
SYMMETRIES OF SURFACES: AN EXTENSION OF
KULKARNFS THEOREM

by GARETH A. JONES

(Received 6 October, 1992)

1. Introduction. In [6], Kulkarni considered the set of values of g for which a given
finite group G acts faithfully as a group of orientation-preserving self-homeomorphisms of
a compact, connected, orientable surface 2K of genus g. Let us denote this set by Sf(G).
Then Kulkarni showed that there exists a positive integer K, depending only on the order
d = \G\ of G, the exponent e = exp G of G, and the structure of a Sylow 2-subgroup G2 of
G, satisfying:

THEOREM 1. (Kulkarni [6]) 5^(G) consists of all but finitely many non-negative
integers g = 1 mod K.

REMARKS 1. The precise determination of 5^(G) is, in general, a very difficult task
(see [7] for cyclic groups of prime-power order).

2. Kulkarni restricted attention to genera g > 2 , but in fact there is no need to
exclude the values g = 0 and 1.

My aim here is to consider the sets

Sfh(G) = {g | G acts on 2S with quotient-surface 2,,}

for each h e N. I shall show that there exists an integer 7, again depending only on d, e
and G2, which satisfies:

THEOREM 2. 5 /̂,(G) consists of all but finitely many non-negative integers g =
d{h- l) + lmod7.

Since S (̂G) = U ^ ( G ) , Theorem 1 can be deduced from Theorem 2 (see Section 6).

For the definitions of J and K, see Section 2. Although J and K depend only on d, e
and G2, the sets 6^(G) and 5^,(G) themselves may depend on additional properties of G.
For example, although the cyclic and dihedral groups G = C2/, and Dr (for primes p > 2)
both have d-e = 2p and G2 = C2, we will see in Section 8 that the sets 5^(G) and 5^,(G)
are generally different for these two groups.

One motive for considering 5^,(G) is the desire to describe, for each h and G, the
branched coverings of 2;, with monodromy group G (see [3,5,8] for the case h = 0, which
is relevant to the Inverse Galois Problem [10], namely Hilbert's conjecture that every
finite group is a Galois group over Q). Any such covering-surface is a quotient, by some
subgroup of G, of a regular (or Galois) covering 2R->!!/, with monodromy group G, or
equivalently of a covering 2K—>2,,/G =2/, induced by a faithful action of G on 2K for
some g e y,,(G), so it is useful to determine Sfh{G).

It is also of interest to consider the set ^(G) of g such that G acts freely on 2S, that
is, for which the covering 2R-»2S/G is unbranched. It is easy to prove (and probably
widely-known) that for each G there exists some g{) = 1 mod d satisfying:

THEOREM 3. ^(G) =g(, + dN. (Thus S (̂G) consists of all but finitely many
g = l mod d.)

After giving some preliminary definitions and notation in Section 2, proving an
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elementary but useful number-theoretic lemma in Section 3, and stating some important
background theorems in Section 4, I shall prove Theorem 2 in Section 5 and deduce
Kulkarni's Theorem 1 in Section 6. Theorem 3 is proved in Section 7, and in Section 8 I
shall illustrate these results by determining the sets ^(G), 5^,(G) and ^(G) in a few
fairly straightforward cases. Relations between different sets S ,̂(G) are investigated in
Section 9.

I am grateful to Grzegorz Gromadzki and David Singerman for some very helpful
and stimulating conversations on this topic.

2. Definitions. Throughout this paper, G will be a finite group of order d = |G| =
Y\p"p and exponent e = exp G = Y[pe'' (P prime); thus a Sylow p-subgroup Gp of G has
p p

order p"/- and exponent pe'\ An action of G on a compact, connected, orientable surface
2K of genus g^O is a faithful (i.e. effective) representation of G as a group of
orientation-preserving self-homeomorphisms 2fi-»2K. We let

= {geN\G acts on Z,,}.

