of a liquid sheet is of importance as a fundamental problem in fluid mechanics
that is ubiquitous in nature and in a wide range of industrial applications, such as coating
and cleaning in a manufacturing process. When a solid object impacts a liquid pool, a
liquid film is emitted. Subsequently, a moving contact line is formed on the liquid–solid–
gas interface (Duez et al. 2007; Snoeijer & Andreotti 2013; Truscott, Epps & Belden 2014).
The stability of the moving contact line determines splash and cavity formation: in the case
that the liquid film is separated from the solid surface, the gas phase comes in between
liquid and solid, and consequently a crown splash is generated.

Since the early pioneering work that discovered the formation of a crown splash during
drop impact (Worthington 1877; Worthington & Cole 1897), the experimental conditions
to generate splash during solid impact have been studied extensively, where the dominant
conditions were found to be connected to impact velocity and surface wettability (Duez
et al. 2007; Aristoff & Bush 2009; Truscott et al. 2014; Zhao, Chen & Wang 2014; Kim
& Park 2019; Speirs et al. 2019). In particular, it was revealed that the separation of the
liquid film occurs at a relatively low impact velocity for hydrophobic solid surfaces, and
a criterion for when this air entrainment occurs was first suggested by Duez et al. (2007)
and Truscott et al. (2014). Another key parameter is the geometry of the solid object:
e.g. the liquid film can flow smoothly along the surface of a (hydrophilic) cone (Marston
& Thoroddsen 2014), whereas the film can separate at a singular point, such as a sharp
corner of a plate (Peters et al. 2013; Mayer & Krechetnikov 2018). The cavity formation
after film separation is linked to the hydrodynamic force acting on the solid object during
its descending motion. When no cavity forms, vortical structures form in the wake of the
impactor leading to an increase in the hydrodynamic force. However, if a cavity forms,
these vortical structures are suppressed, and hence the hydrodynamic force is reduced
(Truscott, Epps & Techet 2012). Therefore, the dynamics of the impact process depends
strongly on the stability of the liquid flow over the solid surface.

Prior studies investigated experimentally the emitted ejecta resulting from the impact
of a solid object (Thoroddsen et al. 2004; Peters et al. 2013; Marston & Thoroddsen
2014). The important finding is that, with increasing impact velocity, the initial velocity
of the ejecta increases up to 30 times faster than the impact velocity of the solid object
(Thoroddsen et al. 2004). Furthermore, the ejecta of low-surface-tension liquids showed
self-similarity for different impact velocities. In contrast, for high-surface-tension liquids,
the ejecta was observed to be self-similar only at high impact velocities (Marston &
Thoroddsen 2014).

The dynamics of the liquid lamella is also important for many other phenomena
encountered during impact, such as liquid fragmentation due to droplet impact (Rozhkov,
Prunet-Foch & Vignes-Adler 2002; Villermaux & Bossa 2011; Wang et al. 2018; Wang &
Bourouiba 2021) or the spreading and bouncing of a droplet (Roisman, Rioboo & Tropea
2002; Okumura et al. 2003; Eggers et al. 2010). When a droplet impacts a cylindrical pole,
it expands into a thin liquid sheet, and the rim retracts. Depending on the experimental
conditions, such as the viscosity or elasticity of the liquid, fingers can emerge at the edge
of the rim and pinch off into small droplets (Wang et al. 2018). This process is referred to as
drop fragmentation. Many previous studies explained the rim dynamics and fingering with
the Rayleigh–Plateau instability (Rozhkov et al. 2002) or the Rayleigh–Taylor instability
(Villermaux & Bossa 2011; Peters et al. 2013) or even coupled both instabilities (Wang &
Bourouiba 2021). In the case of a droplet impacting onto solid substrates, the liquid lamella
spreads radially, and if the wetting properties of the substrate are favourable, the lamella
recedes and bounces off the substrate. A remarkable phenomenon observed in previous
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Figure 1. (a) Schematic of the experimental set-up, where a vertical plate with thickness Do and downwards
velocity Uo impacts a water surface, causing a liquid film to move upward along its sides. (b) Snapshots from
the time evolution of the left liquid film during the impact of the solid plate (Do = 10 mm) at Uo = 2.5 m s−1.
The time t indicated above each snapshot is measured with respect to the time of impact (i.e. the first moment
that the plate touches the undisturbed water surface, at t = 0).

