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Abstract

Cyber breaches pose a significant threat to both enterprises and society. Analyzing cyber breach data
is essential for improving cyber risk management and developing effective cyber insurance policies.
However, modeling cyber risk is challenging due to its inherent characteristics, including sparsity, het-
erogeneity, heavy tails, and dependence. This work introduces a cluster-based dependence model that
captures both temporal and cross-group dependencies, providing a more accurate representation of mul-
tivariate cyber breach risks. The proposed framework employs a cluster-based kernel approach to model
breach severity, effectively handling heterogeneity and extreme values, while a copula-based method is
used to capture multivariate dependence. Our findings, validated through both empirical and synthetic
studies, demonstrate that the proposed model effectively captures the statistical characteristics of multi-
variate cyber breach risks and outperforms commonly used models in predictive accuracy. Furthermore,
we show that our approach can enhance cyber insurance pricing by generating more profitable insurance
contracts.

Keywords: Copula; heavy-tail risks; heterogeneity; Rosenblatt transform; sparsity

1. Introduction

Data breaches have become a substantial risk to citizens and enterprises. According to the 18th
Annual Survey of Emerging Risks (Key findings, 2025), cyber risk has remained the top 5 risk
over the past 5 years. Based on the Identity Theft Resource Center’s (ITRC) 2024 Annual Data
Breach Report, there were 3,158 data compromises in the U.S. during 2024 (Identity Theft
Resource Center, 2024). The number of victim notices issued surged dramatically. In 2024, over
1.7 billion notices were sent to individuals affected by data breaches, marking a 211% increase
from the 419 million notices in 2023. The financial impact of these breaches is substantial. IBM’s
2024 Cost of a Data Breach Report indicates that the global average cost of a data breach reached
$4.88 million in 2024, a 10% increase from the previous year and the highest figure recorded to
date (IBM Security, 2024).

The significant impact of cyber data breaches has driven extensive research into modeling cyber
breach risks. For example, Maillart and Sornette (Maillart & Sornette, 2010) analyzed a dataset
of cyber breach incidents collected between 2000 and 2008, demonstrating that heavy-tail dis-
tributions effectively model personal identity losses per incident. Sen & Borle (2015) explored
the factors influencing the frequency of cyber breach incidents, applying theories such as the
opportunity theory of crime, institutional anomie theory, and institutional theory. Wheatley et al.
(2016) employed extreme value theory to examine a dataset from 2000 to 2015, finding that
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breaches occur more frequently in large enterprises compared to smaller ones. Edwards et al.
(2016) developed Bayesian models to analyze the temporal trends of data breach incidents,
showing that breach sizes follow a log-normal distribution while frequencies adhere to a nega-
tive binomial distribution. Eling & Loperfido (2017) applied actuarial modeling to cyber breach
incidents, demonstrating that breach sizes can be effectively modeled using a skew-normal dis-
tribution. Buckman et al. (2017) studied the intervals between cyber breaches for enterprises
that experienced multiple incidents between 2010 and 2016, finding that these intervals vary
based on several factors. Buckman et al. (2018) investigated the effects of data breach notification
policies on enterprises, employing panel regressions with fixed effects models to examine their
impact on repeat breaches. Xu et al. (2018) analyzed aggregate cyber hacking breach incidents,
showing that both breach sizes and inter-breach arrival times could be modeled using stochas-
tic processes. Eling & Jung (2018) identified cross-industry dependence in cyber breach-induced
financial losses and proposed using copulas to model this dependence. Ikegami & Kikuchi (2020)
examined a dataset of cyber breach incidents in Japan, demonstrating that inter-arrival times
of breaches follow a negative binomial distribution. Woods et al. (2021) proposed a composite
cyber loss model by aggregating multiple parametric distributions such as log-normal, Pareto,
Burr, and Weibull, optimized through a particle swarm algorithm. Sun et al. (2021) developed a
frequency-severity actuarial model for aggregate enterprise-level breach incident data to support
insurance ratemaking and underwriting. Subsequently, Sun et al. (2023) focused on healthcare
data breach incidents, formulating a multivariate frequency-severity framework that models fre-
quency with a mixed-effects model and severity with a log-gamma distribution. Wu et al. (2023)
developed an Recurrent Neural Network — Long Short-Term Memory (RNN-LSTM) framework
to capture multidimensional dependencies in the number of cyber attacks and model the residual
tail risks using a peaks-over-threshold approach with a generalized Pareto distribution. Malavasi
et al. (2022) employed EVT in the Generalized Additive Models for Location, Scale, and Shape
(GAMLSS) framework to model frequency and severity with covariate effects and tail behavior.
One may refer to He et al. (2024)] for a comprehensive review of modeling and management
techniques for cyber risk across insurance, computer science, and finance.

However, studies focusing on modeling and predicting data breach risks from the insurer’s
perspective remain relatively scarce. This scarcity is largely due to the sparse, heterogeneous,
and heavy-tailed nature of data breach incidents, which present substantial challenges for both
modeling and prediction. These challenges are further compounded by the complex multivari-
ate dependence among breach risks. While existing studies offer valuable insights into cyber risk
modeling, they often treat entities independently by focusing solely on temporal dependence (Sun
etal., 2023), or on the aggregate outcomes (Eling & Loperfido, 2017; Xu et al., 2018; He et al., 2024).
Such approaches fail to capture the interconnected and evolving nature of cyber risks across sec-
tors and time - critical considerations from the insurer’s standpoint. Our work addresses this gap
by jointly modeling the temporal and cross-sectional dependence of breach events across indus-
tries, with clustering incorporated to account for heterogeneity. This joint modeling framework
enables insurers to better quantify systemic exposure, assess tail risks, and allocate capital more
effectively. In particular, modeling how risks evolve over time and propagate across sectors is
essential for dynamic risk scoring and premium pricing tasks that are inadequately addressed in
much of the existing literature. From the insurer’s perspective, the proposed framework is suit-
able for modeling multivariate data breach risks in the context of ratemaking. This framework
integrates clustering and transformation techniques to manage heterogeneity and skewness, and
employs S-vine copulas to simultaneously capture temporal and cross-group dependence. Both
empirical analyses and synthetic data experiments confirm the effectiveness of our approach. In
the insurance ratemaking context, the proposed model consistently outperforms existing methods
in terms of predictive accuracy and interpretability.

The remainder of the article is structured as follows. Section 2 conducts an exploratory data
analysis and reviews the statistical preliminaries used in this paper. Section 3 introduces the novel
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Table 1. The resulting groups from PRC dataset categories

Group Industry Breachtype Group Industry Breachtype Group Industry Breach type
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multivariate dependence model. Section 4 discusses the estimation and prediction methodologies.
Section 5 applies the proposed framework to a real-world dataset for a case study. Section 6 evalu-
ates the model’s performance in the context of insurance pricing. Finally, Section 7 concludes the
study and presents discussions on the limitations and future directions. Additional analysis using
empirical and synthetic data is provided in the supplementary material.

