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1. Introduction. A linearly ordered space 5 in which neighborhoods are 
segments is called a Souslin space if 

(i) 5 is not separable, but 
(ii) every collection of disjoint segments of S is countable. 

Whether a Souslin space exists is not known; this is the problem referred 
to in the title and was proposed by Souslin in (2). 

A covering of a topological space T is a collection of open subsets of T whose 
sum is T. A covering is locally finite if every point of T is in some open set 
which intersects only a finite number of sets of the covering. A topological 
space T is said to be countably paracompact if every countable covering of T 
has a locally finite refinement (1). 

A topological space T is normal if for every two disjoint closed sets Ki and 
K2 of T there are disjoint open sets Hi and H2 of T containing Ki and K2, 
respectively; if, in addition, every point of T is a closed set, then T is a normal 
Hausdorff space. It is not known whether every normal Hausdorff space is 
countably paracompact. 

In this paper the following will be proved: 

THEOREM. If there exists a Souslin space, then there exists a normal Hausdorff 
space which is not countably paracompact. 

Let us say that a topological space has property D if the following is true: 
whenever C\, C2, C%, . . . is a decreasing sequence of closed sets having no common 
part, then there exists a sequence D\, D2, Dz, . . . of open sets having no common 
part such that, for each n, Dn covers Cn. 

In the proof of our theorem we shall use the following result due to Dowker 
(1, p. 220): A normal space is countably paracompact if and only if it has 
property D. 

2. Preliminary constructions and notation. We now assume that there is a 
Souslin space S. If 5 contains any separable segments, the collection of all 
maximal separable segments is at most countable; and the sum of this collec­
tion of segments is not dense in S, since 5 would otherwise be separable. 
Hence there is a segment s in S none of whose subsegments is separable. 

Let Ri be a collection of disjoint subsegments of s. Suppose Ra has been 
defined for all ordinals a < 13, where ft is a countable ordinal. If ft is not a limit 
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ordinal, let Sp be the sum of the segments of Rp-i and Ep be a set consisting 
of one point from each term of i ^ - i ; then let Rp be the set of all maximal 
segments of Sp — Ep. If ^ is a limit ordinal, let Sp be the set of all points which 
belong to some segment of Ra for every a < /5; and let Rp be the collection of 
all maximal segments in Sp. Since each Ea is countable for all non-limit ordinals 
a < /3, the closure of the sum of all such Eas is separable; hence Rp exists for 
all/3. 

Let R be the sum of all Rp where /3 is a countable ordinal. 
For each term x of R let <f>(x) denote the ordinal such that x belongs to 

R<f>(x)> 
If iS is a countable limit ordinal, then for each x in Rp we consider a sequence 

fi(x),f2(%),fd(x), . . . of segments in Rp such that 
(a) fi(xi) — fj(x2) if and only if i = j and X\ = x2. 
(b) if x is a subsegment of a segment y of R where <j>(y) < fi, then, for some 

n, fi(x) is a subsegment of y whenever i > n. 
From now on we will assume that whenever one of the letters x, y, z, or w 

is used it stands for a segment of R; whenever one of the letters i, 7, m, or n 
is used it stands for a positive integer; and whenever a greek letter is used it 
stands for a countable ordinal. 

3. Construction of T. The points of T are the ordered pairs (x, n) where 
x is in R and n is a positive integer. We now define a neighborhood system 
in T. 
3.1. If <t>(x) is not a limit ordinal, a neighborhood of (x, n) consists of the point 
(x, n) alone. 
3.2. If cf>(x) is a limit ordinal and /3 < <l>(x), a neighborhood of (x, 1) consists 
of all points (y, 1) such that x is a subsegment of y and 0 < <t>(y) < </>(x). 
3.3. To define neighborhoods of p = (x, w) if <£(x) = /5 is a limit ordinal and 
^ > 1, we proceed inductively, assuming that neighborhoods have been 
defined for all (y, m) with m < n and for all (y, n) with </>(y) < p. 

