COUNTABLE PARACOMPACTNESS AND SOUSLIN'S PROBLEM

MARY ELLEN RUDIN

- 1. Introduction. A linearly ordered space S in which neighborhoods are segments is called a Souslin space if
 - (i) S is not separable, but
 - (ii) every collection of disjoint segments of S is countable.

Whether a Souslin space exists is not known; this is the problem referred to in the title and was proposed by Souslin in (2).

A covering of a topological space T is a collection of open subsets of T whose sum is T. A covering is *locally finite* if every point of T is in some open set which intersects only a finite number of sets of the covering. A topological space T is said to be *countably paracompact* if every countable covering of T has a locally finite refinement (1).

A topological space T is normal if for every two disjoint closed sets K_1 and K_2 of T there are disjoint open sets H_1 and H_2 of T containing K_1 and K_2 , respectively; if, in addition, every point of T is a closed set, then T is a normal Hausdorff space. It is not known whether every normal Hausdorff space is countably paracompact.

In this paper the following will be proved:

THEOREM. If there exists a Souslin space, then there exists a normal Hausdorff space which is not countably paracompact.

Let us say that a topological space has property D if the following is true: whenever C_1 , C_2 , C_3 , ... is a decreasing sequence of closed sets having no common part, then there exists a sequence D_1 , D_2 , D_3 , ... of open sets having no common part such that, for each n, D_n covers C_n .

In the proof of our theorem we shall use the following result due to Dowker (1, p. 220): A normal space is countably paracompact if and only if it has property D.

2. Preliminary constructions and notation. We now assume that there is a Souslin space S. If S contains any separable segments, the collection of all maximal separable segments is at most countable; and the sum of this collection of segments is not dense in S, since S would otherwise be separable. Hence there is a segment s in S none of whose subsegments is separable.

Let R_1 be a collection of disjoint subsegments of s. Suppose R_{α} has been defined for all ordinals $\alpha < \beta$, where β is a countable ordinal. If β is not a limit

Received February 11, 1955.

ordinal, let S_{β} be the sum of the segments of $R_{\beta-1}$ and E_{β} be a set consisting of one point from each term of $R_{\beta-1}$; then let R_{β} be the set of all maximal segments of $S_{\beta} - E_{\beta}$. If β is a limit ordinal, let S_{β} be the set of all points which belong to some segment of R_{α} for every $\alpha < \beta$; and let R_{β} be the collection of all maximal segments in S_{β} . Since each E_{α} is countable for all non-limit ordinals $\alpha < \beta$, the closure of the sum of all such $E_{\alpha}s$ is separable; hence R_{β} exists for all β .

Let R be the sum of all R_{β} where β is a countable ordinal.

For each term x of R let $\phi(x)$ denote the ordinal such that x belongs to $R_{\phi(x)}$.

- If β is a countable limit ordinal, then for each x in R_{β} we consider a sequence $f_1(x), f_2(x), f_3(x), \ldots$ of segments in R_{β} such that
 - (a) $f_i(x_1) = f_j(x_2)$ if and only if i = j and $x_1 = x_2$.
- (b) if x is a subsegment of a segment y of R where $\phi(y) < \beta$, then, for some $n, f_i(x)$ is a subsegment of y whenever i > n.

From now on we will assume that whenever one of the letters x, y, z, or w is used it stands for a segment of R; whenever one of the letters i, j, m, or n is used it stands for a positive integer; and whenever a greek letter is used it stands for a countable ordinal.

- 3. Construction of T. The points of T are the ordered pairs (x, n) where x is in R and n is a positive integer. We now define a neighborhood system in T.
- 3.1. If $\phi(x)$ is not a limit ordinal, a neighborhood of (x, n) consists of the point (x, n) alone.
- 3.2. If $\phi(x)$ is a limit ordinal and $\beta < \phi(x)$, a neighborhood of (x, 1) consists of all points (y, 1) such that x is a subsegment of y and $\beta < \phi(y) \leqslant \phi(x)$. 3.3. To define neighborhoods of p = (x, n) if $\phi(x) = \beta$ is a limit ordinal and n > 1, we proceed inductively, assuming that neighborhoods have been defined for all (y, m) with m < n and for all (y, n) with $\phi(y) < \beta$.
- Let $F_i(p)$, for each i, be the set of all points $(f_j(x), n-1)$ where j > i. Let $G_{\alpha}(p)$, for each α , be the set of all points (y, n) such that x is a subsegment of y and $\alpha < \phi(y) < \beta$.