2. Exploratory data analysis and preliminaries
2.1 Exploratory data analysis

In our study, we utilize two publicly available datasets: the Privacy Rights Clearinghouse (PRC)
(Privacy Rights Clearinghouse, 2025) and the ITRC. The PRC dataset spans from January 1, 2010,
to December 31, 2018, and was publicly accessible. Similarly, the ITRC dataset covers the period
from January 1, 2023, to December 31, 2024, and is also publicly available. In addition, a synthetic
data study is conducted to further validate our approach. For demonstration purposes, we pri-
marily use the PRC dataset due to its broader range of breach types, while the analysis of the ITRC
and synthetic data is presented in the supplementary material.

The PRC dataset was categorized into 8 industries and 8 breach types. The 8 industries are
businesses-financial and insurance services (BSF); businesses-retail/merchant including online
retail (BSR); businesses-other (BSO); healthcare, medical providers and medical insurance ser-
vices (MED); educational institutions (EDU); government, military (GOV); nonprofits (NGO);
and Unknown (UNKN). Among these industries, we merge GOV and NGO into a new indus-
try dubbed OTHER because they both are very sparse. The 8 breach types are: fraud involving
debit and credit cards not via hacking (CARD); hacked by an outside party or infected by mal-
ware (HACK); insider-employee, contractor or customer (INSD); physical (PHYS); port (PORT);
stationary computer loss (STAT); unintended disclosure not involving hacking (DISC); and
Unknown (UNKN). Among these 8 types, we merge PHYS, PORT, and STAT as a new PPS type
because they are related to physical activities; we merge CARD and UNKN into a new OTHER
type because both contain few nonzero values. This leads to a total of 31 groups, as shown in
Table 1.

For ratemaking purposes, we follow the standard insurance policy by using 6 months as the
time period. This leads to 31 groups with 18 periods, namely {y;;|1 <i < 31,1 <t < 18}. For mod-
eling and prediction purposes, we split the data into two parts: the first 15 time periods (¢ < 15) are
used as the in-sample data for model fitting, and the remaining 3 periods (16 <t < 18) are used
as the out-of-sample data for assessing the prediction performance. Table 2 presents the summary
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Table 2. Summary statistics of the various groups using the PRC data, where "SD" means standard deviation and "CV"
means coefficient of variation

Group n Min Q25 Median Q75 Max Mean SD cv
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statistics of the in-sample data. We observe that most groups exhibit sparsity (e.g., 13 out of 31
groups have a 25th percentile equal to 0; and 5 of them have a median equal to 0). We observe
that most groups exhibit skewness because their mean and median are significantly different. We
observe variability because the standard deviation is always much larger than the mean, which
is also reflected in the fact that the coefficient of variation ranges from 1.06 to 3.87. We observe
extreme values, for example, there are some extremely large values in groups G¢ and G7, which
means that a heavy-tailed distribution is needed for accommodating these extreme values.

We examine the temporal and cross-group dependence by using Spearman’s p and Kendall’s 7.
For the temporal dependence, 5.71% of the |p|’s are greater than 0.7, 41.90% are greater than
0.5, and 84.76% are greater than 0.3. In terms of the |t|’s, 13.33% are greater than 0.5 and
69.52% are greater than 0.3. Therefore, there is a strong temporal dependence in the data.
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Figure 1. Boxplots of Pearson’s p and Kendall’s  for temporal and cross-group dependence.

For the cross-group dependence, 2.36% of the |p|’s are greater than 0.7, 14.19% are greater than
0.5, 42.15% are greater than 0.3, and 80.43% are greater than 0.1. In term of the |t|’s, 4.52% are
greater than 0.5 and 29.03% are greater than 0.3. Therefore, the cross-group dependence is non-
negligible. In summary, there exists both temporal and cross-group dependence in the data. To
further visualize these two correlations, Figure 1a and b show the boxplots of Pearson and Kendall
correlation coefficients in temporal and cross-group dependence of breach sizes, respectively. We
observe the presence of temporal and cross-group correlations, with the temporal dependence
exhibiting strong positive correlations. These statistical characteristics are accounted for in the
following modeling process.

2.2 Preliminaries

In order to model the temporal and cross-group dependence of group-level multivariate data
breach incidents time series, we propose using copulas because they are widely used in model-
ing complex multivariate dependence (Joe, 2014). A theoretical foundation of copulas is Sklar’s
Theorem (Sklar, 1959), which says that a multivariate distribution can be represented as a certain
composition of multiple univariate margins. Specifically, a d-variate distribution F with univariate
marginal distributions Fy, . . ., F; can be decomposed as

F(x) = C(Fi(x1), . . ., Fa(x)), x e RY,

where the copula is a distribution function C:[0, 119 — [0, 1] with U(0, 1) margins. That is, a cop-
ula characterizes the dependence among the d random variables. If the marginal distributions,
namely the F;’s, are continuous, the copula C is unique.

2.2.1 R-vine
A regular vine (R-vine) is a graphical structure for decomposing a multivariate distribution to a
sequence of nested trees (Bedford & Cooke, 2001). Specifically, an R-vine with d elements is an
acyclic graph which consists of d — 1 trees, denoted by T1, . . ., Ty_;, where each tree has a set N;
of nodes and a set E; of edges with i=1,...,d — 1. Such a structure V = (N, E,-)d_1

i—] is an R-vine
if the following conditions hold:

e T is the first tree with d nodes in node set N; and d — 1 edges in edge set Ey;
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1.2

Figure 2. The first tree of a 5-dimensional S-vine with the first three time points.

e fori=2,...,d— 1, nodes in T; are edges in T;_;, namely N; = E;_;
e (proximity condition) fori=2,...,d — 1, if two nodes m, n € N; are connected by an edge in
E;, then the corresponding edges m, n in T;_; share a common node.

In an R-vine copula, each edge is associated with a bivariate copula which accommodates the
dependence or conditional dependence between a pair of variables. The density of an R-vine
copula is the product of the densities of the linking pair copulas and the marginal densities,
that is,

-1 d
@) = [ [ [ cacbein.(tacipe tp. i, 1un,) | [ i),
j=1

k=1 e€Ej

where f; represents the marginal density, D, is the conditioned set of edge e, ¢, 4,|p, Tepresents
the conditional bivariate copula density, us,|p, := Ca, D, (Fa.(Xa,)|Fp,), Fp, := (Fi(x1))iep, is a
subvector of (Fi(x1), . . ., F4(xy)), and

9Ca, b, |D, (FaeDe> Fi,|D,)
dFp, D,

>

CaelDe (Fae(xae”FDe) =

9Ca, b,|D, (Fa,|D,> Fy,|D,)
8Fﬂe|De .

Cy, D, (Fp, (xp,)|Fp,) =

2.2.2 S-vine

A stationary vine (S-vine) copula, as discussed by Nagler et al. (2022), allows for arbitrary R-vines
in the cross-sectional structure and connects two cross-sectional trees at arbitrary variables. It
extends the other two well-known stationary vine copula models for modeling multivariate time
series: D-vine (Smith, 2015) and M-vine of Beare & Seo (2015).