If G acts on 2R then 1JG = lh for some h e N, so <f{G) = \J yh{G) where
heN

= {geN\G acts on 2K with Y.JG = 2,,}.
Define

d
n' : = - for each n dividing d,

T:= {n > 1 | G has an element of order n},

A:={ner | r t is a prime-power},

M,: = g c d { ( r t - l K | « e r } ,

M2: = gcd{(« - \)n' \ n e A},

U:={p\p is a prime dividing d},

U-l:={p-l\peU},

M: = - . g c d ( n - l ) .

(Note that d/e is an integer coprime to gcd(FI — 1).) In Section 3 we will see that
Ml = M2 = M.

If T is a finite 2-group, let us define g e T to be long if g has order o(g) = exp T, and
short if o(g)<exp7. Let us denote by Ta the set of short elements of T, and call T
balanced if 7° is a subgroup of index 2 in T.

LEMMA 2.1. A non-trivial 2-group T is balanced if and only if every relation of the
form

EU* = 1 (gkeT) (2.1)
k = \

involves an even number of long elements gk.
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Proof. To see that the condition is necessary, apply the epimorphism T—* T/T° s Z2

to (2.1). For the converse, define <p:T—*Z2 by (p(g) = O or 1 as g is short or long, and
check that (j> is an epimorphism with ker cf> = Ta. •

REMARK. It is possible for T° to generate a subgroup of index 2 without forming one:
consider T = C4 x D4, of order 32 and exponent 4, for example, where T° generates
C2 x D4, which contains long elements.

Among finite 2-groups, non-trivial cyclic groups are balanced, but dihedral groups
and elementary abelian groups of rank >1 are not. There exist non-cyclic balanced
2-groups: for instance, if T\ and T2 are 2-groups, with 7, balanced and exp T{ > exp T2,
then Tj X T2 is balanced. Kulkarni's "type I" [6, Section 2.2] is equivalent to "unbalanced
or cyclic", and "type II" to "balanced and non-cyclic". Let us define a finite group G to
be balanced if its Sylow 2-subgroups G2 are balanced. Then we define

fM if G is balanced,
XjM otherwise,

and

- if G2 is balanced or trivial,
e
d

— otherwise.
.2e

REMARKS 1. This definition of the modulus K in Theorem 1 is superficially different
from but logically equivalent to that given by Kulkarni [6, §2], who denotes it by N or 2N
depending on the structure of G2.

2. M is odd if and only if G2 is non-trivial and, cyclic, in which case G is balanced;
thus J is always an integer, and likewise so is K.

Finally, some notation: I shall write m \ n to denote that m divides n, and p1 \\ n to
denote that pf is the highest power of p dividing n (where p is prime). If A and B are sets,
let A £ B mean that A is a cofinite subset of B, that is, A c B with finite complement
B — A. The cyclic and dihedral groups of order n and In are denoted by C,, and £>„, while
[a, b] denotes the commutator a~lb~'ab. The natural numbers are N = {0,1, . . .}. I have
followed Kulkarni's notation in [6] are much as possible, but internal consistency has
required a few changes.

3. An elementary lemma.
LEMMA 3.1. M, = M2 = M.

Proof. It is sufficient to show that Mx, M2 and M are all divisible by the same powers p1

of each prime p.
(i) Let peFI, If we take any n e T , then n \ e and p"' \ d, so p"^"" \ d/n = n' and

hence p""~e" \ n'(n - 1); if we take n = pe-{ e T), then p"p-'p || n'(n - 1); thus p""~e" \\ Mt.
A similar argument gives p"p~ep \\ M2. Since p e f l , p is coprime to gcd(n - 1), so
p""-"' || M.

