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Explaining fast magnetic reconnection in electrically conducting plasmas has been a
theoretical challenge in plasma physics since its first description by Eugene N. Parker.
In recent years, the observed reconnection rate has been shown by numerical simulations
to be explained by the plasmoid instability that appears in highly conductive plasmas. In
this work, by studying numerically the Orszag–Tang vortex, we show that the plasmoid
instability is very sensitive to the numerical resolution used. It is shown that well-
resolved runs display no plasmoid instability even at Lundquist numbers as large as
5 × 105 achieved at resolutions of 32 7682 grid points. On the contrary, in simulations that
are under-resolved below a threshold, the plasmoid instability manifests itself with the
formation of larger plasmoids the larger the under-resolving is. The present results thus
emphasize the importance of performing convergence tests in numerical simulations and
suggest that further investigations on the nonlinear evolution of the plasmoid instability
are required.
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1. Introduction
Magnetic reconnection refers to the sudden change in magnetic topology due to Ohmic
dissipation or other microscale plasma processes (Priest & Forbes 2007). Similar processes
are found in classical and quantum turbulence for vortex reconnection (Yao & Hussain
2022; Barenghi et al. 2023). In astrophysics, magnetic reconnection is met in solar flares,
coronal mass ejections, the solar wind and the Earth’s magnetosphere to mention a few
examples. In laboratory scales, it is observed in tokamak discharges, and in reversed
field pinch devices. It is responsible for the fast acceleration of charged particles and
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plasma heating Yamada et al. (2010). It was noted early on (Giovanelli 1946) that the
rate of reconnection observed in astrophysical plasmas was much faster than the relevant
Ohmic time scale. The model of Sweet and Parker (Parker 1957; Sweet 1958) improved
on this estimate by introducing what is now known as the Sweet–Parker model where
the reconnection time scale is accelerated by a factor of

√
SL where SL stands for

the Lundquist number defined as SL = VA L/η where VA is the Alfven speed, L the
typical structure size and η the magnetic diffusivity. Although the Lundquist number
in astrophysical plasmas is large, the improvement of the Sweet–Parker model still
lacks orders of magnitude compared with observations. Different explanations have
been put forward to produce faster reconnection rates than the Sweet–Parker model,
including different geometry of the layer (Petschek 1964), Hall effect (Wang et al.
2000; Morales et al. 2005), electron pressure (Wang et al. 2000; Egedal et al. 2013),
electron inertia (Andrés et al. 2014) and turbulence (Lazarian et al. 2015, 2020). However,
even without adding additional physics, it has been argued that a two-dimensional
magnetohydrodynamic (2-D-MHD) model as that proposed by Sweet–Parker can result in
a fast (i.e. magnetic diffusivity independent) reconnection rate if the Lundquist number
is large enough so that the plasmoid instability develops (Shibata & Tanuma 2001).
Based on linear theory, the plasmoid instability appears for SL � 104 (Loureiro et al.
2007; Samtaney et al. 2009; Loureiro et al. 2013a). These results, however, are based on
simplified spatially infinite and static magnetic shear layers. Although such assumptions
are fruitful because they allow for the analytical treatment of the instability problem,
their implications do not necessarily carry over to dynamically evolving magnetic fields
of finite extent as those met in most physical situations. It is known for example that in
hydrodynamic shear layers linear unstable modes of the static problem are advected out
of the domain before they have a chance to manifest themselves Huerre & Monkewitz
(1985, 1990). Furthermore, even if an instability is present, it does not guarantee that it will
evolve to structures of significant amplitude such that it will affect the system dynamics.
Therefore, a nonlinear calculation is needed to verify this. Such nonlinear calculations of
the plasmoid instability have been explored and have been shown to lead to the formation
of magnetic islands along the current sheet that enhance the reconnection rate (Lapenta
2008; Bhattacharjee et al. 2009; Cassak et al. 2009; Daughton et al. 2009; Samtaney et al.
2009; Huang & Bhattacharjee 2010; Uzdensky et al. 2010; Baty 2012; Loureiro et al.
2012; Huang & Bhattacharjee 2013; Loureiro et al. 2013b). These results were based
on extended numerical simulations using a variety of codes including particle-in-cell
methods, finite-volume, finite-element and pseudospectral methods.