The S-vine selects the edge with the highest correlation between the time points. Specifically,
let V = (Ng, Ek)Z:;l be a regular vine on {1,...,m} x {1, ..., n}, and the regular vine V is called
a S-vine if its vine structure does not change with time. More specifically, let

Dm—1
Viw = (Nk,t> Ekt);(::{ o
beavineon {1,...,m} x {t,...,t +w},

1)m—1
Vs,s+w = (Nk,s» Ek,s)](::’l_ m

beavineon {l,...,m} x {s,...,s+ w}, and Vi1, and Vs ¢4, are the restriction of vine 1V (Beare
& Seo, 2015). Von {l,...,m} x{1,...,n}isan S-vineifforallw=0,...,n— 1,1 <t<n—w,
k=1,...,(w+ 1)m— 1, and edges e € E,, there is an edge ¢’ € Ei; such thate=¢"+ (0, — s).
Figure 2 depicts the first tree of a 5-dimensional S-vine at the first three time points. We
observe that the edges among (Si,1, S1,2, S1,3) model the temporal dependence. Specifically, the
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edges between nodes (S;1,1,S1,2) and (812, S1,3) specify the temporal dependence between two
adjacent time points. For describing the cross-group dependence at time 1, the structure con-
sists of variables Sj 1, S2,1, S3,1, S4,1 and Ss 1. The same structure applies to the other time points,
while noting that the same copula is used for the edges with the same structure. For example,
for modeling temporal dependence, the edge between (51,1, S1,2) and the edge between (S; 2, $1,3)
are modeled by the same bivariate copula with the same parameter(s). Similarly, for modeling
cross-group dependence, the edge between (81,1, S3,1), the edge between (S12, S32), and the edge
between (813, S3,3) are all modeled with the same copula with the same parameter(s). The edge
between (51,1, S2,1), the edge between (S;2, S22), and the edge between (S; 3, S»,3) are all assumed
to have the same copula.

To further clarify the construction of this the 5-dimensional S-vine, let S=(Sy;,...,
S50+ ->813 - - - ,S_r,,3)T represents the vector of variables at the three time points. For the
S-vine copula representation, the joint distribution of § is decomposed into its univariate marginal
densities fi(s;;) and a set of copula densities that captures the dependence structure among them.
Denoting u;; = Fi(s;;), the copula density of S can be represented as

C(Sl,l) e 55,1) 51,2) e 55,2) 51,3) e 55,3)
14
= [T cacbeCao ) [T TT cacein. (Cauipe(ua lup,), Co,ip, (o lup)) T T T [ fitsi)s
ecTq k=2 ecTy i=1 t=1

where Ty is the set of edges in tree k, and each c,, 4, |p, is a conditional bivariate copula density
associated with edge e, conditioned on the variable set D,. For example, the pair (S;,1, S1,2) cap-
tures temporal dependence between two adjacent time points, while pairs like (Sy, S;¢) for j # 1
capture cross-group dependence. For more discussions on the S-vine copula, please refer to Nagler
et al. (2022).

3. A multivariate dependence model

Let y;+ denote the breach size of group i at time ¢ with y;; =0 meaning no beach incidents for
group i at time ¢, m the number of groups, and # the length of time periods. The breach incidents
can be represented as an m-variate time series

{yir]l <i<m,1<t<n}.

As discussed in Section 2, cyber breach sizes exhibit skewness and heavy tails. We propose
using a proper transformation g( - ) to reduce the skewness and the high variability. We call the
transformed data the severity time series, which is denoted by

{sit=gill <i<m,1<t<n).

To model the distribution of severity, for the PRC data, we observe that there are many small val-
ues along with extremely large ones. This prompts us to use a semi-parametric model to estimate
the marginal distribution of cyber breach sizes. The key idea is to use a nonparametric distri-
bution to fit small breach severity while using a parametric distribution to fit the large breach
severity (Scarrott, 2016; McNeil et al., 2015). Specifically, we propose the following kernel density
to model the nonparametric distribution of small breach severity, where s;; < u;, and p; is an
unknown parameter that needs to be estimated:

1 n m .
B (s 2) = e 303K (T) (1)
t=1 i=1

where A; is the bandwidth that can be determined by the cross-validation likelihood method
(Wand & Jones, 1994), and K(x) = exp (—x?) is the kernel function. For the large breach sever-
ity, namely s> u, we propose using the Generalized Pareto distribution (GPD) because it is
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directly related to the extreme value theory (Scarrott, 2016). The GPD distribution function can
be written as

-1+ (”‘")];1/& . E#0,

O

1 — exp |:— (:T’j‘)Jr] , & =0,

where s =max (s,0), u; is the threshold, o, > 0 and &; are, respectively, the scale and shape
parameters. If & < 0, the support is u; <s < u; — o,,/&;; otherwise, the support is unbounded
from above. Combining the nonparametric distribution and GPD, we have the following flexible
mixed model:

Gi(5|M’ Ops Sl)z (2)

(1 - ¢Mi)Hi(S|"i)) S f Mis
Fi(slp) = 3)
o {(1 — @) + 0, GlsImy), s> i

where 2, is the parameter vector, H;( - ) is the distribution with density given by Eq. (1), ¢,,; is the
proportion of breach sizes above the threshold p;, and G;( - ) is the GPD in Eq. (2). Please note that,
given the relatively limited size of the dataset, we assume that the marginal distributions are time-
invariant, that is, a stationarity assumption imposed in the modeling process. This assumption
is important for effective modeling and prediction, as it ensures that the marginal distributions
remain stable over time.

Let 8= (s1,t>...>Smt)> t=1,...,n, and we assume sequence S; is stationary with Markov
order p. Consider a stationary sequence Sj, . .., St which takes the values in R” with Markov
order p, then, the distribution of all finite dimensions can be uniquely determined by the joint dis-
tribution of (Sy, . . ., Sp+1). The dependence of the variables can be captured by an S-vine model
onthem x (p+ 1) array of nodes {1, ..., m} x {1,..., p+ 1}. Given the S-vine tree structure and
copula families of the edges in the identified S-vine, we employ the likelihood-based method to
estimate their parameters.

The total log-likelihood function of S, t =1, . . ., 1, can be represented as
m n m(p+1)—1
10,m)=>)_ logfilsielm)+ D Y 10gcabn, ZacDes Zo0pMeps O1e))s  (4)
i=1 t=1 k=1 ecTy

where m denotes the number of considered industries, n denotes the length of the time series used
to fit the model, and p denotes the order of the Markov chain. f;( - |5;) represents the marginal
density of group i with parameter vector »;. The set {a,, b.} includes the two conditioning nodes
associated with edge e, and D, is the conditioned set corresponding to edge e. 8, are the cop-
ula parameters associated with edge e. z,,|p, is the conditional distribution of F;, (ss,:n(.]) given
Fip, (sp,smpe)) that is, of Cq,p,(24,12D,), Where i,, and ip, denote the group indexes related to
nodes a, and D,, respectively, sp, := (si¢)(ir)ep,> and n{,) denotes the set of marginal parameters
associated with all nodes involved in edge e, including those in the conditioned set D,.
Note that, we have

/ ]
"2 AM
AWZ A‘Wl Cae,heIDe(Vly V2)3 Sae = Sbe = 0’

w) 0Cap b, |D, (Fa|D, (Sa, 15D, )> V2)
" 0Fg, D, (Sa,IsD,)
w! 3Ca, b 1D, (V1> oD, (S0, 15D, ))
" 0Fp, p, (5, Isp,)

