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ON CARLEMAN INTEGRAL OPERATORS 
BY 

CHARLES G. COSTLEY 

Integral operators on the Hilbert function space L2(a, b) 

(1) Kf= fK(x9y)f(y)dy for all/eL2(a, b) 
Ja 

with the property 

(2) f \K(x,y) |2 dy < oo for a.a.x 

were originally defined by T. Carleman [4]. Here he imposed on the kernel the 
conditions of measurability and hermiticity, 

(3) lim f \K(x\y)-K(x,y)\* dy = 0 
x'-*x Ja 

for all x with the exception of a countable set with a finite number of limit points 
and 

(4) f [ \K(x, y)\2 dydx < oo for every S > 0 
Jjô J a 

where Jô denotes the interval [a, b] with the exception of subintervals |*—£,| < 8; 
here £v represents a finite set of points for which (3) fails to hold. 

In [5] it is seen that the essential properties of the operator (1) remains valid if 
we delete (3) and (4) above. 

In recent years many extensions and representation problems associated with 
these Carleman operators have been made ([1], [8]). 

However, there exists a class of kernels wider than the classes considered in 
these works, also introduced by Carleman [4, pp. 137-138] and to which many 
results can be extended. 

This note is concerned with such extensions. We call a kernel K(x, y), of Carleman 
type if it is measurable, symmetric, and has associated with it a linear operator Lx 

satisfying the following conditions [1, pp. 137-138]: 

(i) Lx(g, K(x, y)) is in L2 with respect to y (£ a parameter). 
For approximating kernels Kô(x, y), 

(ii) lim^o Lx(t Kô(x, y)) = Lx& K(x, y)) and LX{1 Kô(x, y)) < y(£, y) 
(iii) lim^oo Lx(£,fv(x)) = Lx(£,f(x)) iffveL2 and if/; converges weakly to/, 
(iv) Lx& Kô{x, y)Q(y)) dy = L&, fa Kô(x9 y)Q(y)) dy for all Q(x) in L2. 
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The linear operator Lx(Ç,f(x)) is called closed if Lx(£,f(x)) = 0 implies f(x) = 0. 
The equation jb

aL(£,K(x9 y))Q(y)dy=0 is called closed if it has no nonzero 
solutions in L2. 

In this section we review briefly the Carleman development [4, Chap. 1, 2] for 
kernels satisfying (l)-(4). 

Consider 

(6) fi(*)-À f K(x,y)Q(y)dy=f(x) 
J a 

with K(x, y) satisfying (2), (3), and (4). 
Define approximating kernels. 

Kô(x,y) = 0, \x-èv\ < 8, r = l , 2 , . . . , / i 

b-àl < s 
= K(x, y) otherwise. 

For the kernels K(x, y) and nonreal values of À, the inhomogeneous equation 

(7) g(x)-À f Kô(x,y)Q(x) dy = f(x) 
J a 

has a solution Qô(x) satisfying 

(8) £ |Qô(x)\2 dx < ^ j j £ |/(x)|2 dx9 B = ImX. [4, p. 53] 

Consequently, 

(9) | ÔaWI < \f(x)\ + ^ { £ K(x, y)* dx}*'* { £ |/(x)|2 dx^'^ 

The second member of (8) being independent of S, there exists a sequence of num­
bers Sv such that 

lim Qôo = Q(x) eL2 for x ^ £„, v = 1, . . . , n. 
V-* 00 

The existence of a non-null solution of (7) is established with the aid of the follow­
ing lemmas of M. F. Riesz [6]: 

LEMMA 1. From each sequence {Qôv} satisfying (8), one can always extract a 
weakly convergent subsequence. 

LEMMA 2 (see also [4, p. 132]). If Qv(x) converges weakly towards Q(x)9 then 

îm f Qv(x)2dx> Ç \Q(x)\2dx 
v->o° Ja Ja 

rb çb 

lim Qv(x)g(x) dx = Q(x)g(x) dx, g(x) e L2. 
v->» Ja Ja 
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LEMMA 3. If Qv(x) converges weakly tof(x) andi/j(x) converges strongly to i/t(x) 
then 

(10) lim f QvixW^x) dx = f Q(x)<P(x)dx. 
v->«> Ja Ja 

LEMMA 4. If Qv(x) converges weakly to Q(x) and converges in the ordinary sense 
to W(x) then Q(x)= W{x) a.e. 

If for a nonreal value of À, the homogeneous equation 

(11) Q(x)-\ {* K(x9y)Q(x)dy = 0 
J a 

admits no nonzero solution in L2, let T be the necessarily unique solution of (6). 
With the aid of Lemma 1 we have [4, p. 57] 

(12) C T(f1)f2dt= f T(f2)fdt 
J a Ja 

for arbitrary functions f and/2 in L2. 
For these kernels it is also shown that either all the characteristic values are real 

or every nonreal À is a characteristic value. 
We associate with equations (6) and (11) the operator equations, 

Lx({, Q(x))~ A £ Lx& K(x, y))Q(y) dy = Lx(t,f(*)) 

and 

(14) LJg, Q(x)) - A £ LJ£, K(x, y))Q(yïdy = 0 

so that 

(15) \L&, Qô{x))\ < |A | |£ \Lx(?,Kô(x9yWdyj | J jÔ.(*) | 2 ^} 

+ \LX(U(*))\ 
and 

(16) \L&, Qô(x))\ < | ^ { £ y&y) dy}*'*{£ \f(x)\* dx}™+\L&f(x))\ 

An argument similar to that in [4] shows that there exists a subsequence {Qôv} 
converging to Q(x) and Q(x) is a.e. a solution of (13). 