Let Fi(p), for each i, be the set of all points (fj(x), n — 1) where j > i. 
Let Ga(p), for each a, be the set of all points (y, n) such that x is a subsegment 

of y and a < <f>(y) < f$. 
A set iV is a neighborhood oî p = (x, TZ) if iV is the sum of 
(a) a neighborhood of each point of some Fi(p), 
(b) a neighborhood of each point of some Ga(p), and 
(c) the point p itself. 

3.4. For better orientation and later use we mention the following facts 
about T. 

(i) The set Cn consisting of all (x, m) with m > n is closed. 
(ii) For any /?, the set of all (x, n) with <j>(x) < /3 is countable, open, 

and closed. 
(iii) The neighborhoods of points of the form (x, 1) as described in 3.2 are 

open and closed. 
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(iv) If <j>(x) is a limit ordinal, n > 1, and x is a subsegment of z, then every 
neighborhood of (x, n) contains points of the form (y, m), for any m < n, 
such that cj)(y) = 4>(x) and y is a subsegment of z. 

4. To prove that T has the desired properties we introduce more machinery. 
Let Q be a subcollection of i?. If x has the property that every subsegment 

y of x (in i£) contains a segment z such that s is in Q, then we say that x is 
Q-full. If x is (Mull, then, for any fi, we let L(x, 0, Q) be the collection of all y 
such that 

(a) y is a subsegment of x belonging to Q and <j)(y) > 0; 
(b) y is not a proper subsegment of any segment of R for which (a) holds. 
Since the segments of L(x, fi, Q) are disjoint, they are countable, and there 

exists a smallest ordinal d(x, fi, Q) such that <j>(y) < ô(x, fi, Q) for every y in 
L(x,/5, Q). 

We note that fi < ô(x, 0, 0). 

5. Proof that T does not have property D. We let Cw be the closed set 
consisting of all points (x, m) where m > n. Suppose that, for each n, Dn is an 
open set containing C„. 

LEMMA 5.1. Let n be fixed. For every x there exists a subsegment y such that, 
if z is any subsegment of y, (z, 1) is a point of Dn. 

Let Qn be the set of all x for which (x, 1) is not in Dn. The lemma is equiva­
lent to the assertion: no x is Çn-full. 

To prove the Lemma, suppose x is (?n-full. Let #i = #(x), fit = 8(x, fit-i, Qn) 
for i > 1, and fi be the limit ordinal of fiu /32, fiz, . . . . By 3.3, there is a segment 
y of Rp such that y is a subsegment of x and (y, 1) is in Z)w. 

For each i} let z* be the segment of L(x, fiu Qn) of which y is a subsegment. 
Since s* is in Qn, (zu 1) is not in Dn. By 3.2, (3/, 1) is a limit point of the sequence 
(21, 1), (22, 1), (23, 1), . . . . Consequently (y, 1) is not in Dn, and this contra­
diction proves Lemma 5.1. 

5.2. Let Pn be the set of all x such that (y, 1) is in Dn if y is a subsegment of x. 
Lemma 5.1 shows that every x is Pn-full for every n. 

Let x be a segment of R±; pick 7 such that ô(x, 1, Pn) < 7 for every n. 
Let 3> be a subsegment of x belonging to Ry. We see that (3/, 1) is in Dn for 
every n. 

Consequently Di-Dz-Dz- . . . exists and T does not have property D. 

6. Proof that T is a normal Hausdorff space. It is clear that every point 
of T is a closed set. 

Let H and i£ be disjoint closed subsets of T. For each n let Hn and i£n be 
the sets of all x for which (x, n) is in H or X, respectively. 

LEMMA 6.1. Suppose i andj are integers and x and y are segments of R where 
y is a subsegment of x. Then, if x is Hcfull, y is not Krfull. 
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Suppose, on the contrary, that x is Hrîu\l and y is Krîu\\. Choose 70 > <t>(y)» 
For odd n, let yn = 8(y, yn-i, Kj); if n is even, let yn = ô(x, 7^-1, i?*). Let 7 
be the limit ordinal of 71, 72, 73, . . . . 

There exists a subsegment s of y in P7 . If i = j the point (2,7) is clearly a 
limit point of both H and X which is impossible since H and K are closed and 
disjoint. Assume i <j. Then clearly (z,j) is a limit point of K. But every 
neighborhood of (z, 7) contains points of the form (20, i) where w is a subsegment 
of y in R7] and (w, i) is a limit point of H. So (z, j) is also a limit point of H 
which is a contradiction. 