, Sa, > 0,85, =0,
Cag,be|D, (Zac|De> Zb, D, [Me)> Oe]) =

> Sae = 0’ Sbe > 0)

Cae,be|De (Fag|D, (Sa, 5D, )> Fb, D, (S, 15D,))s  Sa, > 0, sp, > 0,
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where w| =F,,p,(0lsp,), w1 =Fq,p,(0"|sp,) is the left-hand limit of F,,p, at 0, w)=
Fy,p,(0lsp,)s w2 =Fp,p,(07 |sp,), v; is the index of difference, C,, 4, p, and c,,p,p, are the
distribution function and density function of a bivariate copula, respectively. Specifically, the
conditional distribution can be recursively represented as
ANC =
w3 Cayb, |, (Fa,|D, (Sa,[8D))> V3), sp, =0,
Faclp, (Sacl$De) = 1 9Cy, 411y (Fay 1, (5, 5,)s Fog o, (53] 51,)

9 F, D, (sp, Ispy,)

s Sy, > 0,
where b, € De, Dy = D\by, W = Fyyp; (Olsp; ), and w3 = Fyp (0~ [sp, ). And

W/
AvwiCat by (Vas Fo, o (s, Ispr))s sq, =0,

Fo0, ($0.180.) = Y 9Cpr g,y (Fag iy (sat 150)s Fy oy 5, | sD7)

9Fq; Dy (say1sDy)

> Sa, >0,

/ / _ s -
wh<?re a, € D, Dgr = D,\ay, Wy = Fafe|Dg(0|SDg)a and wy = Fpr (07 [spy). The conditional distri-
bution of z4,|p, can be recursively written as

9Ca,b, D, (Za,|Dy> 21 D))

Zae|D, =

>

9D,

where b, € D, and Dy = D \b,'.

4. Estimation and prediction
4.1 Stepwise maximum likelihood estimation

For parameter estimation, we propose using the Inference Functions for Marginals (IFM) method
because it can efficiently reduce the computational time, which has been popularly used in
the literature (Joe, 2014). The IFM method has two steps: (i) estimating parameters 3 of the
marginal distribution, which equates to the severity distribution in this paper; and, (ii) estimating
parameters 6 in the S-vine model via the fitted marginal distribution.

We can represent the joint log-likelihood function of an S-vine copula model after estimating
the marginal parameters as

m(p+1)—1
l(e) = Z Z log Cae>be|De (Z“e|De’ Zbe‘De |ﬁ[€]’ 0[3])
k=1 eETk

Since there are many parameters for the S-vine copula, we propose using the stepwise maximum
likelihood estimation approach to estimate parameters of 8, namely by sequentially estimating the
bivariate copula models corresponding to each edge of the vine structure from the first tree to the
last tree. Specifically, corresponding to edge ¢’ € T, we can obtain the parameters of the copula
from

é[er] = arg max Z log ¢(e](Za,|De> 26, |D,301¢'1)>

['] e~

where e ~ ¢ means edges e and ¢’ are equivalent. For copula selection, the AIC criterion can be
used (Joe, 2014). The key insight into determining the S-vine structure is that we should model
the strongest dependence as early as possible. This prompts us to use the following two steps to
determine the structure of the first tree of the S-vine:
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Algorithm 1. Estimating an S-vine copula model to simultaneously accommodate the
cross-group dependence and the temporal dependence in a multivariate time series.

INPUT: Breach severity {si¢|1 <i<m, 1 <t <n}; aset of candidate pair copulas £2; Markov
order p.

1: Fit the marginal distribution of severity s;; via Eq. (3);

2: Determine the first tree T of the S-vine copula;

3: forj=1,...,m(p+1)—1do

4:  ifj=1then

5: for The edges of different copulas in T} do

6: For a given copula in €2, estimate parameters of a set of equivalent edges in T, while
using the AIC to select pairwise copulas;

7 end for

8  else

9: for The edges of different copulas in T; do

10: Fix the estimated copula structures in T, . . ., Tj—1, and determine the tree
structure T; under the constraint of Tj_l;

11: Estimate parameters of a set of equivalent edges in Tj for a copula in €2, and select

copulas by AIC;

12: end for

13: end if

14: end for

15: return {T1,..., Tp+1)—1}-

OUTPUT: Estimated S-vine copula.

(i) Determine the cross-group structure of the S-vine. The empirical Kendall’s 7;j,1<i <
j<m between any two of the m cross-group variables are calculated. We propose
using the maximum spanning tree algorithm (Diffmann et al., 2013) to select the cross-
group R-vine tree that has the maximum sum of empirical absolute Kendall’s 7, namely
max Ze:{i,j}in spanning tree |fi’j I

(ii) Identify the temporal vine structure. For this, we propose computing Kendall’s  with lag 1 in
between any two groups and selecting the largest || to specify the temporal dependence for
the first tree. That is, we compare all Kendall’s 7 correlation coefficients between an industry
and its lag of time points. The variable with the largest absolute correlation coefficient is the
optimal in-/out-vertices to specify temporal dependence. The same approach can be used to
deal with the other trees.

After determining the structure and parameters of the first tree, these parameters are fixed and
used as input for coping with the second tree. The rest of the tree structures and parameters are
determined in a similar way as the first tree. Algorithm 1 presents the detailed estimation process
of the S-vine copula model.

This stepwise approach is especially advantageous for high-dimensional copula models like the
S-vine, where full joint maximum likelihood estimation becomes computationally prohibitive. We
estimate the parameters edge-by-edge following the tree structure, which provides at least a local
optimum for each bivariate copula term. While it does not guarantee a global optimum of the full
likelihood, it is widely used in vine copula modeling due to its scalability and traceability, especially
important given the large number of parameters involved, even in moderate dimensions (Shi &
Yang, 2018; Nagler et al., 2022; Sun et al., 2023). A potential limitation of this sequential approach
is that it does not guarantee a global optimum and may be sensitive to the ordering of the vine
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Algorithm 2. Simulating the predictive distribution from a fitted S-vine copula model.

INPUT: The fitted S-vine copula model V, C(V); historical observations s; = (1t - - - » Sm,t);
number of simulations L.

1: zj,t;— Fi(sje) forj=1,...,m;

2 Zt = (Zl,t) ZZ,tJ e Zm,t);

3: up < Re)(z1);

4: forl=1,...,Ldo

5 Simulate u(zl) = (ugl)z, R u;lq)’2> with u](l% « (0, 1) which is the uniform distribution in

O, D,j=1,...,m

I — I
6: (zt, ZQFI) ‘_RC(IV)(”I’ u(z));
0) —1 (. ;
7: St <—Fj (zj)tﬂ) forj=1,...,m;
8: end for
. O _ [0 0 _
9: returns; = {51,t+1’ o ’Sm,t+1}’l_ 1,...,L.

OUTPUT: Simulated predictive samples sglj_l, I=1,...,L.

structure, particularly under the simplifying assumption. Nevertheless, it provides a reliable and
scalable solution for complex dependence modeling in multivariate time series.