However, the magnetohydrodynamic equations show an increased sensitivity in the
resolution used in numerical simulations. In particular, it has been shown in Wan et al.
(2009, 2010) that turbulence statistics and topological changes can be strongly affected by
a lack of sufficient resolution. Their work studied the effect of under-resolving in decaying
2-D-MHD turbulence and demonstrated that under-resolved simulations show strong noise
at large wavenumbers that suppressed deviations from Gaussianity. This behaviour was
linked to magnetic island generation near strong magnetic shear regions. In a follow-up
work (Wan et al. 2013), the magnetic island generation was quantified as a function of the
resolution measuring the number of magnetic islands measured by the number of local
maxima/minima (O-points) and the number of saddle node points (X-points) of the vector
potential. It was shown that this number rapidly increases with a decrease of the resolution,
affecting the reconnection rates observed. Furthermore, in Ng & Ragunathan (2011) where
reconnection layers were studied, plasmoids were found only when additional noise was
introduced.
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These last results indicate that particular care needs to be taken with the resolution when
examining strong magnetic shear layers. The work in Wan et al. (2009, 2010, 2013) was
limited to reconnection layers appearing randomly by decaying turbulence that were of
size much smaller than the domain size and as a result had a much smaller SL . In this work
we will focus on a single reconnection layer that will allow us to (i) reach much larger SL in
a much simpler set-up so that we cross the critical SL and (ii) compare with the predictions
of linear theory. We examine the well-studied Orszag–Tang vortex (Orszag & Tang 1979)
and perform resolutions studies. We show that plasmoids appear in under-resolved runs
while in well-resolved runs no plasmoids form up to the examined Lundquist numbers.

2. Numerical model
In this work we revisit the reconnection problem in 2-D-MHD paying particular emphasis
on numerical convergence. We consider the 2-D-MHD equations in a double periodic
square box of size L = 2π . In terms of vorticity and the magnetic vector potential, they
read

∂tω+ u · ∇ω = b · ∇ j + ν∇2ω, (2.1)

∂t a + u · ∇a = η∇2a, (2.2)

where ω= ez · ∇ × u is the vorticity with ez the direction perpendicular to the examined
plane and u the velocity field. The magnetic field is given by b = ∇ × ( eza)where eza is
the magnetic vector potential. The current along ez is given by j = ez · ∇ × b = −∇2a.
The viscosity ν is set equal to the magnetic diffusivity η for all our simulations. As
initial conditions, we consider the Orszag–Tang vortex (Orszag & Tang 1979) plus a small
perturbation:

a(t = 0, x)= A0[− cos(x)+ cos(2y)/2] + ap, (2.3)

while the velocity field is defined by its stream function ψ (such that ux = ∂yΨ and uy =
−∂xΨ ) by

Ψ (t = 0, x)=Ψ0 sin(x) sin(y)+ψp. (2.4)

The amplitudes A0 and Ψ0 are such that the initial magnetic energy density is
(1/2)〈| b|2〉 = (1/2) and the kinetic energy is (1/2)〈| u|2〉 = (1/8). The perturbations
ap, ψp are chosen to include Fourier modes with wavenumber | k|< 16 with random
phases and their amplitude is such that their energy corresponds to 0.25 % of the total
energy. These perturbations break the Orszag–Tang symmetries and provide a seed for
linear instabilities to develop that otherwise would depend on the round-off error. A
visualization of the initial conditions in terms of the current square is shown in figure 1(a).
Note that the perturbation ap amplitude is sufficiently big for the perturbations to be
observed in the visualization.

The equations were solved using the ghost pseudospectral code (Mininni et al. 2011)
with a 4th-order Runge–Kutta scheme for the time advancement, the 2/3 rule for dealiasing
and using a uniform grid of N grid points in each direction. Many different numerical
simulations were carried out varying the resolution and the value of η= ν. The parameters
of all our runs are given in table 1.

The evolution of the system leads to the formation of a current sheet aligned along the
x-axis centred at x = 0. The intensity of the current sheet measured by the mean current
density squared 〈 j2〉 increases rapidly and peaks at a time around t � 1.9 after which it
decays. In what follows, all the studies are performed at the peak of 〈 j2〉. At this time we
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Figure 1. Visualisation of the current density of the initial conditions (a) and the resulting current layer in the
entire domain (b). Red lines indicate the magnetic field lines while blue lines indicate the velocity field. The
blue box marks the zoomed-in region that is shown in the subsequent figures.

define the Lundquist number as SL ≡ Bmax/(ηk1) where k1 = 1 is the smallest non-zero
wavenumber. To calculate Bmax for each y we calculate the mean magnetic field bx (y)
along the x direction in the range x ∈ [−π/8, π/8] (shown by the horizontal green line
in figure 1); Bmax is then defined as the first local maximum of bx (y) as one moves away
from the current sheet at y = 0. The non-dimensional reconnection rate is defined here
as R R = uin/Bmax where uin is again calculated by finding the mean inwards velocity
−uy(y) over the same segment as for bx (y) and then uin is defined as the first maximum
of −uy(y) as one moves away from the current layer. Note that this average is crucial in
the presence of plasmoids that make local vales of uy and bx fluctuate strongly.