The case j < i is treated similarly. 

LEMMA 6.2. There is an ordinal ix with the following property: no x in PM 

contains two segments y and z such that y is in Hn and z is in Km, for any choice 
of m and n. 

Let P i be the set of all x none of whose subsegments in R belongs to Hn 

for any n. Let P 2 be the set of all x none of whose subsegments in R belongs 
to Km for any m. Let P / , for i equal to 1 or 2, be the collection of all maximal 
segments in Pt. Then P / is countable, and we can choose n so that <j>(y) < fx 
for all y in P / . Choose x in PM. 

Case 1: No subsegment of x is Km-full for any m. 

Then every segment is 7m-full where Im is the set of all segments none of 
whose subsegments belongs to Km. Put ao = n, am = 8(x, am_i, Im), and let a 
be the limit ordinal of «i, a2, az, . . . . 

If z is a subsegment of x in Rai then 2 is in P 2 ; so z is a subsegment of w 
for some w in P 2 ' . By our choice of /*, we see that x is a subsegment of w, and 
it follows that no subsegment of x in R belongs to Km for any m. 

Case 2 : Some sub segment y of x is Km-full for some m. 

By 6.1 no subsegment of y is then Hn-i\\\\ for any n. Proceeding as in Case 1, 
we see that y is a subsegment of a segment w of P / , so that x is also a subseg-
ment of w, and no subsegment of x belongs to Hn for any n. 

This completes the proof of Lemma 6.2. 

6.3. Choosing /JL in accordance with Lemma 6.2, we let X be the set of all (x, n) 
for which <£(x) < \x. Then X is a countable, closed and open subset of T; 
and we can order the points of X in a simple countable sequence pi, p2, pz, . . . . 

Let Ao = H-X and J50 = K-X. We shall construct nonintersecting se­
quences Aly A2, As, . . . and 2?i, i?2, Bz, . . . of closed sets. Having constructed 
^4w_i and Bm-i, consider the point pm — (x, n). 

I. Suppose that pm is not in Bm-i. 

Case 1. If </>(x) is not a limit ordinal, let Am = Am~\ + pm, and let 
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Case 2. If 4>{x) is a limit ordinal and n = 1, let J" be a neighborhood of 
pm of the type described in 3.2 such that / does not intersect Bm. Put 
Am = Am-\ + J and Bm = Bm_i. 

Case 3. If #(x) is a limit ordinal and n > 1, choose i and j3 so that no point 
of Fi(pm) or of Gp(pm) (using the notation introduced in 3.3) is a point of 
i4OT_i. We put i4OT = Am-! + pm + ^(£m) + G/sOm) and £ w = £m_i. 

II. 7f ?̂m is in Bm_i, then perform the operations of cases 1,2, and 3 above 
interchanging A and B. 

Then Am and Bm are closed and disjoint and the induction is complete. 
We now prove 

6.4. The sets A = Ax + A2 + Az + . . . and B = Bx + B2 + Bz + . . . are 
open. 

Proof. If p = (x, w) is in ^4, then >̂ is certainly an interior point of A when­
ever 4>{x) is not a limit ordinal and whenever n — 1. Suppose 4 is not open. 
Then there is a point (x, n) = p oi A which is not an interior point of A, but 
such that every point (y, i) of A where i < n and every point (s, n) where 
4>(z) < <j>(x) is an interior point of A. If m is the integer such that pm = p, 
the above construction of Am and the definition of neighborhood in 3.3 show 
that a neighborhood of pm is included in A. 

Hence A is open and the same is, of course, true of B. 

6.5. Let V and W be the collections of all x in R^ which have a subsegment 
in some Hi or in some KJf respectively. Let V and W be the sets of all points 
(y, n) with y a proper subsegment of a segment of V or W, respectively. 

Then V and W are open disjoint subsets of T by Lemma 6.2. 
Finally, the sets A + V and B + W are disjoint and open and cover H 

and X, respectively. Hence T is normal and the proof is complete. 
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