4.2 Predicting the distribution of breach sizes

To predict the distribution of cyber breach incidents in the next time period, we propose using the
Rosenblatt transform to simulate the predictive distribution based on the developed S-vine copula
(Czado & Nagler, 2022).

The purpose of the Rosenblatt transform is to transform a random vector to independent uni-
forms via certain conditional distributions; correspondingly, the inverse Rosenblatt transform can
transform independent uniforms to a vector with a certain joint distribution. Specifically, the
Rosenblatt transform of a random vector Z = (Z, . . ., Z;) in a d-dimensional vine copula model
C(Z) can be represented as

ui =F(Z1), Uy = C(Zz|Z1), ey Ug = C(Zd|zl> e ,Zd_l),

namely Rez)(z1, 22, - . . » 24) 2 (uy, ua, . . ., ug), where C(zilz1, . zi—1), i=2,...,d is the condi-
tional distribution of Z; given Z, . . ., Z;_;. The inverse transformation is

2 =F Y u),zo=C Nwalu1), ...,z =C "uglus, ..., ug_1),

namely RE(IZ)(ul, Usy .. > ug) 2 (21,20, ... 24).
Algorithm 2 presents the prediction algorithm based on the fitted S-vine copula model.

5. Case study

In this section, we conduct an empirical study using the real dataset obtained from the PRC. The
first 15 time periods are used as in-sample data for model fitting, while the remaining 3 periods
serve as out-of-sample data to evaluate predictive performance. Additional analyses using the
ITRC and synthetic data are provided in the supplementary material.
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Table 3. The AIC and BIC of the clustered severity when fitted as a mixed
distribution with different numbers of clusters

Number of clusters 1 2 3 4 5
AIC 6,556.6 6,171.8 6,165.1 5,994.6 6,251.3
BIC 6,557.3 6,205.8 6,210.3 6,049.6 6,311.9

Table 4. K-means clustering of breach sizes

Cluster Groups Label
1 Gy Gg G11 G231 G2 Gog Gog Extreme
2 G2 G4 Gg Gy G17 G19 G23 Go7 Gog Large
s s 6567612 GlSG20G30631 S
4 Gz Gg G1o G13 G14 Gi1g Gos Gog Small

5.1 Risk group determination and classification

As discussed in Section 2, we observe the variability and skewness existing in the breach sizes.
To alleviate the impact of skewness and variability, we perform the square root transform with
siy =8Wir) = /Yirfori=1,...,31and 1 <t < 15. The square root transformation is chosen for
the following reasons: (i) Variance Stabilization. It reduces the range of values, which helps in
stabilizing the variance across different levels of the data. This is particularly useful when the data
exhibit heteroscedasticity, where the variance is not constant across observations. (ii) Reduction
of Skewness. The square root transformation compresses the range of large values more than it
does for smaller values, which helps in making the distribution more symmetrical. (iii) Ease of
Interpretation. The square root transformation is less aggressive and retains more of the original
data’s characteristics, making it easier to interpret the transformed values in the context of the
original data.

Note that there exist extremely large variations among the groups; that is, some groups have
extremely large breach sizes (e.g., Gg, G11, and Gy ), while others have small breach sizes (e.g., G14,
Gis, and Gys). To accommodate the heterogeneity between the groups, we use the K-means clus-
tering algorithm (Hartigan & Wong, 1979) to classify the 31 groups into 4 clusters. The K-means
algorithm is well-suited for this task because it partitions the data into clusters by minimizing the
within-cluster variance, thereby ensuring that each cluster contains groups with similar breach
size characteristics. This method effectively reduces the complexity and variability within each
cluster, allowing for more accurate modeling and analysis. The criteria for determining the num-
ber of clusters are AIC and BIC, which are obtained by fitting the training data in each cluster with
the mixed distribution in Eq. (3).

Table 3 shows AICs and BICs for the number of clusters, ranging from 1 to 5. We observe that
when clustering the 31 groups into 4 clusters, it has the smallest AIC and BIC. Restated, we use
4 clusters for two reasons: (i) The data are sparse and the size of the data is small. If we use too few
clusters (e.g., 1), the result cannot accommodate the heterogeneity; if we use too many clusters
(e.g., 5), the result leads to non-robust statistical estimates and inferences because of sparsity and
small sample sizes. (ii) In practice, especially for insurance ratemaking purposes, groups that have
similar characteristics are used to determine risk and premium for their members. Indeed, it is a
common practice to cluster them into four categories: extreme, large, medium, and small.

Table 4 presents the clustering result based on the training data. We observe that cluster
1 is labeled as extreme risk, containing 7 groups and most of them have the HACK breach
type (e.g., G1, Ge, Gi11, Ga1, and Gag); cluster 2 is labeled as large risk, containing 9 groups;
cluster 3 is labeled as medium risk, containing 7 groups; and cluster 4 is labeled as small
risk, containing 8 groups. We fit the mixed distribution of Eq. (3) for each cluster, which
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Table 5. Estimated parameters and their standard errors for the marginal distribution of
severity in each cluster, where "Est." represents the estimates and "SE" is the standard error

Cluster Parameter A "w ou & bu
1 Est. 33.397 750.567 1,220.549 0.863 0.600
SE 13.038 0.003 329.207 0.261 0.048
2 Est. 6.643 299.083 299.990 0.427 0.363
SE 1.4065 0.011 135.299 0.320 0.041
8 Est. 2.839 142.582 204.662 1.702 0.257
SE 0.333 7.538 95.566 0.548 0.043
4 Est. 1.314 117.781 95.644 1.344 0.183
SE 0.124 2.876 43.590 0.481 0.035
(a) (b) (c) (d)
2 ' 3 4 3
(=2 d =" = e
o S x,,1
° 0.4 0?5 0:6 0:7 0:8 0:9 110 0:7 0:8 019 1?0 N 0.'75 0.'80 0.'85 0.'90 0.'95 1.b0 017 O:E 0?9 1:0
Theoretical Probability Theoretical Probability Theoretical Probability Theoretical Probability
Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 3. PP-plot of fitted mixed distribution of severity for each cluster.

accommodates the heterogeneity observed in the data. We would like to note that different clus-
tering algorithms can yield varying clustering results. In the supplementary material, we provide
two additional commonly used methods: hierarchical clustering (James et al., 2013) and Gaussian
mixture models (GMM) (Maugis et al., 2009). As expected, these approaches produce different
cluster assignments. Nevertheless, we find that the predictive performance of the K-means method
is comparable to that of the hierarchical and GMM approaches. Given its simplicity and natural
alignment with four commonly used risk groups in practice, we adopt the K-means method as the
clustering approach in our analysis.

Table 5 summarizes the estimated parameters and their standard errors. We observe that all
the parameters are significant at the level of 0.05 except for £ in cluster 2. The positive values of
& indicate that the distributions are heavy-tailed. To further examine the tail fitting performance,
which is a major concern for insurance companies, Figure 3 shows the PP-plots. We observe that
all the points are around the 45-degree line, which further indicates a good tail fitting for each
cluster.

