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The Anharmonic Ratios of 4 points in a straight line.

By R. R MDIRHEAD, D.SC.

(Bead 12th November 1909. Received lJ,ih January 1910).

The anharmonic ratio of four points A, B, C, D depends on
the order in which they are taken. The A.I.G.T. "Syllabus,"
following Cremona, defines the symbol (ABCD) to stand for

•=^r : -=r=r, when A is conjugate to B and C to D. Thus, taking A

to denote the value of this double-ratio, we have

(ABC D ) - ^ > 5 - ^ ?H-X(A, B, L, D ) - B C . B D - C B • D A - A .

There are 4 ! = 24 different orders in which 4 letters may be taken,
but these do not give rise to 24 but only to 6 different values of
the anharmonic ratio.

This may be demonstrated in different ways. One method is to

take the anharmonic ratio in the form ' and observe that

the numerator and the denominator each give the area of a
rectangle contained by two non-coterminous segments of the line.
Now it is obvious that there are only 3 rectangles of that sort (if
we do not take account of the sign of the segments), viz.,
p = AB. CD, q = AC . DB, r = AD . BC. Hence, so far as absolute
magnitude is concerned, there are only 6 different values of the

anharmonic ratio, which may be written —, —, —, — — —: and
q p r p r q

it is easy to verify that the algebraic values are got by prefixing
the negative sign to each of these quantities; or we can see that
it must be so since in the form _ * — each letter begins one and

CB. DA
only one segment, whereas if we take two of the rectangles p, q, r,
A and A only begins two segments. I t is well known that if the

https://doi.org/10.1017/S001309150003474X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150003474X


15

value of one of these anharmonic ratios be denoted by A, those of

the others are given by —, 1 - X, r, - — - and —-—.
A 1 — A A — 1 A

This may be shown by using the identity p + q + r = 0.

To prove the identity we observe that

AB .CD + AC. DB + AD . BC = A B . CD + (AB + BC)DB + A D . BC

= AB(CD + DB) + BC(AD + DB) = A B . CB + BC . AB

= AB(CB + BC) = A B . CO = 0.

Dividing the identity by - p we have

- 1 - - L - — = 0.
P P

Thus if we denote by A and A' the anharmonic ratios and
P P

we have A + A' = 1 (i).
Q V

Since and are also reciprocals of anharmonic ratios,
P P

we see that we have also pairs AA' related in the following ways:

X + - ^ = l (ii)

1 1 .

T + T = x <m>
(i) and (iii) give A' = 1 - A and A' = -—- , and are not altered by

A — 1

interchanging A and A', (ii) gives A' = -, and by interchanging
1 — A

A and A' we get A' = —-—.
A

The remaining case is when one ratio is the reciprocal of
another.

I t is perhaps worth noting that to get the relation between
any two anharmonic ratios of 4 points which are not simply

, , A C . B D , „ BA.DC ,
reciprocal, for example, A = —-r and A = , we have

\jti . UA AL). \JI>

only to observe which rectangle (in this case AD . CB) occurs in

both, and then to divide by it the identical relation

A B . CD + AC. DB + AD.BC = 0,

whence A' + A - 1 = 0 or A' = 1 - A.
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1
The six values A, —, 1 - X, -, -—-,

A 1 — A A — 1

A - l
may be arranged as

follows, after the manner suggested by Mr Alison's Mnemonic for
Trigonometrical Ratios given in Vol. IV. of these Proceedings.

Pig. 1.

Here the following rules hold good :

(1) Taking any three successive quantities, either across the
diameter or round the circumference, the first is equal to
the ratio of the second to the third taken negatively.

(2) The sum of the quantities at the three corners of any down-
ward pointing triangle is = 0.

(3) The sum of the reciprocals of those at the corners of any
upward pointing triangle = 0.

(4) The product of the quantities at either set of three alter-
nate corners of the hexagon = - 1.

The connection between this and Mr Alison's figure is brought
out if we put A = sins0, then the other quantities taken in order
round the diagram are cos20, - cots0, cosec2^, secs0, - tan*0.
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Of course, that 6 may be real A. must not lie outside the interval
0 to 1, and that one at least of the anharmonic ratios of four points
satisfies this condition is obvious.

The geometric interpretation of 0 is as follows :

Let circles be described on those segments as diameters which
only partly overlap (in the figure, AD and CB) and let the circles
intersect at E.

Then denoting the equal angles AEC, DEB by 6, we have
AC.BD AACE ABDE AE. CEsinfl BE . DEsinfl
C B . D A " ACBE" ADAE ~ CE.BE ' DE.AE

[This construction I find is given in Casey's " Conies " on page 66
of the 1st edition.]

Now it has often occurred to me that (ABCD) could be with

advantage written in square array thus : | Qg \, so that the con-

jugate points AB and CD would be diagonally opposite.
The rule for writing this as a quotient would be to start with A

and go round the square counterclockwise, or widersirms, and
write the quotient in the order indicated by the successive steps:

AC AC BD AC BD
" "OB" ' CB'DA'

which is very easily remembered.

The rule for changing from the square array to Cremona's linear

array may be indicated by the symbol ^ ^ where the thick

line denotes the diagonal first traversed.
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We may note that (i) if we interchange lines or columns or both
the anharmonic ratio is unchanged thus :

(AT>\ fCB\ fDA-1 fBCM ,
\ CB/ = \ AD/ = \ BC / = \DA / = A'

This may be indicated also as follows:

X= X - X = X
when we may interpret the symbol either to indicate the order in
which the letters ABCD are to be placed in square array to be read

as above, or the order in which the letters in / i ^ _ \ are to be read

to give Cremona's linear order.