(ii) Let p $ IT Then d, e and n' (neF) are all coprime to p, so we have
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The elements of A are just powers q, q2,. . . , qe« of primes q e FI, and gcd{q — 1, q2 —
1,. . .} = q - 1, so gcd(A - 1) = gcd(FI - 1). Now F contains A, and every element of F is
a product of elements of A, so each n e F is =1 mod// if and only if each n e A is
= 1 mod//. Thus the same powers pJ of p divide the greatest common divisors of F - 1,
A - l a n d F I - 1 . •

4. Some background theorems. In [4], Hurwitz proved that a finite group G acts on
2K, with 2,,/G = 2/,, if and only if G has generators

fli, b ah,bh,cu . . . ,ck

such that

n[«M*,-]-fu-=i (4.D
i = l ; = 1

and

( i ( ) ) (4.2)

where d = \G\ and n, = o(c,). Here cu...,ck generate stabilisers of points in the k
distinct non-regular orbits of G on 2^; by choosing these points appropriately (i.e.
replacing generators with suitable conjugates) we can arrange the factors c, in (4.1) in any
required order. If xn denotes the number of generators c, of order n, then by using the
notation introduced in Sections 1-2 we can restate Hurwitz's Theorem as follows:
gey,,(G) if and only if G has elements a,, b, ( 1 < / < / I ) and c, „ ( 1 < / < ; C , , , neT)
satisfying

(i) the elements a,, b, and c, „ generate G,
/,

00 I ! [fl<> bj]. Y\ ciM = 1 for some ordering of the elements c, „,
i=\ i M

(iii) each c, „ has order n (1 ̂ / ^x,,),

(iv) 2(g - \)-2d(h - 1) = 2 (« - !)«'*»•

Let us call such a set of elements a Hurwitz set for G of signature (h;x), where x is the
function n <-*xn.

Equation (4.2), or equivalently (iv), is the Riemann-Hurwitz formula; as in [6], in
order to study its solutions we will need to consider additive subsemigroups of N of the
form

xmm | xm e N ,
> )

where O is a finite set of positive integers. It is well-known (and easily proved) that

> c M . rcdfd>Y (4.3)

(This is sometimes called the Post Office Theorem: if stamps are available, in unlimited
supply, in denominations m e O then the attainable postal rates form the set N<P.) A
simple extension of (4.3) asserts that if km e N for each m e <t> then

{ £ xmm | xm e N, xm > km\ c N . gcd(c&). (4.4)
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5. Proof of Theorem 2. If we define

STh(G) = W+ d(h-1) + 1,

then it is sufficient to prove the following slightly stronger result:

THEOREM 2'. Sfh(G) £ &h{G).

Proof. (1) First we show that Sfh(G) c 3~h(G).
If g e S^(G) then G has a Hurwitz set satisfying the Riemann-Hurwitz formula

2(g-l)-2d(h-l)=2(n-l)n'xn, (5.1)

where xn{ e N) is the number of orbits of G with stabilisers of order n. By Lemma 3.1 the
coefficients (n — \)n' (n e F) in (5.1) have greatest common divisor M, so Z(« — l)n'xn e
NM, say

^(n~l)n'xn = tM {teN). (5.2)
ner

If G is not balanced then M = 27, so (5.1) and (5.2) give g e STh(G) as required.
Hence assume that G is balanced, so that J = M. Now the Riemann-Hurwitz formula for
the action of a Sylow 2-subgroup G2 of G on I.g is

2(g - 1) - 2v+1(y - 1) = t (2' - l)2v-'z,, (5.3)
1 = 1

where for notational convenience v = n2 and £ = e2 (so \G2\ = 2V and exp G2 = 2e), while y
is the genus of 2S/G2, and z, is the number of G2-orbits with stabilisers of order 2'
( l < i < e ) . Since G2 is balanced, by applying Lemma 2.1 to the relation (4.1) for
G2 we see that ze must be even, so (5.3) implies that g = lmod2v~e. Clearly
d = 0 mod 2V~£, so by (5.1) we have 2v~e+l | 2(n - \)n'xn = fM. Since G is balanced, d is
even and so gcd(FI — 1) = 1. Thus 2v~e \\ M, by definition of M, so t is even and therefore
(5.1) gives g - 1 - d{h - 1) = |fM e NM = IW, as required.