5.2 Estimating dependence structures

Having determined the marginal distribution of breach sizes, we use Algorithm 1 to model the
temporal and cross-group dependence within each cluster, while assuming the clusters are inde-
pendent of each other. The pair copula set Q2 in Algorithm 1 contains all the bivariate parametric
copulas in R package rvinecopulalib (Nagler & Vatter, 2022). Note that the Markov order of p=1
is often sufficient for modeling purposes in practice (Nagler et al., 2022); in our study, we also set
p =1to ensure model parsimony. In the supplementary materials, we provide additional analyses
with p=2 and p =3 to assess the impact of higher-order dependencies. The results show only
marginal improvements in distributional predictive performance in some cases, suggesting that
increasing the order beyond p =1 does not yield substantial benefits in our setting. Therefore,
the first-order specification strikes a favorable balance between model complexity and predictive
accuracy.
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Figure 4. The first tree of the S-vine fitted on the first 15 time periods data.

Figure 4 shows the first tree of the fitted S-vine structure in each cluster. The construction
procedure has two steps:

e Cross-group structure. For each cluster, the nodes are connected according to the degree of
correlation in a sequential manner. For example, for cluster 2, the two most correlated groups
(among the 9 groups) are connected first; i.e., Gy and Gy are connected first because they
are the most correlated pair with T = 0.5294, meaning that an edge is added between nodes
Gy,¢ and Gy, where G;; represents the severity at time ¢ in group i fori=1,2,...,31. Then,
the two groups with the second-strongest correlation are connected. This process is repeated
until all the 9 groups are connected to form the cross-group R-vine structure at time ¢. Note
that the cross-group dependence at time ¢ + 1 is the same as that of time ¢, and that the vine
structures in clusters 1, 3, and 4 are constructed in the same manner.

e Temporal structure. We compare the temporal dependence at adjacent time points among
two time series in the same cluster. The groups with the largest |t| is selected to por-
tray the temporal dependence. For example, in cluster 2, Gy; and Gjg 4 are connected to
specify the temporal dependence in cluster 2 because they exhibit the largest temporal depen-
dence. From Figure 4 we observe that the nodes from the same industry are more likely
to be connected. For instance, G1, G2z, and Ga4 belonging to the MED industry, are con-
nected in the fitted vine of cluster 1; G, and G4 are connected in the fitted vine of cluster 2,
and both belong to BSF. Similarly, G2 and Gys are connected in the fitted vine of cluster 3
while G13 and G4 are connected in the fitted vine of cluster 4, all belonging to BSR. Moreover,
we observe that nodes belonging to the same breach type are more likely to be connected as
well. For example, G;, G, and Gy; are connected in the fitted vine of cluster 1, and belong to
HACK; Gis, Gs, and Gz are connected in the fitted vine of cluster 3, and belong to OTHER;
Gs3, Gy and Ggg, belonging to INSD, are connected in the fitted vine of cluster 4.

After determining the structure of the first tree, we select the parametric copulas from €2 based on
the AIC criterion and estimate their parameters. Then, we fix the first tree and determine the next
tree. The second tree is constructed in the same fashion as the first, except for the constraint that
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Figure 5. Violin plots of the predicted distributions of breach sizes for the extreme cluster, where a red circle represents an
observed value; a green dot and a blue star, respectively, represent the predicted median and mean.

is set by the preceding tree. This procedure is repeated to determine the rest of the trees and esti-
mate their copula parameters. For the first trees in the 4 clusters, the selected copulas are Gaussian,
Gumbel, Joe, Clayton, Frank, BB6, and BB7, respectively. There are 13, 17, 13, and 15 edges in the
first trees resulting from the 4 clusters, respectively. The most-often selected dependence structure
is the Joe copula, which accounts for 53.45%. The second and third most-selected copula struc-
tures are Clayton copula with 12.07% and Gumbel copula with 8.62%, respectively. Since both Joe
and Gumbel copulas indicate an upper tail dependence, there exists strong dependence among the
large breach severities. For the second tree, the Joe copula is the most-selected copula structure
except for the independent copula, which accounts for 9.26%. Clayton and Frank copulas account
for 12.96% in total. We also observe: the higher the level of the tree, the larger the proportion of
independent copulas. That is, the higher the level of the tree, the weaker the dependence. This is
consistent with our principle of connecting the most correlated edges as early as possible.

5.3 Predicting the distribution of breach sizes

We use Algorithm 2 to conduct the rolling prediction, where L = 5, 000 simulations. We use the
fitted model based on {y;+|1 <i <31,1 <t <t*}to predict {yi 1|1 <i<31}fort*=15,...,17.
We depict the violin plots of the predicted distributions of breach sizes for each labeled cluster. In
each violin plot, the red circle indicates the observed value; the green dot and the blue star, respec-
tively, indicate the predicted median and mean. Recall that in a violin plot, the wide part represents
a high probability, and the thinner part represents a low probability. Figure 5 shows the predicted
breach size distributions for the extreme cluster. The predictive distributions appear satisfactory,
as all observed severities fall within the wider sections of the violin plots, except for those in Gy,
which corresponds to hacking incidents in BSR. This suggests that predicting hacking incidents
related to BSR is particularly challenging, which is a reasonable expectation.

Figure 6 illustrates the predicted breach size distribution for the large cluster. We again observe
that the proposed model demonstrates satisfactory performance across all group members, with
observed values falling within the predicted distribution with high probability. However, an excep-
tion is noted for period 18 in G, which pertains to hacking incidents in the EDU sector. This
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Figure 6. Violin plots of the predicted distributions of breach sizes for the large cluster, where a red circle represents an
observed value; a green dot and a blue star, respectively, represent the predicted median and mean.

suggests that while the model generally performs well, there may be particular challenges in accu-
rately predicting hacking incidents within the educational sector during specific periods. These
challenges could be attributed to unique factors within the EDU sector, such as varying levels of
cybersecurity measures, differences in incident reporting, or the unpredictable nature of hacking
activities targeting educational institutions.

For the medium cluster, the model exhibits strong predictive performance across most of
the groups over the three periods, as shown in Figure 7. The predicted breach sizes align well
with the observed values, indicating the model’s robustness in capturing the underlying patterns
within this cluster. However, exceptions are observed in G7 and G12, where the actual values
significantly exceed the predicted ones. Both of these groups pertain to businesses involved in
unintended disclosure (i.e., DISC) incidents, which do not involve hacking. This discrepancy
suggests that the model may have limitations in accurately predicting the severity of incidents
related to unintended disclosures within the business sector in the medium cluster. The underes-
timation could be attributed to the unpredictable nature of DISC incidents, which might involve
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Figure 7. Violin plots of the predicted distributions of breach sizes for the medium cluster, where a red circle represents an
observed value; a green dot and a blue star, respectively, represent the predicted median and mean.
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Figure 8. Violin plots of the predicted distributions of breach sizes for the small cluster, where a red circle represents an
observed value; a green dot and a blue star, respectively, represent the predicted median and mean.

complex and variable factors such as human error, data handling practices, or lapses in internal
security protocols. These factors could lead to more severe outcomes than the model anticipates.