(ii) If we interchange the elements of either diagonal, and then
apply (i) we get four anharmonic ratios indicated by

K xi x \x
each being = I/A.

(iii) If we interchange the elements of either row, and then
apply (i) we get

LJ LJ n n
each being = 1 - X.

(iv) If we interchange the elements of either column, and then
apply (i) we get

each being = A/(A. - 1).
(v) If we keep one element fixed and interchange the others by

one step cyclically round their triangle so that the element in the
same column with the fixed one moves diagonally, or if we keep A
fixed and interchange the others by one clockwise cyclic step round
their triangle and then apply (i) we get

N V\ N H
each being = (X - 1)/A..
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(vi) If we proceed as in (v), except that " row " takes the place
of " column " in the former part of the rule, and " counterclockwise "
takes the place of "clockwise" in the latter part, we get

each being = 1/(1 - A.).

This exhausts the 24 possible orders, and verifies the fact that
there are only 6 different values.

The group of operations by which we change from one to
another of the orders of four points is obviously finite, as the
number of such changes is 24P2 = 24x23 = 552.

But, algebraically, taking account only of the value of the
anharmonic ratios, these operations are not all different. Indeed,
as there are only 6 different values, the number of operations
cannot be greater than 6P2 = 30, and in fact they are only 5 in
number, if we exclude the identical operation.

If by p and <£ we denote the operations thus denned:

( l - A . ) ; then PP(X) = Xor p '

Similarly <£s=l or <t> = <fr1.

Again <fr>(A) = (X-l) /A, p^>p(X) = X/(X-1), ^^(X)^

p<i>p<t>p(X) = l - x , <j>p<i>p<i>p(X) = x .
Here we take <£/>(A.) to mean <j>{p(X)}.
Thus all 6 values of the anharmonic ratio are got from X by

combinations of the simple operations p and <f>.
And from these results alone we could prove again that no

other value of the anharmonic ratio can be reached by any com-
bination of the operations p and <j>. For since p1 = 1 it follows
that p" = p or 1, according as n is odd or even, and a similar rule
holds for powers of <f>.

Hence the most general combination pa<f>r py... is reducible to
p4>p.-., which again reduces to a product of alternate p's and </>'s
not exceeding 5 factors, since p<f>p<pp<f> and <f>p4>p<f>p are each = 1.
If we abbreviate p<f>p into the symbol ip, we have
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We note that (<ft>)3 and (fxj>)' are each = 1, while (p4>pf = (#<£)2 = 1.
Thus p<f>p or 4>pi> is an operation similar to p and <f>, inasmuch as
the periodicity is 2 in each case, while the periodicities of the
operators a s p<j> and a""1 == <f>p are each 3.

The nature of the group of operations in question may be
exhibited further by means of a diagram, by marking each line
with the symbol for the operator by which the ratio at one of its
ends is changed into that at the other end. Since all the simple
operations excepting a are reciprocal in character, the direction of
the operation does not need to be specified. But in connection
with a we shall introduce an arrowhead to be understood thus:

A—a-?—p. means /* = a(X).

I -X
Fig. 3.

In this figure we see at a glance many properties of the
operators.

For example, in the triangles whose sides are af</> the symbols
occur invariably in that order, if we follow the direction of the
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arrowhead. This means, of course, that a\p<j> = 1 = \//<f>a = <j>a\//.
On the other hand a~l(j»p = 1 = (fnf/ar1 = \j/a~1<^>, as is seen by going
round these triangles in the opposite direction.

Note also the equilateral triangles giving aaa=l. In fact,
associating the symbols in any closed circuit in order, the com-
bination = 1 if we take a"1 instead of a when we are going opposite
to the arrowhead. "We see also <f>f = a, \f/<f> = a~\ p\p — or1, etc.

This figure gives an apparently unique position to p as compared
with <f> and \f>, but this does not imply a correspondingly unique
property of the operator. In fact we could, by re-arranging the
ratios round the hexagon, make p and \j/ or p and <f> exchange
places, without destroying the symmetry of the figure.

The group of six operations 1, p, </>, ̂ , a, a-1 is of course well
known, being one of the simplest examples of the theory of groups,
It has four sub-groups, besides the identical operation, viz.
l,p; 1, $; 1, i; 1, a, a-'.

I t may be proper to mention that the convention here used as
to the order of writing a " product" of operators is the opposite to
that employed in Burnside's standard treatise on the Theory of
Groups of Finite Order.

In the particular case when A. = - 1, the diagram of Fig. 1
reduces to

_/z

Fig:. 4.

In this case there are but three different values of the anhar-
monic ratio to be got by altering the order of the points, and,
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using the marks explained above, we find that if (ABCD) = - 1,
ACthe " Cremona " order to get the value - 1 from the array ^ ^

is indicated by any of the eight marks :—

while the following set of eight:—

u L j n n i \ i N i / i i / i
give the value 2, and the following :—

give the value J.

We may note that each of the first set of marks has two
diagonal strokes ; each of the second, two vertical strokes; and
each of the third, two horizontal strokes.

Note.—The preceding notes were drawn up over thirteen years
ago. Most of the information they convey is in one form or
another well known, and is to be found in many Continental text
books ; but as it is not given in any one English book that I am
acquainted with, I have thought some members of the Society may
find the notes useful.
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