studies is that the contact time between the droplet and solid substrate is independent of
the impact velocity, but instead is a function of the surface tension of the liquid and the
initial radius of the drop (Richard, Clanet & Quéré 2002; Okumura et al. 2003; Bird et al.
2013).

In this work, we report an experimental study of the impact dynamics of a vertical solid
plate into a liquid pool. The focus of our study is on the time evolution of the liquid
sheet, which is ejected at the early stage of impact and flows over the solid surface without
separation at a relatively high velocity. We employed a theoretical model to explain the
time evolution of the film height and the rim thickness. The structure of the remaining
text is as follows. In § 2, we first provide the experimental set-up and conditions. Section 3
describes the experimental results in detail. We first show the behaviour of the liquid film
with a variation of the impact velocity and discuss the time evolution of the rim in § 3.1.
In § 3.2, we model the time-dependent liquid film height to extend our understanding of
the dynamics of the liquid film and compare it with the experimental results. Moreover,
we propose relevant characteristic length and characteristic time scales for the maximum
film height. Finally, we draw conclusions in § 4.

2. Experimental set-up and conditions
Figure 1(a) depicts a schematic of the experimental set-up. Using a linear motor, an acrylic
plate vertically enters into a glass tank (50 cm × 50 cm × 80 cm), which is filled with
water up to 40 cm. To avoid the separation of the liquid film at a sharp edge of the solid,
the frontal part of the plate has a cylindrically curved leading edge, such that every corner
is rounded. The plate thickness Do was varied from Do = 5 to 20 mm, while the plate
width L was fixed at L = 7 cm for all cases (see inset in figure 1a). The velocity Uo of
the plate at the moment of impact was controlled by a linear motor to be in the range of
0.8−2.9 m s−1. Within this range, we do not investigate velocities above which the liquid
lamella starts to separate from the solid surface. This threshold velocity varies with Do. In
all cases, the height of the plate was large enough to not interfere with the impact process.
Further, we maintained vertical alignment of the plate and the rod holding it during the
entire impact event.
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Do (mm) Uo (m s–1) W e Bo Ca Re

5−20 0.8−2.9 44−2500 3−54 0.01−0.04 4 × 104−6 × 104

Table 1. Summary of experimental conditions and corresponding dimensionless numbers.

The dynamics of the liquid film was captured using a high-speed camera (Nova S16,
Photron) at 16 000 frames per second with a zoom lens (Navitar 12X). The camera
operated at full frame with a resolution of 1024 × 1024 pixels, providing a spatial
resolution of 20 µm px−1. An LED light source (KL 2500, Schott) is employed for
backlighting. To determine the airflow during the impact, the air was seeded with oil
droplets (diameter ∼1 µm) by a fog generator (SAFEX Fog Generators, Dantec Dynamics)
and illuminated with a green continuous-wave laser sheet (532 nm). Then, the velocity
field was measured via particle image velocimetry (PIV).

The most important experimental parameters, together with the relevant dimensionless
numbers, are summarised in table 1. These numbers are the Weber W e = ρU 2

o Do/σ ,
the Bond Bo = ρgD2

o/σ , the capillary Ca = μUo/σ and the Reynolds Re = ρUo Do/μ

numbers. They are based on water properties with density ρ, dynamic viscosity μ, surface
tension σ and gravitational acceleration g. Since our experimental conditions are in a
regime where Ca < 0.04 and where the static contact angle of water on an acrylic surface
θa is smaller than 79◦, no separation of the liquid occurs during impact, and consequently
no cavity is generated (Duez et al. 2007; Truscott et al. 2014).