(2) We now show that each sufficiently large integer g e Sfh{G) is in 5^(G) by
showing that G has a Hurwitz set, satisfying conditions (i) to (iv) of Section 4. In fact it is
sufficient (and simpler) to show that these conditions can be satisfied with the additional
restriction that each of the generators c, „ has prime-power order, that is, n e A, so that
(iv) is replaced with

(iv)' 2(g - 1) - 2d(h - 1) = E (« - !)«'*»•

(Of course, those g satisfying (i), (ii), (iii) and (iv)' may form a proper subset of 5^,(G).)
First define a, = b, = \ for i = l,. . . ,h. We must now find elements cineG

(1 < i ̂ xn, n e A) satisfying (iii), (iv)' and
(i)' the elements cin generate G,
(ii)i n ciM = 1 for some ordering of the generators c,,n./.«
By (4.4) and Lemma 3.1, given any constants kn e M (ne A), each sufficiently large

multiple of M has the form £ (n - \)n'xn with integers xn^kn, so each sufficiently large

g e 9~h{G) = N + d(h - \) + I cN . 2-M + d{h - I) + I satisfies (iv)' with xn >kn. Now G
has a generating set whose elements have prime-power orders n e A, so by choosing each
kn sufficiently large we can include among the elements c, „ all these generators (so that
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(i)' holds) together with their inverses, arranged in adjacent pairs which cancel in the
product in (ii)'.

Depending on the value of xn in (iv)', we may need to define further elements c, „ of
order n. First suppose that n is odd, and let u be any element of order n in G. If an even
number of elements c,.„ are required, we can use consecutive pairs u and u~\ cancelling
in (ii)'; for an odd number (which we may assume is at least 3 by taking kn sufficiently
large) we can use u, u~\ «,. . . , w~\ U, U, U~2 (of order n since n is odd), again
cancelling in (ii)'.

Now consider powers of 2 in A. Define r = 2V = 2"2 and s = 2e = 2e-, the order and
exponent of G2. First suppose that G is balanced, so J = M. Since g e 3~h(G) = NM +
d(h — 1) + 1, with r/s dividing M, we see that 2r/s divides the left-hand side of (iv)'. Each
coefficient {n — \)n' (n e A,n=£s) on the right-hand side of (iv)' is divisible by 2r/s,
with the single exception of the coefficient corresponding to n=s, for which
r/s = 2v~e || (s - l)s'. It follows that, in our chosen solution of (iv)', jc.y must be even.

For each n = 2' <s in A, choose an element u e G2 of order n. If xn is even then we
can, as before, define the remaining elements cin (of which we require an even number)
to be u, u~[,. . . ,u, u~{. If xn is odd then since G2 is balanced and u is short, we can
write u = vw for long elements v,weG2; we define the remaining elements c, „ to be
u,u~],. . . ,u~l,u, and define two of the elements cLs of order i to be w~l and v~\ with
the factors in (ii)' arranged so that u. u'1 u~l. u = u cancels with w~l. v~] = u~].
By choosing ks large enough we can find such a pair cu = w~l, v~l for each n = 2' <s
with xn odd. Since xs is even, and since we have so far chosen elements cu of order 5 in
pairs, there remain an even number to be defined, and as before we can take these to be
mutually inverse pairs, all cancelling in (ii)'. Thus (ii)' is satisfied.