For the small cluster in Figure 8, the proposed model demonstrates satisfactory performance
across all groups and periods. The predicted distributions align well with the observed values,
indicating that the model effectively captures the dynamics within this cluster. This consistency
across all periods suggests that the model is robust when dealing with groups with small breach
sizes, reinforcing its versatility and reliability in various scenarios.

Model comparison. To fully evaluate the prediction performance of the model, we compare
the prediction performance of our approach with the other models:
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e M1 (Proposed model). This model uses the parametric marginal distributions of
Eq. (3) and S-vine dependence structure on the clustered data.

e M2 (Empirical-M-vine model). This model uses empirical marginals and the dependence
structure is assumed to be M-vine (Beare & Seo, 2015).

e M3 (Kernel-gpd-M-vine model). This model uses the parametric marginal distribution of
Eq. (3) and M-vine dependence structure.

e M4 (Kernel-gpd-S-vine model). This is the same as the proposed model. However, this model
is applied to the non-clustered data.

e MS5 (D-vine model). This is the model proposed in Fang et al. (2021), where the dependence
structure is D-vine.

e M6 (Panel data model). This is the popular model for temporal and cross-group dependence
in the literature (Diggle et al., 2002). Specifically, the severity is modeled as follows:

Sit = Bo + Bit + BoGi + B3t * G; + €,

where G; represents the group i, and €;; follows a multivariate normal distribution (MVN)
with an AR(1) correlation structure. Specifically, it satisfies

(S1,...,8m) ~MVN(w, V),

where §; = (Si1,...,Sin),i=1,...,m is an n-dimensional vector representing the severity
of group i in n periods, p is the mean vector, and V is the covariance matrix with
1 0 . pnm—l
, 0 1 .. pnm—Z
V=0
pnm—l pnm—Z .. 1

e M7 (Mixed effect model). The mixed effect model is the other popular approach to model-
ing dependent data (Faraway, 2016). The mixed effect model for severity accommodates the
random effect among groups, and fixed effects for time and groups. That is,

Sit = Bo + B1Gi + Bot + viGi + €in,
where By, B1, B2 are the fixed effect parameters, y; is the random effect parameter, and €; =
(€i1,...,¢€iy) follows an AR(1) correlation structure.

To evaluate the predictive accuracy, we use both the point assessment and the distribution
assessment.

e Mean Squared Error (MSE): This is used for the point prediction assessment. Let ¥;; be the
prediction and y;; be the observed value. Then, we have

l m n
MSE = — Z Z it — Jie)™.

i=1 t=1
e Mean Absolute Deviation (MAD): This is used for the point prediction assessment, with
1 m n
MAD = — it — Vitl.
mn ; ; Vit — Vil

e Continuous Ranked Probability Score (CRPS): This has been widely used in the literature as
an accuracy measure for probability forecasts (Epstein, 1969; Matheson & Winkler, 1976). It
is a scoring rule that is used for evaluating the distribution prediction assessment (Matheson
& Winkler, 1976). Let F( - ) be the predicted distribution and 1{-} be the indicator function.
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Figure 9. Violin plots of the fifth root transformed MSE for each model in various clusters, where a green dot indicates a
median value.
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Figure 10. Violin plots of the square root transformed MAD for each model in various clusters, where a green dot indicates a
median value.

Then, we have
CRPS(F, y) = / (F(w) — Ty < wh)dw.
R

Note that a smaller score indicates a better prediction.

Figure 9 presents violin plots of the transformed MSE (for visualization purposes) for each
model across different clusters. In the extreme cluster, M1, M2, M3, and M5 exhibit comparable
predictive performance in terms of MSE. Notably, all these models are copula-based, inherently
capturing nonlinear dependence structures among variables. This suggests that incorporating
nonlinear dependence significantly enhances predictive accuracy, particularly for extreme cases.
For the large cluster, M1 and M5 outperform the other models. In the medium cluster, M1, M2,
M3, and M4 demonstrate similar predictive performance. In the small cluster, M1 stands out as
the best-performing model. A similar pattern is observed in Figure 10, which presents violin plots
of MAD. In Figure 11, the CRPS results reveal that M1, M2, and M3 achieve the best performance,
exhibiting low and stable CRPS values in the extreme cluster. For the large cluster, M1, M4, and
M5 show comparable performance, outperforming the remaining models. In the medium cluster,
M1, M2, M3, and M4 again exhibit similar predictive accuracy. Finally, for the small cluster, M1
remains the top-performing model, consistently demonstrating superior predictive capability.

In summary, the proposed M1 model demonstrates satisfactory predictive performance for
each cluster and significantly outperforms other models in the small cluster.

In the following, we further compare the prediction accuracy by combining all the predictions,
which are described in Table 6. We observe that the proposed model is significantly better than the
other models in terms of both MSE and MAD. We also compare the prediction accuracy based
on the distribution assessment metric CRPS. Table 7 shows the medians of the CRPSs for each
model, and the percentages of the CRPS of M1 that are less than or equal to those of other models
(i.e., M2-M7). The accuracy advantage of our model is also shown in Table 7. We observe that the
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Table 6. MSEs and MADs of predicted breach sizes for each model

Model  MSE (x10%) MAD Model  MSE (x10%) MAD

M1 3.557570 20,709,470 M5 4377343 22,890,626
sy ,'669','8'4"7" I ”éé;dzé,'éié
M3 8253925 34,727,019 M7 4121542 33,578,668
e e .75,.849’.9@ B e b

Table 7. Medians of CRPSs and percentages of CRPS of M1 less than or equal to that of the other models

Model  Median  Percentage Improvement  Model Median Percentage  Improvement
M1 37,312 = = M5 38,950 51.61% 1.61%
M2 210,681 62.37% 12.37% M6 4,668,382 88.17% 38.17%
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Figure 11. Violin plots of the square root transformed CPRS for each model in various clusters, where a green dot indicates a
median value.

proposed model has the smallest median of CRPSs among all the models, and the improvement
ranges from 1.61% to 40.32%.

The superior predictive performance of the proposed model can be attributed to the combined
effects of clustering and flexible dependence modeling. Data breach severities exhibit significant
heterogeneity across industry sectors. The clustering step in our M1 model addresses this hetero-
geneity by grouping industries with similar severity characteristics, enabling the model to learn
more tailored marginal distributions and dependence structures within each cluster. This targeted
approach enhances the model’s ability to capture intra-group dynamics. Empirically, we observe
that the inclusion of clustering leads to substantial improvements in prediction accuracy, as evi-
denced by the performance comparison between M1 and M4. Additional analysis provided in the
supplementary material, where clustering is incorporated into the M3 model, further confirms
the positive impact of clustering on predictive accuracy. Complementing this, the S-vine copula
model offers a highly flexible framework for capturing both temporal and cross-sectional depen-
dencies. Unlike simpler dependence structures, the S-vine is very flexible, which is essential in
modeling the complex dynamics of cyber risk. By comparing the predictive performance of M1
and M3 with clustering (see supplementary material), we find that the use of a more expressive
dependence structure, specifically the S-vine, leads to further improvements. These results collec-
tively demonstrate that both clustering and the chosen dependence structure play critical roles in
enhancing the predictive capability of the M1 model.