3. Results and discussion

3.1. Rising of a liquid lamella
Figure 1(b) shows some experimental snapshots of the impact process, zooming in on the
lamella. The liquid sheet is ejected during the impact event and subsequently flows over
the plate surface. To understand the behaviour of the liquid lamella flow, we measure its
height h and rim thickness e with respect to time. Here, h is defined as the distance from
the unperturbed water surface to the tip of the liquid film, and e is the distance between
the solid surface and the outer point of the rim, referred to as the maximum rim thickness,
as indicated by the yellow arrows in figure 1(b). It should be noted that, since e is obtained
near the tip of the liquid film from experimental side-view images, it corresponds to the
size of fingers in the case where the finger manifests, where fingers emerge owing to the
instability of moving contact lines at an early time and subsequently retract (see inset in
figure 3d).

After the liquid film reaches its maximum height, it descends back into the liquid pool
while being dragged by the solid, as depicted in figure 2. Since initially the kinetic energy
of impacting objects transfers primarily into the liquid film (Thoroddsen et al. 2004), the
ejection speed of the liquid film directly depends on the initial speed of the object; the
liquid film rises faster and higher with increasing Uo for the same Do.

In contrast to the film height h, which reaches a maximum and then decreases again,
the rim thickness e continues to grow over time, as shown in figure 3(a), due to the liquid
phase continuously accumulating in the rim. Here, the data were plotted until the point
where the rim could be clearly differentiated from the lamella. From the same figure, one
may conclude that, with increasing Uo the rim becomes thinner. This can be understood
by realising that the time rate of change of the volume of water displaced by the plate
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Figure 2. Time evolution of the liquid film height h for different Uo (see legend) and Do = 10 mm. The error
bars represent the standard deviation of ten experimental runs.
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Figure 3. (a) The thickness e of the rim of the liquid film as a function of time t , for Do = 10 mm. (b) To
illustrate that e is of the same order as the local capillary length lc defined in (3.1), the time evolution of
their ratio e/ lc is shown for Do = 10 mm. (c) Time evolution of the ratio e/ lc for Do = 20 mm. (d) Time
evolution of the averaged wavelength λ̄ of the fingers for Do = 10 mm. The inset shows how λ is defined for
each neighbouring pair of fingers in each image frame, which is subsequently averaged to determine λ̄. The
error bar is the standard deviation of ten experimental runs.

entering the pool is given by dV /dt ∼ DoUo, where the volume itself is expected to be
determined by the dimensions of the lamella, i.e. V ∼ eh. Since ḣ ≡ dh/dt is at least an
order of magnitude larger than de/dt , e is of the order of DoUo/ḣ. From the literature, it
is known that the momentum transfer from the impact event to the liquid film becomes
larger when Uo increases (Thoroddsen et al. 2004), and thus the ratio Uo/ḣ decreases
monotonically with Uo. Because e ∼ Uo/ḣ, it decreases with increasing Uo (as shown in
figure 3a).

The behaviour of the rim (i.e. the top part of the lamella) is governed by a competition
between the inertia of the liquid sheet and a capillary restoring force concentrated at
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the rim (Villermaux & Bossa 2011; Wang et al. 2018). In addition, we consider the
gravitational force g in this situation. The viscosity does not come into play for the rim
dynamics because viscosity only has an effect near the solid surface, where we assume a
no-slip boundary condition. Since the rim continues to wet new solid surface, the viscous
effects are confined to the boundary layer (Eggers et al. 2010). Given that we measured
the rim thickness close to the contact line, where the contribution of the boundary layer is
relatively small, the viscous stress is negligible compared with gravity and capillarity. The
capillary–inertial time scale is given by τc = √

ρe3
o/σ (Rayleigh et al. 1879; Richard et al.