Now suppose that G is not balanced. If JCV is even then we can proceed as in the
balanced case, choosing the required elements u,v,w from a fixed cyclic (and hence
balanced) subgroup of order s. Hence suppose that xs is odd. Since G2 is not balanced,
Lemma 2.1 implies that there is a relation

m

Il«* = l (ukeG2) (5.4)
* = i

involving an odd number of long terms uk. By taking the constants kn (n=2J<s)
sufficiently large we can include u, «m among the elements c, „, cancelling in (ii)' by
(5.4). This leaves us with an even number of terms cu to define, so we can proceed as in
the case where xs is even. •

REMARK. At the point in the original proof of Theorem 1 corresponding to this last
case [6, §2.10, Case (3)], the possibility that the short elements may generate a subgroup P
of index 2 in G2 is overlooked. This situation can arise (see the remark following Lemma
2.1), but the proof is easily remedied, as above. Note also that in Cases (2) and (3) of
§2.10, r should be replaced with s.

6. Proof of Theorem 1. From the definitions of / and d, we see that

- if G2 is balanced or trivial,

•— otherwise
Ue

= K. (6.1)
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If we define H=J/K then 3'H+h{G)c3'h{G) for all h>0, so U 2Th(G) is the union

of just finitely many sets STh(G). Since 9'{G)= U Sfh(G), with ^ ( C ) c y , , ( C ) for all
by Theorem 2', it follows that

=;u
= NJ + Nd - d + 1

(this last step requiring (4.3) and (6.1)). Since K \ d, this proves Theorem 1.

7. Proof of Theorem 3. It is interesting (and considerably simpler) to consider the
set f ( C ) c y ( G ) of g e M for which G acts freely (i.e. without fixed-points) on 2A>, or
equivalently, for which the regular covering 2S—*1.h induced by G is unbranched. This
corresponds to the case where x,, = 0 for all n e T in (5.1), so that g and h are directly
related by

g = d(h-l) + l; (7.1)

thus it is sufficient to determine the set %(G) of values of h corresponding to genera
g e 5F{G). By Hurwitz's Theorem (Section 4), h 6 $?(G) if and only if G has generators
a,, b , , . . . ,a,,,bh satisfying

Now G certainly has such a generating set for some h: we can take a,, 6 , , . . . , ar, br to be
any set of 2r generators, define ar+i = fer+,_, and 4>r+, = a,+ |_,- for / = 1,. . . , r, and put
h =2r, so that each commutator

[flr+/, br+i] = [6r+i_,, flr+i-,] = [ar+x-i, br+,_,-]-'

cancels with [ar+1_,, br+i_,] in (7.2). Thus $?(G) is non-empty, and moreover if h e
then h + 1 e St(G), since we can simply add a commuting pair fl/, + i, bi,+]eG to a
generating set satisfying (7.2). This proves that 9V(G) = ho + N for some minimum
h{) e Vt(G) (with h{) < 2 \\ rank G]) , and so

9(G) = d{%(G) - 1) + I

where
-I)+ l = lmodd. O

REMARKS 1. The above argument shows that every 2-generator finite group G is the
monodromy group of an unbranched regular covering 2,,—*l.h for each / i > 2 (since
/j, ,^2). In particular, this applies to every finite simple group, since Miller [9], Steinberg
[11], and Aschbacher and Guralnick [1] have respectively shown that the alternating,
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Lie-type and sporadic simple groups all have two generators (see [2] for a good survey on
generators for finite simple groups).

2. If h>h{) then h e 3€(G), and by (4.2) the corresponding genus g = d(h - 1) + 1
must be the least element of 5^,(G). If h <h{), however, the least element g of 5
cannot correspond to a free action of G on 2R: see Section 8 for examples.

8. Examples. This section illustrates the preceding results by giving the sets
5^(G) and ^(G) in a few simple cases. The method is to determine the values of h and xn

(n e F) such that G has a Hurwitz set a,, b, ( 1 < / < / I ) and c, „ (1 <*<*„), satisfying
o{cLn) = n and

n [«,•>*/]-11^=1. (8.i)

The values of g are then given by the Riemann-Hurwitz formula in the form

(8.2)

with those g e $F(G) corresponding to the cases xn = 0 for all n e F.
For each G, a diagram shows the pairs (g,h) eN2 such that g e 5^(G), with white dots

representing unbranched coverings 2S—»2A (that is, g e ^(G)). Thus 5^(G) and ^(G)
can be seen by projecting all the dots or the white dots onto the g-axis.

a) G = C2. This group is balanced, with d = e = 2, so J = K = l. Thus Theorem 1
asserts that 5^(C2) S N, and Theorem 2' that Sfh{C2) <=, N + 2(h - 1) + 1 = N + 2h - 1.