THEOREM 1 (see [4, p. 55]). Suppose the operator Lx satisfies (5) with £ in some 
perfect set P and 

(17) £ \L&l9 Kô(x, y))-L&29 Kô{x9y))\* dy < o&, ft) 

https://doi.org/10.4153/CMB-1970-066-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1970-066-3


354 CHARLES G. COSTLEY [September 

where a(j;l9 £2) -> 0 as fx — f2 -> 0» *Ae« f/*e solution Q(x) of (14) asserted subsequent 
to (16) w 5wc/z that Lx(£9 Q(x)—f(x)) is a continuous function in £ and is an analytic 
function of X for all nonreal A. 

Proof. From (5(i)) 

(18) \LMu Ux, y))-L&2, Ux, y))\* < \y(^ y) + y(t29 y)\2 

where the latter expression is in L. 
In view of (17) we have 

£ \LJ$U K(x, y))-Lx(Ç2, K(x, y))\* dy < ofo, &). 

With the aid of Schwartz's inequality, from (14) we get 

|I*(fi, Q(x)-f(x))-L&2, Q(x)-f(*W 

= \X\A f [LMi, K(x, y))-Lx(U K(x, y))] Q(y) dyf 

^ |A|2 ("\Q(y)\2dy C\I<J.ii,K(x,y))-L&a,K(x,yy)\*dy. 
Ja Ja 

With the aid of (8) we have 

\LJLSu Q(x)-f(x))-Lx(Ç2, Q(x)-f(xW 

< ^ £ \f(x)\2 dx-o(^ {J, {l9 (2 inP. 

Therefore Lx(Çl9 Q(x)—f(x)) is a continuous function of f. For Qô satisfying (7) 
with the aid of the operator Lx we have 

r fb T l /2 r fb T l /2 

\L&, Q6(x))\ < |A| [ ^ |L^f, ^, r(x, j))|2 dyj [ J^ | &(x)|2 «fcj 

+ |JLxi/(x))| 

From (5(i)) and (8) for Qô we have 

\LX(L Qô(x))\ < ^ £ \f(x)\2 dx £ > ( £ , y) </>> + \Lx(Ç,f(x))\ 

and 

|£*tf, 2aW- /W) | 2 < i^ 4 £ |/(x)|2 rfx £ y2(f, y) dy. 

We also have 

\L&u Qô(x)-f(x))-LM2, Qô(x)-f(*W * ljj£f*\Ax)\*dx.otfl9 f2). 

In view of (15) and the above inequalities, applying Vitali's theorem as in [4, 
p. 55], it follows that Lx(£9 Q(x)—f(x)) is analytic in À. 
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THEOREM 2. Suppose 

(19) LM, Q(x)) = L{t Q(x)) 

and 

(20) LX(Ç9 Q(x)) is real for Q(x) real. 

Then either all values A for which the homogeneous equation (14) has nonzero 
solutions are real or for every nonreal value A there exists no nonzero L2 solutions. 

Proof. Let A0 be a complex value for which (14) has only zero solutions and A* 
another value À for which there exists a nonzero solution Q(x) of (14). 

Then for such A, and Q(x), with the aid of (19) we have 

LX{L Q{x))-K FLx(t9K(x,y))Q(y)dy = L^,(1-AO/A)0. 
J a 

From (19) it follows that 

LM, Ô W ) - A0 £ L x ( i , K(x, y)) "£(7) dy = L(|, 1 - Ao/A*)0. 

Applying the equation analogous (12), i.e. 

f T(f2)f dx = f T(f)f2 dx9 we have 
J a Ja 

(1 - A0/A*) f QQ dx = {\- A0/Â~*) f QQ dx. 
J a Ja 

Thus A* = À*, contrary to hypothesis. 

THEOREM 3. IfLx is closed then the solutions Qv(x), v— 1, 2 , . . . , n, corresponding 
to distinct Xv, v= 1, 2 , . . . , «, are linearly independent. 

Proof. If untrue, we have 

(21) C1Q1 + C2Q2+--+CnQn = 0 and f c ^ O 

where Ql9...9Qn are the L2 solutions corresponding to distinct Al5 ...,An. 
Multiply (21) by LX(Ç, K(x, y)). Integrating, with the aid of the equation 

(22) LM, Qv(x)) = A, £ Lx& K{x9 y)) Qv(y) dy 

we get 

Ç±LM, Q1)+^LX($9 Q2)+ • • • + %LX(Ç9 Qn) 
Ax A2 An 

^(^(fô l +SÔ 2 + -+§ô"))= a 
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§ôx+---+^nôn = 0. 

[September 

Successively repeating the process using (22) we arrive at a system of equations 

CiQi + CaQa+-~+CnQn = 0 

C1Q1 | C2Q2 , 
Ax A 2 A„ 

Since the determinant 

C1Q1 1 C2Q2 . 
A?-1 Ar1 

1 

Ax A 2 

AJ-

+ § # = 0 

1 

Ar1 

# 0 

it follows that C1 = C2= • • • =Cn=0, contrary to hypothesis. 
The method of [4, p. 58] shows also that if the operator L is closed the number 

of linearly independent solutions of (14) is the same for all nonreal A. 

REMARK 1. Results relating to range of the solution Q(x), and existence of an 
operator T satisfying (12) can be established for the equations with kernels con­
sidered here with method used in [4]. 

REMARK 2. If Lx is closed and (5(iv)) holds for K(x, y), then every solution 
Q{x) of 

£ LM, K(x, y)) Q(y) dy = LM,f(x)), / i n L2 

is a solution of the first kind equation 

r K(x9y)Q(y)dy=f(x). 
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