A set N is a neighborhood of p = (x, n) if N is the sum of

- (a) a neighborhood of each point of some $F_i(p)$,
- (b) a neighborhood of each point of some $G_{\alpha}(p)$, and
- (c) the point p itself.
- 3.4. For better orientation and later use we mention the following facts about T.
 - (i) The set C_n consisting of all (x, m) with $m \ge n$ is closed.
- (ii) For any β , the set of all (x, n) with $\phi(x) \leqslant \beta$ is countable, open, and closed.
- (iii) The neighborhoods of points of the form (x, 1) as described in 3.2 are open and closed.

- (iv) If $\phi(x)$ is a limit ordinal, n > 1, and x is a subsegment of z, then every neighborhood of (x, n) contains points of the form (y, m), for any m < n, such that $\phi(y) = \phi(x)$ and y is a subsegment of z.
- 4. To prove that T has the desired properties we introduce more machinery. Let Q be a subcollection of R. If x has the property that every subsegment y of x (in R) contains a segment z such that z is in Q, then we say that x is Q-full. If x is Q-full, then, for any β , we let $L(x, \beta, Q)$ be the collection of all y such that
 - (a) y is a subsegment of x belonging to Q and $\phi(y) \geqslant \beta$;
- (b) y is not a proper subsegment of any segment of R for which (a) holds. Since the segments of $L(x, \beta, Q)$ are disjoint, they are countable, and there exists a smallest ordinal $\delta(x, \beta, Q)$ such that $\phi(y) < \delta(x, \beta, Q)$ for every y in $L(x, \beta, Q)$.

We note that $\beta < \delta(x, \beta, Q)$.

- 5. Proof that T does not have property D. We let C_n be the closed set consisting of all points (x, m) where $m \ge n$. Suppose that, for each n, D_n is an open set containing C_n .
- LEMMA 5.1. Let n be fixed. For every x there exists a subsegment y such that, if z is any subsegment of y, (z, 1) is a point of D_n .
- Let Q_n be the set of all x for which (x, 1) is not in D_n . The lemma is equivalent to the assertion: no x is Q_n -full.

To prove the Lemma, suppose x is Q_n -full. Let $\beta_1 = \phi(x)$, $\beta_i = \delta(x, \beta_{i-1}, Q_n)$ for i > 1, and β be the limit ordinal of $\beta_1, \beta_2, \beta_3, \ldots$ By 3.3, there is a segment y of R_{β} such that y is a subsegment of x and (y, 1) is in D_n .

For each i, let z_i be the segment of $L(x, \beta_i, Q_n)$ of which y is a subsegment. Since z_i is in Q_n , $(z_i, 1)$ is not in D_n . By 3.2, (y, 1) is a limit point of the sequence $(z_1, 1), (z_2, 1), (z_3, 1), \ldots$. Consequently (y, 1) is not in D_n , and this contradiction proves Lemma 5.1.

5.2. Let P_n be the set of all x such that (y, 1) is in D_n if y is a subsegment of x. Lemma 5.1 shows that every x is P_n -full for every n.

Let x be a segment of R_1 ; pick γ such that $\delta(x, 1, P_n) < \gamma$ for every n. Let y be a subsegment of x belonging to R_{γ} . We see that (y, 1) is in D_n for every n.

Consequently $D_1 \cdot D_2 \cdot D_3 \cdot \ldots$ exists and T does not have property D.

6. Proof that T is a normal Hausdorff space. It is clear that every point of T is a closed set.

Let H and K be disjoint closed subsets of T. For each n let H_n and K_n be the sets of all x for which (x, n) is in H or K, respectively.

Lemma 6.1. Suppose i and j are integers and x and y are segments of R where y is a subsegment of x. Then, if x is H_i -full, y is not K_j -full.

Suppose, on the contrary, that x is H_i -full and y is K_j -full. Choose $\gamma_0 > \phi(y)$. For odd n, let $\gamma_n = \delta(y, \gamma_{n-1}, K_j)$; if n is even, let $\gamma_n = \delta(x, \gamma_{n-1}, H_i)$. Let γ be the limit ordinal of $\gamma_1, \gamma_2, \gamma_3, \ldots$

There exists a subsegment z of y in R_{γ} . If i = j the point (z, j) is clearly a limit point of both H and K which is impossible since H and K are closed and disjoint. Assume i < j. Then clearly (z, j) is a limit point of K. But every neighborhood of (z, j) contains points of the form (w, i) where w is a subsegment of y in R_{γ} ; and (w, i) is a limit point of H. So (z, j) is also a limit point of H which is a contradiction.