Since F = {2} in this case, (8.2) becomes

g = &2 + 2 / i - l . (8.3)

Now one can choose generators a,, b{ ( l s / < h ) and c,2 (1 ^ / < J C 2 ) satisfying o(ci2) = 2
and (8.1) if and only if x2 is even, with x2 s: 2 if h = 0. Applying this to (8.3), we see that
%(C2) = N and 5^,(C2) = N + 2h-l for all /J > 1, so ^(C2) = U „ yA(C2) = N. Putting
x2 = 0 in (8.3), so that h > 1, we also see that ^(C2) = 2f̂ J + 1, that is, g() = 1 in Theorem
3. These results are illustrated in Fig. 1.

b) G = CP (prime p >2). This group is unbalanced, with d = e=p, so J = {{p - 1)
and K=\. Thus Theorems 1 and 2' assert that ^{Cp) c N and 5^(CP) £ ^(p -

1 2

Figure 1.
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Since r = {p}, (8.2) becomes

g = ±(p-l)xp+p(h-l)+l

181

(8.4)

If h = 0 we can take any xp > 2, so %{CP) = \{p - \)N. If h > 1 we can take any xr =£ 1, so

Hence
- p + 1} U (|(p - l)N+ph).

L..).JL—, 2p - 2, 2p - 1, 2p, 2p + 1, -

containing all but \(p - 3)2 elements of ̂  (see Figure 2). Putting xp = 0 (so that h s 1) in
(8.4), we that ^(C,,) = pN + 1, so go= 1.

c) G = D,, (prime p >2). This group is balanced, with d = e = 2p, so 7 = K = 1 and
Theorems 1 and 2' give y(Dp) £ N and ^h(Dp) ZN + 2p(h - 1) + 1.

We have T= {2,p}, so (8.2) becomes

•1) + 1. (8.5)

h
5 '
4

3

2

1

0

/,

3

2

1

o I p - i
2

0 1 3p

/,
3

2

1

0
0 1

Figure 2.
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To satisfy (8.1), x2 must be even. If h = 0, then to generate C we need JC 2 >2, and if
x2 = 2 then (8.1) requires ^ s l ; these conditions are also sufficient, so

%{DP) = {0, 1, p - 1, p, p + 1, 2p - 2, 2p - 1, 2p, 2p + 1, 3p - 3, . . .}.

If /z = 1 the corresponding conditions are x2 s 0, with xp > 1 if x2 = 0, so

^(Dp) = %(Dp)+p.

If /i > 1 we can take any x2, xp S: 0, so

Since ^,,(DP) 2 #*,(£>,,) ^ ^(D,,) 3 • • • , we have ^(Dp) = 5^,(0,,), containing all but
2(p - 3)(p - 2) elements of IU If x2 = xp = 0 then ft > 2, so

giving g0 = 2p + l.
Notice that since C2, Cp < Dp we have y(D,,) c ^(C2) fl ^ ( g and

d) G = C2^ (prime p >2). This group is balanced, with d = e = 2p,soJ = K = l and
Theorems 1 and 2' give ^(C2p) £ N and 5^,(C2p) £ N + 2p(/i - 1) + 1, as in (c).