2002), and we define the viscous time scale as τν = e2
o/ν, where for both time scales we

use the initial value of rim thickness eo. Indeed, for Do = 10 mm, where we observe that
eo ≈ 0.5 mm, τc is approximately 1.3 ms whereas τν ∼ 250 ms, ensuring that interfacial
constraint on the rim is predominantly due to capillarity. Therefore, the balance of the
involved forces acting on the rim may be written as

e ∼
√

σ

ρ(| −ḧ | +g)
= lc, (3.1)

which states that the rim thickness is proportional to the local and instantaneous capillary
length based on the instantaneous film deceleration ḧ. For Do = 10 mm, e indeed closely
follows lc without any fitting parameters, which is corroborated by the ratio e/lc ≈ 1,
as depicted in figure 3(b). The initial destabilisation of the rim is likely caused by
a combination of Rayleigh–Plateau and Rayleigh–Taylor instabilities, with deceleration
and interfacial constraints on the rim being crucial factors (Wang et al. 2018; Wang &
Bourouiba 2021). At larger Do in figure 3(c), however, the liquid sheet is decelerated more
than in the case of Do = 10 mm, which leads to | −ḧ | being larger. That is, more liquid
is pulled away from the liquid sheet into the rim, resulting in e/lc being slightly larger
than 1. It is interesting to note that, even though the liquid flows over a moving solid
surface, there is an analogy with the rim dynamics for impacting on a small target, where
the lamella and rim can expand freely, in the absence of the liquid friction from the solid
surface (Villermaux & Bossa 2011; Wang et al. 2018).

Similar to droplet impact, fingering patterns caused by instability can be observed at
the rim. For each time frame, we measure the distance of all observable, neighbouring
fingers using the front-view experimental images and subsequently average them to obtain
what we define to be the average wavelength λ̄ of the pattern. The time evolution of
this quantity is plotted in figure 3(d). Note that at early times λ̄ is significantly smaller
than the capillary length of water lc,w = √

σ/ρg = 2.71 mm, but subsequently increases.
Unlike sheet fragmentation after droplet impact on a pole, in which case the liquid can
freely expand in the radial direction, in our case the advancing motion of the sheet is
constrained geometrically by the width of plate L . Hence, the ejected fingers emerge only
at early times before the maximum extension of the lamella is reached, and subsequently
the fingers merge with each other during the retraction of the rim due to the moving solid
surface, causing λ̄ to increase throughout the entire time for each Uo (see supplementary
movie https://doi.org/10.1017/jfm.2025.170). In addition, it can be seen that λ̄ decreases
with increasing Uo. The number of fingers is proportional to Uo, and the wavelength of
fingers is proportional to e (Wang et al. 2018; Wang & Bourouiba 2021). Increasing Uo
accelerates the rim destabilisation as it results in an increase of ḧ. In other words, with
increasing Uo, the number of fingers increases, causing λ̄ to decrease. Further, as already
discussed in figure 3(a), e decreases with increasing Uo, so that λ̄ decreases with Uo.
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Figure 4. (a) Simplified modelling of the liquid film dynamics, showing the considered control volume
(CV , red dotted line). (b) A representative snapshot from PIV measurements of the airflow field in terms of
velocity vectors and contour of vertical velocity components (Uo = 1.3 m s−1 and Do = 10 mm at t = 9.9 ms).
The velocity vector magnitude ranges from 0 to 0.5 m s−1, and the vertical velocity lies between −0.3 and
+0.35 m s−1. (c) Comparison of the experimentally measured liquid film height (symbols) with the simplified
model of equation (3.6) (solid black line) for three typical experimental conditions (see legend). Comparison
of the order of magnitude of the four acceleration terms on the right-hand side of (3.6) for the liquid film height
predicted by the model for (d) Do = 10 mm, Uo = 1.1 m s−1 and (e) Do = 10 mm, Uo = 2.1 m s−1. Note that
h ḧ is plotted, rather than ḧ itself, to allow for a fair comparison over the time span.