In the supplementary material, we have also compared the proposed M1 model to some
deep learning models including a feedforward neural network model and a state-of-the-art deep
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learning model-TimeMixer (Wang et al., 2024). We found that deep learning models, such as
TimeMixer, demonstrate promising and competitive performance in terms of point prediction
accuracy. Their ability to automatically learn complex temporal patterns and interactions across
multiple series makes them powerful tools in time series forecasting. However, the proposed M1
model offers distinct advantages that are particularly important in risk modeling and ratemaking
contexts. Specifically, M1 is designed to produce full predictive distributions rather than just point
estimates, enabling a richer characterization of uncertainty. This distributional output supports
important downstream tasks such as probabilistic risk assessment, Value-at-Risk, and Conditional
Tail Expectation estimation, which are not straightforward to obtain from standard deep learning
architectures without additional post-processing or calibration. Therefore, while deep learn-
ing approaches are indeed promising, the M1 model provides interpretable, distribution-based
forecasts that are better aligned with the needs of insurance and risk management applications.

6. Insurance pricing

In this section, we evaluate the predictive performance of our model in the context of the ratemak-
ing market. We utilize both the ordered Lorenz curve and the Gini index, as proposed by (Jed)
Frees et al. (2014), to assess predictive efficiency. The ordered Lorenz curve graphically repre-
sents the relationship between loss distribution and premium distribution, with both distributions
ordered by their relativities. The associated Gini index is particularly significant; insurers who
adopt a rating structure with a higher Gini index are more likely to achieve a profitable portfo-
lio (Frees et al., 2011). Since there is no standard method for converting the number of breached
records into a dollar loss, we treat the number of breached records as equivalent to the dollar
loss. In underwriting, the dollar loss may be determined by referencing historical data, such as the
typical dollar loss associated with each breached record.

6.1 Ordered lorenz curve

In this subsection, we explore two different base premium strategies for the ordered Lorenz curve.

In the first strategy, we consider the loss predicted by each model from M2 to M7 as the base
premium, while the loss predicted by our proposed model M1 serves as the competing premium.
A larger area between the line of equality and the curve indicates a more favorable performance
for M1. As shown in the ordered Lorenz curves in Figure 12a, the area between the line of equality
and the curve is consistently substantial across all base premiums. This suggests that our proposed
model, M1, is capable of generating more profitable contracts.

Our second strategy for establishing the base premium takes a simpler approach: using the
sample mean of each group from the previous years as the base premium. For example, the loss
at T =16 is predicted based on the sample mean of losses from T'=1 to T = 15 for each group.
The losses predicted by all models serve as the competing premiums. The ordered Lorenz curves
in Figure 12b demonstrate that the proposed M1 model outperforms the other models by creating
a significant gap between the premium and loss distributions.

6.2 Gini index
We begin by considering the Gini index with the base premiums set as the sample means of losses.
Table 8 presents the computed Gini indices and their corresponding standard errors (SE) for
various models of the number of breach records. The table reveals that the Gini index for the
M1 model is 0.5850 with a standard error of 0.1671, making it the highest among the models
and statistically significant at the 0.05 level. These results indicate that the proposed M1 model
outperforms the other models.

Now, we consider the comparison of different base premiums. Table 9 provides a comparative
analysis of the Gini indices for the competing premiums, each based on a different base premium.
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Table 8. Giniindicesand theirstandard errors (SE) based on various models for the number of breach records
with base premium from the sample means

Model M1 M2 M3 M4 M5 M6 M7
Gini index 0.5850 0.0456 -0.2021 -0.1599 -0.1015 -0.1029 0.5641
SE 0.1671 0.2094 0.2729 0.3576 0.2695 0.3180 0.3435

Table 9. Giniindices of different models for the number of breach records

Base premium M1 M2 M3 M4 M5 Mé M7
Gini indices M1 = 0.9754 0.9385 0.9883 0.7346 0.5878 0.7891
M2 -0.0937 - 0.7103 0.5607 0.2295 0.0459 0.0873
M3 -0.1429 0.7473 - 0.5511 0.0277 -0.1702 0.3295
M4 0.0941 0.7982 0.6904 - 0.2702 -0.1141 0.5677
M5 0.5197 0.9849 0.9253 0.9798 = 0.1645 0.7939
M6 0.5129 0.9864 0.9760 0.9856 0.4084 - 0.8155
M7 0.3930 0.9715 0.9704 0.9830 0.6273 0.3117 -
Maximum 0.5197 0.9864 0.9760 0.9883 0.7346 0.5878 0.8155
(a) (b)
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Figure 12. Ordered Lorenz curves of the number of breached records.

The last row of the table presents the maximum Gini index observed for each base premium. For
model selection, we employ the “mini-max” criterion proposed by (Jed) Frees et al. (2014), which
involves selecting the model with the smallest maximum Gini index across various competing
models. From Table 9, we see that the M1 model has the smallest maximum Gini index value of
0.5197, indicating that it demonstrates the least vulnerability compared to the other models.

In conclusion, the above analysis has demonstrated the robustness and superior performance
of the proposed M1 model in the context of insurance rating.

7. Conclusion and discussion

We have introduced a novel cluster-based multivariate dependence model that effectively cap-
tures both temporal and cross-group dependencies, providing a more accurate representation of
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multivariate cyber breach risks. This model employs a kernel approach for modeling breach sever-
ity, while utilizing an S-vine copula to account for the multivariate dependencies. The validity of
this framework was demonstrated through its application to case studies involving two real-world
cyber breach data as well as synthetic data. The results consistently showed that the proposed
model delivers satisfactory fitting and predictive performance. In the context of ratemaking, the
model has proven to be the least vulnerable, facilitating a more equitable and profitable distri-
bution of premiums relative to losses. This makes the proposed model a highly effective tool
for insurers seeking to optimize their rating structures and achieve more reliable and profitable
portfolios.

In practice, the proposed framework can be used by insurance companies who offer cyber
insurance policies to perform group rating. The typical 6-month insurance policy can be created
by following the empirical study in Section 5 as it predicts the loss very well. In fact, insurance
companies can also customize their policies with different months (e.g., 1 month, 3 months, or
12 months) by following our approach. Since the proposed framework simulates the predictive
distribution of loss, it can be used for risk management as well. For example, an insurance com-
pany may use the 95th percentile as the extreme loss scenario to prepare reserves (McNeil et al.,
2015).

Our study has the following limitations: (i) The dataset used in this study may not capture
all breach incidents, as some breaches might go unreported. This potential underreporting could
lead to an incomplete picture of the true extent of cyber breach risks. However, it is important to
note that this dataset remains the most widely analyzed and comprehensive resource available to
the research community, making it a valuable tool despite its limitations. (ii) Our methodology
focuses on predicting the distribution of breach sizes within a group, rather than predicting when
the next breach will occur or identifying which specific enterprise within the group will be affected.
A more detailed point process model could be appropriate for studies aimed at predicting the
timing and location of future incidents. Developing such a model would require substantial effort
in capturing and modeling the complex dynamics of incident occurrences, which we leave as an
avenue for future research.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/
$1748499525100109.
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