3. Results
Exact solutions of reconnection layers describing the formation of the reconnection
are not feasible and one needs to rely on numerical solutions. For the validity of a
numerical method to be verified, one needs to demonstrate that for a given set of physical
parameters there exists a resolution Nc such that all larger resolutions N > Nc give the
same result, up to a small error that can be bounded by a decreasing function of N .
Such a procedure proves that the numerical solution does not depend on the resolution
and approaches the exact solution of the problem. Different numerical methods have
different convergence rates. Finite-difference and finite-volume codes lead to a power-
law convergence, implying that the error made decreases as a negative power law as N >

Nc is increased, while pseudospectral and finite-element codes result in an exponential
convergence. This exponential convergence can be realized by considering the energy
spectrum of the involved fields here defined as Eb(k)= (1/2)

∑
k<| q|�k+1 | b̃ q|2 where

b̃ q is the Fourier transform of the magnetic field b. Similarly, the squared current
spectrum is defined as E J (k)= k2 Eb(k). For a smooth field, the energy and current
spectrum display an exponential decrease at large k. Further increase of resolution thus
adds exponentially small corrections. In the present study we have considered that a
simulation is well-resolved, N > Nc, if the peak of the squared current spectrum defined
as E J (k)= k2 Eb(k) is at least 10 times larger than its value at k = kmax = N/3 the
maximum allowed wavenumber, i.e. maxk{E J (k)}� 10E J (kmax ). This implies that most
of the Ohmic dissipation is correctly captured. We note that such a criterion is just an
empirical estimate that works for the current set-up. It is confirmed by observing that if the
resolution is further increased the changes in the flow are minimal. We stress here that the
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N η SL N η SL N η SL

1024 0.50E – 01 0.19E + 02 2048 0.20E – 02 0.12E + 04 4096 0.15E – 04 0.14E + 06
1024 0.20E – 01 0.70E + 02 2048 0.10E – 02 0.26E + 04 4096 0.70E – 05 0.35E + 06
1024 0.10E – 01 0.18E + 03 2048 0.50E – 03 0.54E + 04 4096 0.50E – 05 0.46E + 06
1024 0.50E – 02 0.41E + 03 2048 0.20E – 03 0.15E + 05 4096 0.20E – 05 0.91E + 06
1024 0.20E – 02 0.12E + 04 2048 0.10E – 03 0.30E + 05 4096 0.10E – 05 0.18E + 07
1024 0.10E – 02 0.26E + 04 2048 0.50E – 04 0.61E + 05 8192 0.50E – 04 0.62E + 05
1024 0.50E – 03 0.54E + 04 2048 0.20E – 04 0.13E + 06 8192 0.15E – 04 0.18E + 06
1024 0.20E – 03 0.15E + 05 2048 0.15E – 04 0.17E + 06 8192 0.10E – 04 0.28E + 06
1024 0.10E – 03 0.30E + 05 2048 0.50E – 05 0.24E + 06 8192 0.50E – 05 0.51E + 06
1024 0.50E – 04 0.47E + 05 2048 0.30E – 05 0.39E + 06 8192 0.25E – 05 0.95E + 06
1024 0.30E – 04 0.59E + 05 2048 0.20E – 05 0.58E + 06 8192 0.20E – 05 0.12E + 07
1024 0.20E – 04 0.87E + 05 2048 0.15E – 05 0.75E + 06 8192 0.10E – 05 0.23E + 07
1024 0.15E – 04 0.10E + 06 2048 0.10E – 05 0.14E + 07 16 384 0.10E – 04 0.28E + 06
1024 0.10E – 04 0.14E + 06 4096 0.20E – 03 0.15E + 05 16 384 0.50E – 05 0.39E + 06
1024 0.70E – 05 0.16E + 06 4096 0.10E – 03 0.30E + 05 16 384 0.25E – 05 0.86E + 06
1024 0.50E – 05 0.23E + 06 4096 0.50E – 04 0.62E + 05 32 768 0.50E – 05 0.54E + 06
1024 0.15E – 05 0.61E + 06 4096 0.30E – 04 0.11E + 06

Table 1. Simulation parameters N , η, SL . Boldface N is used for well-resolved and marginally well-resolved
runs.
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Figure 2. Squared current density for well-resolved runs (zoomed in on the current layer) for different values
of η taken from the marginally well-resolved runs. The visualized domain corresponds to the blue box shown
in figure 1.

question of whether or not a simulation is well-resolved is not a simple one (see discussion
in Wan et al. (2010)). Local measurements of gradient amplitudes would probably lead
to a more general and strict criterion. However, finding such a criterion goes beyond the
purpose of this work and here we use only simple estimates based on the spectrum.