In this case, however, T= {2,p,2p}, so (8.2) becomes

g = ipjc2 + (p - l)xp + (p - ^ 2 p + 2p(A - 1) + 1, (8.6)

and with three variables xn, the determination of ^,(C2^) is significantly more tedious
than in the previous examples. If h = 0, one can choose elements cin to generate C2p if
and only if x2p s l o r both x2, xp^l, and to satisfy the relation (8.1) if and only if x2 + x2p

is even and xp + x2p =£ 1; by considering the cases x2p = 0 ,1 ,2 , . . . in turn one eventually
finds that

If h = 1, one can generate C2/) with any *2, *,,, x2/, >0, and satisfy (8.1) if and only if
X2 + X2P is even and xp + x2p ¥= 1; this leads to

If /j > 1 the same conditions on x2, xp and JC2/, apply (see Lemma 9.1 for a generalisation
of this), so SPh(C2p) = Sfiidp) + 2p(h - 1) c ^,(C2/,) and hence
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If we put x2 = xp = x2p = 0 we can take any h > 1, so

giving g,,= 1.
Notice that although D,, and C2/, have the same order, exponent and Sylow

2-subgroups, so that K{Dp) = K{C2p) and J(Dp)=J(C2p), nevertheless ¥(DP) * y(C2p)
(unless p = 3) and yh{Dp) =£ S/>

h(C2p) for all h > 0: the elements of order 2p in C2/, permit
patterns of branching over ~Lh not available for Dp.

Since Cp < C2p, if{C2p) is contained in ^{Cp)\ in fact, the calculations in (b) and (d)
show that these two sets are equal. This is a little surprising, since the inclusion Cp ̂  Dp

does not lead to a similar equality. (See Fig. 2 to compare y(Cp), ^(Dp) and y{C2p).)

9. Relations between sets. Theorem 2 shows that each set 5^,(G), like S^(G) and
), is eventually periodic. The sets 5^(G), for a given group G, also display a weak

form of periodicity with respect to the parameter h.

LEMMA 9.1. For all sufficiently large h,

Proof. There exists ht e N such that if h s / i , then every element c of the derived
i,

g r o u p G ' ha s t he form c = W [a,-, 6,-] w h e r e a , , fe,,. . . , a h , b h g e n e r a t e G. Fo r ins t ance ,
I = I

we can take hx = k + l, where k = \\ rank G] (so a,, bu. . . , ak, bk can be chosen to
generate G) and / is sufficiently large that every element of G' is a product of /
commutators (so ak+u bk + u . . . , ah, bh can be chosen to satisfy c = l\ [ah b,]).

It follows that if h s h,, then G has a Hurwitz set with signature (h; x) if and only if it
has one with signature (h + l;x): for we can increase the genus simply by defining

h + \

fl/l + 1 = bh + i = 1, and decrease it by rewriting n [a,, £>,] as a product of h commutators (of

generators of G, if necessary). Since x remains unchanged, these transformations increase
or decrease the genus g in (4.2) by d, so the result follows from Hurwitz's Theorem. •

REMARK. The "increasing" part of this argument in fact shows that 5
Sfh+i(G) for all heN.

LEMMA 9.2. If n e F then

Proof. By adjoining an extra pair c, c~' of elements c, „ of order n to a Hurwitz set
for G, we obtain another Hurwitz set with h unchanged and g increased by (n - \)n\ so
Hurwitz's Theorem gives the result. •

COROLLARY 9.3. If n eT then

for all sufficiently large h.

Proof. If Lemmas 9.1 and 9.2 are iterated n — 1 and n times respectively, we obtain
(n- \)d £ seh(G). a
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COROLLARY 9.4. / / C has even order then

for all sufficiently large h. •

REMARKS 1. Theorem 2 implies that the symbol £ can replace c in the various
inclusions proved above.

2. The examples in Section 8 illustrate these results. For instance, C2, C,, and C2/,
satisfy Lemma 9.1 for all h > 1 (but not h = 0), while Dp satisfies it for all h s 2 (but not
h < 1). Similarly C2 and Dp satisfy Corollary 9.4 for all h > 0 , while C2p satisfies it for all
h > 1 (but not h = 0).
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