The case j < i is treated similarly.

LEMMA 6.2. There is an ordinal μ with the following property: no x in R_{μ} contains two segments y and z such that y is in H_n and z is in K_m , for any choice of m and n.

Let P_1 be the set of all x none of whose subsegments in R belongs to H_n for any n. Let P_2 be the set of all x none of whose subsegments in R belongs to K_m for any m. Let P_i , for i equal to 1 or 2, be the collection of all maximal segments in P_i . Then P_i is countable, and we can choose μ so that $\phi(y) < \mu$ for all y in P_i . Choose x in R_{μ} .

Case 1: No subsegment of x is K_m -full for any m.

Then every segment is I_m -full where I_m is the set of all segments none of whose subsegments belongs to K_m . Put $\alpha_0 = \mu$, $\alpha_m = \delta(x, \alpha_{m-1}, I_m)$, and let α be the limit ordinal of $\alpha_1, \alpha_2, \alpha_3, \ldots$

If z is a subsegment of x in R_{α} , then z is in P_2 ; so z is a subsegment of w for some w in P_2 . By our choice of μ , we see that x is a subsegment of w, and it follows that no subsegment of x in R belongs to K_m for any m.

Case 2: Some subsegment y of x is K_m -full for some m.

By 6.1 no subsegment of y is then H_n -full for any n. Proceeding as in Case 1, we see that y is a subsegment of a segment w of P_1 , so that x is also a subsegment of w, and no subsegment of x belongs to H_n for any n.

This completes the proof of Lemma 6.2.

6.3. Choosing μ in accordance with Lemma 6.2, we let X be the set of all (x, n) for which $\phi(x) \leq \mu$. Then X is a countable, closed and open subset of T; and we can order the points of X in a simple countable sequence p_1, p_2, p_3, \ldots

Let $A_0 = H \cdot X$ and $B_0 = K \cdot X$. We shall construct nonintersecting sequences A_1, A_2, A_3, \ldots and B_1, B_2, B_3, \ldots of closed sets. Having constructed A_{m-1} and B_{m-1} , consider the point $p_m = (x, n)$.

I. Suppose that p_m is not in B_{m-1} .

Case 1. If $\phi(x)$ is not a limit ordinal, let $A_m = A_{m-1} + p_m$, and let $B_m = B_{m-1}$.

- Case 2. If $\phi(x)$ is a limit ordinal and n=1, let J be a neighborhood of p_m of the type described in 3.2 such that J does not intersect B_m . Put $A_m = A_{m-1} + J$ and $B_m = B_{m-1}$.
- Case 3. If $\phi(x)$ is a limit ordinal and n > 1, choose i and β so that no point of $F_i(p_m)$ or of $G_{\beta}(p_m)$ (using the notation introduced in 3.3) is a point of A_{m-1} . We put $A_m = A_{m-1} + p_m + F_i(p_m) + G_{\beta}(p_m)$ and $B_m = B_{m-1}$.
- II. If p_m is in B_{m-1} , then perform the operations of cases 1, 2, and 3 above interchanging A and B.

Then A_m and B_m are closed and disjoint and the induction is complete. We now prove

6.4. The sets $A = A_1 + A_2 + A_3 + \dots$ and $B = B_1 + B_2 + B_3 + \dots$ are open.

Proof. If p = (x, n) is in A, then p is certainly an interior point of A whenever $\phi(x)$ is not a limit ordinal and whenever n = 1. Suppose A is not open. Then there is a point (x, n) = p of A which is not an interior point of A, but such that every point (y, i) of A where i < n and every point (z, n) where $\phi(z) < \phi(x)$ is an interior point of A. If m is the integer such that $p_m = p$, the above construction of A_m and the definition of neighborhood in 3.3 show that a neighborhood of p_m is included in A.

Hence A is open and the same is, of course, true of B.

6.5. Let V' and W' be the collections of all x in R_{μ} which have a subsegment in some H_i or in some K_j , respectively. Let V and W be the sets of all points (y, n) with y a proper subsegment of a segment of V' or W', respectively. Then V and W are open disjoint subsets of T by Lemma 6.2.

Finally, the sets A + V and B + W are disjoint and open and cover H and K, respectively. Hence T is normal and the proof is complete.

REFERENCES

- 1. C. H. Dowker, On countably paracompact spaces, Can. J. Math., 3 (1951), 219-224.
- 2. M. Souslin, Problème 3, Fund. Math., 1 (1920), 223.