The consequences of not using sufficient resolution are severe. In figure 2 we show
visualizations of the squared current density (zoomed in on the current layer) obtained
from well-resolved runs for different values of η. None of these runs displayed visible
plasmoids even though values of SL = 5.4 × 105 are reached. We note that in the
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Figure 3. Squared current density for the smallest value of η examined (zoomed in on the current layer) for
different resolutions N .

bottom two plots, the current layer is visibly not straight. Instabilities have developed
that have given a bent shape to the current layer. These structures could be related to
Kelvin–Helmholtz instabilities developed due to the strong outflow. However, although
instabilities are present, they have not led to plasmoid formation.

In figure 3 we plot the squared current density again for the smallest value of η examined
for different resolutions N . From these runs, only the last one for N = 32 768 is well-
resolved based on the dissipation spectrum as discussed before. It is striking that all under-
resolved runs displayed plasmoids. In fact, the worse the under-resolving is, the larger the
plasmoids appear. This phenomenon is also present at smaller values of η examined: when
the flow is not well-resolved plasmoids are present. Table 1 shows the parameters used
for all runs (not just those shown in figures 2 and 3) indicating the value of resolution
N required for each value of η so that the simulation is well-resolved. All resolutions
smaller than the marked value displayed plasmoids. Similar features due to under-resolving
have also been observed in Burger’s and Navier–Stokes turbulence where they have been
studied extensively (Ray et al. 2011; Murugan & Ray 2023).

Further insight can be gained by looking at the energy spectra. Figure 4(a) shows the
current density spectra for the runs corresponding to figure 2, while the figure 4(b) shows
the spectra for the runs corresponding to figure 3. In figure 4(a) all runs are marginally
well-resolved. As the resolution is increased and η is decreased, EJ (k) progresses to larger
wavenumbers forming a k0 power-law range that reflects the approximate discontinuity of
the magnetic field in the current sheet. This power-law range is followed by an increase
that could be attributed to either a bottleneck (Falkovich 1994; Donzis & Sreenivasan 2010;
Agrawal et al. 2020) or a transition to 2-D-MHD turbulence as a result of the instabilities
that have developed with E(k)∝ k−5/3. At larger wavenumbers, the spectrum shows a
steep exponential decrease. Finally, at the highest wavenumbers near kmax there is a sharp
increase. This is a numerical artefact due to the sharp spectral truncation that leads to a
partial thermalisation of high wavenumbers (Cichowlas et al. 2005; Alexakis & Brachet
2020). This peak is observed in all moderately resolved pseudospectral simulations. The
Fourier modes at these high wavenumbers have random phases and act as random noise.
If not controlled, they can provide a seed for numerical instabilities. Further increasing
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Figure 4. Squared current density spectra corresponding to the runs shown in figures 2 (a) and 3 (b).
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Figure 5. (a) Reconnection rate as a function of SL for all runs well-resolved (filled symbols) and under-
resolved (open symbols). (b) Width of the reconnection layer normalized by the grid size as function of SL .

the resolution for a given value of η has little effect as is demonstrated in the inset of the
figure 4(b) where the well-resolved run for N = 1024 (plotted in figure 4(a) is repeated
at larger resolutions N = 2048 and N = 4096. No additional features were observed in
any of the runs when the resolution was increased further, indicating that the simulations
correctly capture the solution of (2.2).

The behaviour described above changes when the resolution is small. In figure 4(b),
where only the simulation with the largest N is well-resolved, clear under-resolving
features can be testified. As the resolution is decreased the amount of energy at the largest
wavenumbers increases changing the shape of the spectrum. It is worth noting that the
integral of E J (k) is proportional to the Ohmic dissipation and even at the second to
largest resolution N = 16 384 the Ohmic dissipation due to the wavenumbers at kmax is
comparable to the dissipation due to the peak of E J (k) around k = 500. It is thus not
surprising that not being well-resolved leads to erroneous estimates of the reconnection
rate and appearance of plasmoids.