3.2. Modelling the height of the liquid film
In order to illustrate and understand the rising motion of the liquid film, we want to predict
the time evolution of the film height h with a model. A schematic diagram is shown in
figure 4(a), with the liquid pool in light blue and the solid object, descending at a velocity
Uo, in light grey. For simplicity, we neglect the formation of the rim (i.e. uniform thickness
in the y direction) and assume that e is constant throughout time, turning it into a one-
dimensional problem. We set the position of the solid surface at x = 0 and that of the
undisturbed free surface at y = 0. The initial time is set by the moment when the liquid
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comes into the control volume (CV) in figure 4(a), such that the liquid sheet is located
at x = 0, y = 0 when t = 0. Since the frontal part of the solid is hemispherical, it takes
some time for the liquid to reach the CV. The corresponding time for the liquid film to
travel from the initial moment of impact to the origin point is typically less than 1 ms. The
flow inside the liquid film is represented by v(x, y, t), and we assume there is no pressure
gradient along the y direction. Neglecting boundary effects at the sides of the object, the
spanwise width of the solid plate L cancels out, meaning the dynamics is considered per
unit width in the spanwise direction. The mass conservation of the liquid film can therefore
be expressed as

d
dt

(ρhe) = ρev1, (3.2)

where v1 is the velocity of the liquid-phase flow from the pool to the sheet. From (3.2), we
have v1 = ḣ, taking e to be constant as stated above.

As discussed in § 3.1, we consider that viscous effects are confined to a thin boundary
layer close to the solid surface (Eggers et al. 2010). This can be motivated by the transient
character of the impact, where boundary layers start to form upon the first contact of
the water and the body. Thus, viscous dissipation occurs in the area where the liquid
sheet contacts the solid surface, which can be considered to be proportional to h. The
corresponding viscous force acting on the film can be approximated from Stokes’ first
problem, given by

Fν = μ
∂v
∂x

|x=0h = −μh
Uo + ḣ√

πνt
, (3.3)

where ν is the kinematic viscosity of water. The thickness of the boundary layer δ ∼ √
νt

does not grow beyond e throughout the entire process. For example, for Uo = 1.3 m s−1

and Do = 10 mm, the initial value of e is approximately 0.5 mm. This means that the
boundary layer would take 250 ms to reach this thickness, which is much longer than
the impact time of the object. First it should be noted that Fν , as all forces introduced
in this section, is understood to be a force per unit length in the spanwise direction of
the object. Second, and more importantly, in estimating the velocity it needs to be taken
into account that the liquid velocity in the film, v1 = ḣ, is measured in the laboratory
reference frame where the downward moving plate has a velocity −Uo such that the
velocity difference between film and plate is equal to −(ḣ + Uo). Consequently, Fν is
in the downward direction.

Using PIV and small oil droplets as seeds, we measure the airflow along the solid surface
while the object enters the water, a snapshot of which is shown in figure 4(b). It is clear
that air is being dragged with the downward-moving plate and moves back upward further
away from the plate. For droplet impact, the air film is trapped between the liquid lamella
and the solid substrate (Liu, Tan & Xu 2015; Pack et al. 2018). Here, it is expected as well
that due to the relatively high impact velocity, the influence of the surrounding gas would
affect the beginning of the impact event, which is difficult to observe experimentally in our
set-up. We assume the air stress is significant at the beginning as a result of air entrainment
in front of the liquid sheet. The corresponding stress τa is chosen by the assumption that
a thin wedge of air exists between the rim of the liquid and the solid surface so that the
stress due to the air phase (de Gennes 2002; Liu et al. 2015) and corresponding force may
be estimated as

Fa = τa e ∼ ρaca√
2πγ

(
Uo + ḣ

)
e , (3.4)
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where ca is the speed of sound in air, ρa is the density of air and γ = 1.4 is the adiabatic
constant of air, which is considered an ideal gas.

