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EXISTENCE OF SOLUTIONS FOR A
VECTOR SADDLE POINT PROBLEM

K.R. KAzMI AND S. KHAN

We establish an existence theorem for weak saddle points of a vector valued func-
tion by making use of a vector variational inequality and convex functions.

1. INTRODUCTION

(R™, RT) is an ordered Hilbert Space with an ordering < on R™ defined by the
convex cone RT,
Ve,y € R™, y<r e r—y€RT.

If int RT* denotes the topological interior of the cone RY, then the weak ordering £ R™
is defined by
Vy,z€ R™, y£z &z —y¢int RT.

Let K and C be nonempty subsets of R™ and RP respectively. Given a vector valued
function L : K x C — R™ then the Vector Saddle Point Problem (in short, VSPP) is
to find z* € K, y* € C such that

(1) L(z*,y*) — L(z,y") ¢ int R
(2) L(z*,y) — L(z*,y") ¢ int RT,
forall z€ K and y € C.

The solution (z*,y*) of VSPP is called a weak RT -saddle point of the function
L.

DEFINITION 1.1: A function f : K — R™, where K is convex set, is called
R7-convex if for each z,y € K and X € [0,1],

3) Af(@)+ (1 =N f(y) - fy+ Mz —v)) € RT.

DEFINITION 1.2: A function f is said to be RT -concave, if —f is a R}*-convex.
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DEFINITION 1.3: (Tanaka [6].) A vector valued function f : K — R™, where
K C R™ is a convex set, is called natural quasi R -convex on K if

f(xz + (1 - Ay) € Co{f(2), f(3)} - BT,

for every z,y € K and X € [0,1], where Co A denotes the convex hull of the set A.
For an example of a natural quasi R7 -convex function, see Tanaka [6].

DEFINITION 1.4: A multifunction T from R"™ into itself is called upper semicon-
tinous if {z,} converging to z, and {y,}, with y, € T'(z,), converging to y, implies
yeT(x).

In this paper, we establish an existence theorem for solutions for VSPP by making
use of vector variational inequalities and convex functions.

The following theorem (KKM-Fan theorem, see Fan [3]) is important for the proof
of our main resuit.

THEOREM 1.1. Let E be a subset of topological vector space X. For each
z € E, let a closed set F{z) in X be given such that F(z) is compact for at least one
xz € E. If the convex hull of every finite subset {x1,Z3,...,Zn} of F is contained in

n
the corresponding union {J F(z;), then (| F(z) # 0.
i=1 zeE

2. EXISTENCE OF SOLUTIONS

First we prove the following Theorem.

THEOREM 2.1. Let the sets K and C be convex and let the function L :
K x C — R™ be RT -convex in the first argument and RT -concave in the second
argument. Then any local weak RT -saddle point of L is a global weak RT}-saddle
point.

PROOF: Let (z*,y*) be a local weak R7-saddle point of L(x,y) over K x C.
Then, for some neighbourhood V of (z*,¢*),

L(z*,y*) — L(z,y*) € int RT,
L(z*,y) — L(z*,y*) ¢ int RY, VY(z,y) e VN (K xC).

Suppose, for contradiction, that (z*,y*) is not a global weak R7 -saddle point. Then,
there is some (z1,y1) € K x C for which

L(z*,y*) — L(z1,y") € int RY,
L(z",1) — L(z",y*) € int RY.
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Since the sets K and C are convex, for 0 < @ < 1, z* + a(z; —z*) € K and
y* +a(yy —y*) € C. Since L is RT-convex in the first argument and R7-concave in
the second argument,

L(z* + a(z1 — z*),y*) — L(z*,y*) € =R} — a(L(z*,y*) — L(z1,¥*))
€ —R™ —int RT
C —int R}

and

L(z*,y" +a(yr - y*) - L(z",y") € R} — a(L(z",y") — L(z.,11))
€ R +int RY
Cint R}
which contradicts the local weak RT-saddle point, since (z* + a(zi —z*),y* +
a(yr —y*)) € V for sufficiently small positive a. a

Next, we establish the equivalence between the VSPP and the vector variational
inequality problem (in short, VVIP) of finding z* € K, y* € T(z*) such that

(4) (L'(z*,y*),z—z*) ¢ —int R, VzeK,
where T : K — C is a multifunction defined by
(5) T(z*):={y € C:L(z* 2) — L(z*,y) ¢ nt R}, VzeC},

and L'(z*,y*) denotes the Fréchet derivative of L at z*.
Let W := R™\ (—int RT).
THEOREM 2.2. Lettheset K be convex and let each component L; of the vector

valued function L be RT}-convex and Fréchet differentiable in the first argument. Then
the VSPP and VVIP have the same solution set.

Proor: Let (z*,y*) be a solution of VSPP. If z € K and 0 € & < 1, then
z* + a(z — z*) € K. Hence (1) becomes

o '[L(z* + a(z — 2*),y*) - L(z*,y*)| € W, Va e (0,1].
Since W is closed and L is Fréchet differentiable in the first argument, it follows that
(L'(z*,y*),z — z=*) € —int R,

and y* € T(z*) follows from (2).
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Conversely, let (z*,y*) satisfy (1) and (2). Since L is R7*-convex then we have,
for each z € K,

L(SE,y*) _ L(:z:‘,y') _ (L’(Z‘,y‘),l’ _ I‘> € Rm’
and hence, by Chen (1, Lemma 2.1 (iv)] we have
L(z*,y*) - L(z,y*) € RT.