This is clearly demonstrated in figure 5 where the reconnection rate R R is plotted as
a function of SL for all our simulations. Different colours represent different resolutions
used. Filled symbols correspond to well-resolved runs while open symbols correspond to
under-resolved runs. All well-resolved runs display the Sweet–Parker scaling R R ∝ S−1/2

L
even up to SL = 5 × 105 that corresponds to the run at N = 32 768. When the runs are
under-resolved, however, deviations from this scaling appear, leading to a SL−independent
scaling. This, however, is a numerical artefact. The reason can be linked to the thickness
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of the current sheet. In figure 5(b), we plot the thickness of the current layer defined as
δ ≡ Bmax/jmax normalized by the grid size 
x = 2π/N for all runs as well. Well-resolved
runs follow again the Sweet–Parker prediction δ ∝ S−1/2

L but this scaling obviously ceases
to be true when the width of the current sheet is comparable to the grid size.

4. Conclusions
The present work investigated the formation of a magnetic reconnection layer in
the Orszag–Tang configuration paying particular attention to the effects of numerical
resolution. The main result is that in the present set-up no plasmoid instability was seen
for the examined range of Lundquist numbers for well-resolved runs, while on the contrary
under-resolved runs displayed plasmoids whose size and population depended on the level
of under-resolution. The reasons why insufficient resolution can lead to the formation of
plasmoids are obvious: reconnection is a topological change of field lines that can only
be broken by some microscale process. Under-resolving can be such a process although
not a physical one. It is hard to imagine that continuity of field lines can be preserved
when the finiteness of the grid size is apparent. Thus in under-resolved cases the flow
can reach states that otherwise would be absent. The present work therefore rings a bell
on the artificial effects finite grid resolution can have on the evolution of magnetic and
velocity fields in numerical simulations, when not properly resolved. Our results add to
those of Wan et al. (2009, 2010, 2013) and Ng & Ragunathan (2011) by focusing on a
single reconnection layer, allowing more precise statements to be made.

The results bring out the question of why the plasmoid instability is still not present
even though such high Lundquist numbers are reached when the analytical results of
idealized reconnection layers (Loureiro et al. 2007; Samtaney et al. 2009; Loureiro et al.
2013a) predict instabilities at lower SL than those achieved here. There could be various
reasons why this apparent mismatch is present. First, we need to note that the Orszag–
Tang configuration used here is different in many respects from the idealized models used
in linear theory works. The flow here is time evolving and of finite extent and with an
order one initial velocity amplitude. All these factors could play a role in delaying the
onset of the plasmoid instability. In Loureiro et al. (2007), the role of the finite extent
was estimated by assuming that the predicted growth rate has to be such that a plasmoid
has time to grow before it is ejected from the layer. The same argument can also be
made for the finite time duration of the layer examined here. This kind of arguments,
however, although very reasonable assume that the perturbations existing in the layer are
not too small so that the exponential increase of the instability has the time to bring them
to the nonlinear regime. Clearly if the perturbation amplitude is several times smaller
than Ae−γ T (where γ is the perturbation growth rate, T the typical time duration of
the reconnection layer and A the amplitude that makes the perturbation nonlinear), no
plasmoids would be formed. In the present set-up, the initial perturbations are large enough
to be visible in figure 1. These perturbations, however, decrease at the early stages of the
evolution. Thus, even if the linear instability threshold is crossed at later times, they never
have the time to grow back up. Perhaps if larger perturbations were introduced in the
initial conditions, plasmoid would appear in the well -resolved runs. In some studies (Ng
& Ragunathan 2011), additional noise is introduced in the flow at the time the current layer
is formed that triggers the plasmoid instability. Such additional noise could model some
other mechanisms (as the microscale process mentioned in the introduction) that take place
at small scales and lead to a change of field line topology. Under-resolvement could also
play artificially that role. Such microscale process can provide the seed that could lead
to the formation of plasmoids. Such practice, however, deviates from the solutions of the
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2-D-MHD equations and it is not followed here. Another possibility would be to study a
different velocity–magnetic field configuration that could possibly lead to more tractable
values of the Lundquist number where the plasmoid instability could be observed. Whether
plasmoids are present or absent under general configurations is an important issue with
major implications for astrophysical plasmas. We hope that this work will motivate further
studies in this direction.

Whatever may be the reasons for which plasmoids do not appear in the present set-
up, it remains indisputable that if the resolution is small they do artificially appear. This
is a result that can be tested even at small resolutions as indicated in table 1. Thus, the
numerical error due to the finite computational grid can lead to structure formation that
is not present in the solution of the partial differential equation and has possibly led to
erroneous conclusions. This emphasizes the need for convergence studies in numerical
simulations and indicates that some of the conclusions for magnetic reconnection due to
plasmoids in 2-D-MHD based on numerical simulations need to be re-evaluated.
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