Applying vertical momentum balance on the CV gives

d
dt

(ρV (t)v1) − ρLev1
2 = L

∑
CV

Fi , (3.5)

where the film volume V (t) = Leh and v1 = ḣ. Note that for clarity we have now included
the spanwise width L in the equation, and it should be remembered that Fi denote forces
per unit length. Substituting (3.2), (3.3), (3.4) together with the gravitational force Fg =
−ρehg and capillary force Fc = σ cos θD with the dynamic contact angle θD into equation
(3.5), it can be rewritten as

d2h

dt2 = σ cos θD

ρe

1
h

− α

e

√
ν

π t

(
dh

dt
+ Uo

)
− β

ρa

ρ

ca√
2πγ

1
h

(
dh

dt
+ Uo

)
− g. (3.6)

Here we have introduced numerical constants α and β in front of the viscous and air
terms, respectively, since these forces are known only up to a multiplicative constant.
These constants will be used as fitting parameters.

In figure 4(c) we compare the experimental results and the model of equation (3.6)
for three typical, different combinations of Uo and Do. Here, we approximate e = eo
from experiments as eo = 0.5 mm for Do = 10 mm and eo = 0.7 mm for Do = 20 mm. The
value of θD = 130◦ is also obtained from the experiments as the time average from the
experimental images. Furthermore, the initial condition for the velocity ḣ(0) was also
obtained from experimental data: ḣ(0) = 2.1 m s−1 for Do = 10 mm and Uo = 1.1 m s−1;
ḣ(0) = 3.3 m s−1 for Do = 10 mm and Uo = 2.1 m s−1; and ḣ(0) = 2.5 m s−1 for Do =
20 mm and Uo = 1.1 m s−1. The fitting parameters α, β are determined by the least-
squares method, yielding α ≈ 5 and β ≈ 2.5, which were rounded for consistency across
all three cases presented in figure 4(c).

The present model is able to predict the behaviour of the liquid film until it reaches its
maximum height, but it starts to deviate strongly from the experimental result during the
downward motion of the film. This might be due to constraints in the present model, such
as the assumption that the film thickness e is a constant, which is clearly violated during
the downward motion of the film. Also, the descending dynamics of the film is expected
to be qualitatively different from that of the rising motion; the interaction of the air with
the liquid phase is relevant mostly at the first moments of the contact when the ejecta
is emitted. After reaching its maximum height, the initial assumptions for our model, in
particular regarding the effect of the air, no longer hold, and hence the model would need
to be adapted, e.g. by including an equation for the time evolution of e. Other factors could
also have played a role, such as the fact that ḣ(0) is likely to be underestimated due to
measurement errors in the high-speed imaging footage.

In addition to a reasonable agreement with the experiment up to reaching the maximum
film height, what the model can deliver is an estimate of the order of magnitude of each
of the relevant forces: in figure 4(d,e), we plot the temporal evolution of (3.6), multiplied
by the film height h(t) for better comparison. It is clear that the viscous force provides
the dominant term in the dynamics of the liquid film, whereas capillarity and gravity are
negligible. Also, the air term is generally smaller, but may in some cases become non-
negligible, e.g. in the case of figure 4(d). We may conclude that the initial dynamics of
the liquid film is governed by the viscous dissipation in the boundary layer with the object
and that this dissipation becomes both larger and more dominant for large impact velocity
Uo (figure 4e). It is good to stress at this point that it is difficult to discriminate between
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Figure 5. (a) Maximum height hmax reached by the liquid film plotted against the corresponding time tmax at
which the maximum was reached for different values of the plate thickness Do, namely 5 mm (squares), 10 mm
(circles) and 20 mm (diamonds). Each colour denotes the same Uo for all Do (see legend). (b) Same data as in
(a), but now hmax and tmax are normalised with the viscous length lν and time τν scales defined in (3.9) and
(3.8), respectively.

the viscous and air terms in (3.6). If we compute the ratio of those two terms, we obtain
(including the constants introduced in (3.6))

Fν

Fa
= α

β

ρ

ρa

h(t)

e

√
2νγ

c2
at

≈ 0.6
α

β
, (3.7)

where the time dependence is provided by h(t)/
√

t . Since h(t) is (at least initially)
similar to

√
t , the ratio of Fν and Fa can be approximated using ρ = 998 kg m−3, ρa =

1.2 kg m−3, ca = 340 m s−1, ν = 1.0 × 10−6 m2 s−1, h/e ≈ 10 and t ≈ 5 ms as 0.6α/β.
This corroborates that Fν and Fa are of the same order and determined by the numerical
values found for α and β.