(2) follows from (5). 0
Finally, we prove the main result of this paper.

THEOREM 2.3. Let K be a nonempty closed convex set in R™; let C be a
nonempty compact set in RP; let L : K x C — R™ be a continuously differentiable
function which is RT-convex in the first argument; let L' be a continuous function in
both z and y; let T : K —> C be the multifunction defined by (5). Suppose that, for
each fixed (z,y) € K x C, the function (L'(z,y),z — ) is a natural quasi R -convex
function in z € K. If there exists a nonempty compact subset B of R™ and zop € BNK
such that for any z € K \ B, there exists y € T(z) such that

(L'(z,y),zo —z) € —int R,

then VSPP has a global weak RT}-saddle point.

PRrOOF: In order to prove the theorem, it is sufficient to show that the VVIP has
a solution z* € K, y* € T(z*). Define a multifunction F: K — K by

F(2) = {z € K : 3y € T(x) such that (L'(z,y),z — z) ¢ —int RT'}, 2 € K.

We claim that the convex hull of every finite subset {z;,z2,...,Zm} of K is con-

m m
tained in the corresponding union |J F(z;), that is, Co{z,,Z2,...,zm} C |J F(z:).
i=1

i=1

m
Indeed, let o; 20, 1 < i< m, with 3 o, =1.

i=1

Suppose that z = ) o;z; € |J F(z;). Then for any y € T'(z),

i=1 i=1

(L'(z,y),z: — ) € —int R, Vi.
Let

V= {z €K :(L'(z,y),2— z)€ —int R} forany ye€ T(IL’)}
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for fixed z € K. Let 21,22 € V and a € [0,1]. Then we have
(6) (L'(z,y),z —z) € —int R}, i=1,2.

Since (L'(z,y), z—z) is natural quasi R -convex in z € K then there exists 8 € [0,1],
such that

(L'(z,y),021 + (1 — @)z2 — z) € B{L'(z,y), 21 — =) + (1 = B){L'(z,y), 22 — =) — R}.
Using (6) we have
(L'(z,y),az; + (1 — @)z, — z) € —int R — int RT — R C —int R}

Hence V is a convex subset of K for each fixed z € K, and hence we have

m m m
<LI (Z o;T;, y) y Z Q;T; — Z a,'ZL';'> € —int RT
=1 i=1 i=1

Thus, 0 = —0 € int RP*, which is a contradiction and our claim is then verified. Now,
by the continuity of L and the closedness of R™ \ (int RT), the set T'(z) is closed for
each z € K. Since T'(z) is a subset of compact set C, T(z) turns out to be compact
for each fixed z € K. Let {z,} be a sequence in K such that £z, — = € K and let
{yn} be a sequence such that y, € T(z,). Since y, € T{(z,),

(N L(zn, z) — L(zn,ys) € R™\ (int RY).

Since {yn} € C and C is compact, without loss of generality, we can assume that there
exists y € C such that y, — y. Now the continuity of L and the closedness of W

gives that
L(z,z) — L(z,y) € R™\ (int R7),

which implies that y € T'(z). Thus the multifunction T is upper semicontinuous.
Next, we claim that F(z) is closed for each z € K. Indeed, let {z,} C F(z) such
that z, — z € K. Since z,, € F(z) for all n, there exists y, € T(z,) such that

(L'(Tnyyn), 2 —zn) €W, V2 € K.

As {yn} C C, without loss of generality, we can assume that there exists y € C such
that y, — y.
Since L' is continuous, T is upper semicontinous and W is closed, we have

(L' (Tnsyn), 2 — zp) — (L(z,y), 2 —2) €W
or (L'(z,y),(z — z)) & —int RT.
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Hence z € F(z).

Finally, we claim that for zo € BN K, F(zp) is compact. Indeed, suppose that
there exists T € F(zq) such that T ¢ B. Since T € F(zo), there exists § € T(Z) such
that

(8) (L'(Z,9),z0 —Z) ¢ —int RT.
Since T ¢ B, by hypothesis, there exists § € T(Z) such that
(L'(,9),70 —Z) € —int RT,

which contradicts (8). Hence F(xo) C B. Since B is compact and F(zg) is closed,

F(zo) is compact. By Theorem 1.1, it follows that () F(2) # 0. Thus, there exists
z€EK

z* € K,y* € T(z*) such that
(L'(z*,y*),z—2") ¢ —int R}, Vz € K. 0

REMARK.

(i) If L(z,y) depends upon z only, then VVIP reduces to the problem con-
sidered by Chen and Craven [2]. See also Kazmi [4].

(ii) If L(z,y) is a scalar valued function, VSPP reduces to the scalar sad-
dle point problem studied by Parida and Sen [5] by making use of the
Kakutani fixed point theorem.
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