To independently corroborate the dominance of viscous forces in the dynamics of the
liquid film, we measured the maximum liquid film height hmax and the corresponding
time tmax at which the maximum is reached for different Do and Uo. We observe that the
values of hmax and tmax tend to increase linearly with both Uo and Do (not shown) and
in addition, when plotting hmax against tmax , we also find a linear relation (figure 5a).
Inspired by the importance of viscosity for the motion of the liquid film that follows from
the simplified model for the film height dynamics introduced above, we define relevant
viscous time and length scales as follows:

τν = e2
o/ν, (3.8)

lν = Uoτν = Uoe2
o/ν. (3.9)

As mentioned before, the initial thickness eo is observed to be 0.32, 0.5 and 0.85 mm for
Do = 5, 10 and 20 mm, respectively. Since it is difficult to observe any differences of eo
between small and large Uo at early times in our experimental set-up, we use the same
value of eo for each impact velocity Uo. In figure 5(b) we normalise hmax and tmax with
the viscous length and time scales lν and τν defined above, and find that the maximum
film height data all collapse to hmax ≈ 0.03lν , independent of Do and Uo. Also tmax/τν

have similar values, although for large Uo this value slightly increases, which may be due
to the fact that at high Uo, eo becomes much thinner than for small Uo, which, however,
we could not capture precisely within the spatial resolution of our set-up.
1007 A69-10
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Finally, it is worth noting that the observation that the viscosity of the liquid film is
the dominant parameter for the maximum film height and the corresponding time stands
in sharp contrast to droplet bouncing, where the contact time between the droplet and the
solid substrate is determined solely by surface tension (Richard et al. 2002; Okumura et al.
2003; Bird et al. 2013).

4. Conclusion
In conclusion, we studied the dynamics of the liquid film ejected during the impact of a
vertical solid plate on a liquid bath while varying the impact speed and plate thickness.
After being emitted due to the impact, the liquid sheet rises up along the solid surface
without separation and eventually flows back down into the liquid pool. We found that,
upon increasing impact velocity, the liquid film rises higher and faster, and its rim
thickness becomes thinner.

The rim retracts over time while the liquid film flows along the solid surface. The
experimental results show that the evolution of the rim thickness is approximately equal to
the local instantaneous capillary length, which is defined based on capillarity, gravity and
the deceleration of the liquid film in the vertical direction. It is worth noting that despite the
presence of the solid surface, the viscous dissipation in the rim can be neglected. Further,
fingers emerge at the beginning of impact and merge with each other over time, resulting in
the average wavelength of fingers increasing throughout the lifetime of the liquid film. In
contrast, increasing the impact velocity accelerates the destabilisation of the contact line
as well as the emergence of fingers. Consequently, the wavelength of the fingers decreases
with increasing Uo.

In contrast to what happens to the rim, our one-dimensional model shows that the
viscous force is responsible for the deceleration of the liquid sheet in the vertical direction.
More specifically, we predicted the time evolution of the rising motion of the liquid sheet
by the momentum balance including gravity, surface tension, viscosity and the resistance
force due to the air layer between the liquid lamella and the solid surface. There is a
reasonable agreement between the experimental data and theoretical prediction for the
rising and early descending motions of the liquid film. However, the model deviates from
the experimental result at later stages. This needs to be addressed in further studies, for
example, by extending the model to two dimensions, including the time evolution of the
film thickness e. We decomposed the contribution of each force in the model and found
that the rising motion is governed by the viscous force. Finally, both the maximum liquid
film height and the corresponding time linearly increase as functions of the impact velocity
and the plate width. They can be determined by the characteristic viscous length and time
scales based on the initial rim thickness.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.170.
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