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Abstract. The isosceles three-body problem with Sitnikov-type symmetry has been reduced to a 
two-dimensional area-preserving Poincare map depending on two parameters: the mass ratio, and the 
total angular momentum. The entire parameter space is explored, contrasting new results with ones 
obtained previously in the planar (zero angular momentum) case. The region of allowable motion is 
divided into subregions according to a symbolic dynamics representation. This enables a geometric 
description of the system based on the intersection of the images of the subregions with the preimages. 
The paper also describes the regions of allowable motion and bounded motion, and discusses the 
stability of the dominant periodic orbit. 

1. Introduction 

The isosceles three-body problem has been studied for a variety of reasons and for 
more than one hundred years. Early researches concerned the possible isosceles 
configurations (Frans6n, 1895), the necessary conditions for the isosceles symmetry 
to be preserved (Wilczynski, 1913), and the integrability of certain cases (Macmil-
lan, 1913). Later Sitnikov (1961) used a special case of this problem to prove the 
existence of so-called oscillatory motion—unbounded oscillations with no escape. 
In recent decades considerable attention has focused on the triple collision manifold 
of the planar isosceles problem (e.g., Simo and Martinez, 1988). 

In the present work the isosceles problem is used as an example to demonstrate 
a method of global analysis based on a Poincare map. In this method one uses 
the mapping to investigate the evolution of entire areas under a single iteration, 
rather than examining the behavior of a few points on the surface of section under 
hundreds or thousands of iterations as is typically done. This new approach permits 
insight into the structure and evolution of the chaotic regions (seas) of the phase 
space. On the other hand the traditional approach shows very clearly the structure 
and extent of the stable regions (islands). In this sense the new method is very 
much complementary to the traditional approach. 

The isosceles problem is obtained by applying certain special symmetries to the 
initial conditions. The present formulation permits the representation of both the 
Sitnikov and planar configurations, which are usually modelled separately. In this 
formulation there are two free parameters which govern the dynamics, a mass ratio 
a and the angular momentum of the binary c. The Sitnikov configuration consists of 
a symmetric binary system with nonzero angular momentum and a secondary mass 
moving for all time along the unique line that is perpendicular to the plane of the 
binary and passes through the center of mass of the binary. In this configuration, the 
three masses always form an isosceles triangle, and the triangle is always rotating 
about its axis of symmetry. (See Fig. 1.) If the angular momentum of the binary is 
zero then the triangle is confined to an invariable plane. This is the planar isosceles 
configuration. 
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These two configurations are most importantly distinguished by the presence 
or absence of collisions. In the planar case the binary motion is rectilinear since 
c = 0, thus there is a binary collision at every pericenter. If the binary collision 
is coincident with a crossing of the syzygy line by the third mass then we have a 
triple collision. In contrast, the Sitnikov case has no possibility of binary collision, 
hence triple collision is clearly also excluded. 

In a previous paper (hereafter Paper I) Zare and Chesley (1998) studied carefully 
the case of planar motion with three equal masses. In that paper the tools and 
principles used in the present study are described in much greater detail than is 
possible here. Later (Paper II) Chesley and Zare (1998) expanded the study to 
include all possible mass ratios, while maintaining the planar condition (c = 0). 
Finally, in this paper, the entire parameter space is explored, considering all possible 
values of angular momentum and mass ratio. New results are put into contrast with 
properties obtained in the previous papers. This paper also presents some more 
general results on the problem, including a discussion of the allowable motions, 
and a global analysis of the stability properties of the dominant periodic orbit. 

2. The General Isosceles Problem 

A full development of the system equations can be found in (Chesley, 1998), but 
for brevity let us begin with the Hamiltonian in physical variables 

n = Up2 + v l \ G r n _ G m l = J 
2 \ a) 4<?i sf^TVl 2?i 

Here (q\, q-£) are the distances of a binary element and the secondary, respectively, 
from the binary mass center (see Fig. 1), and (pi, p2) are the corresponding conju­
gate momenta. The constant of gravitation is given by G, while m is the mass of 
each of the binary components and ra3 is the mass of the secondary or "third mass". 
We also have the binary angular momentum c, and the ratio of the secondary mass 
to the total mass a = m^/ (2m + m^), 0 < a < 1. We will use the value of the 
Hamiltonian to represent the system energy h = H. 

Remark: The Hamiltonian formulation does not permit the analysis of the classical 
Sitnikov problem, which is the restricted case (a = 0). This fact can be clearly 
seen from Eq. (1). 

For reasons which will become apparent later, we shall apply the following 
normalization of units throughout 

G = \, m + 4m3 = l /2 , h = - 1 / 8 . (2) 

There is no loss of generality with this normalization. The system fundamentally 
has the following parameters: the constant of gravity G, the energy h, the angular 
momentum c, and two mass parameters m and m^. Selecting the units of mass, 
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Fig. 1. Geometry of the isosceles problem. Note that the binary rotates about the axis of 
symmetry if c > 0. 

length, and time according to the normalization given above fixes G, h, and one 
of the mass parameters. This leaves the angular momentum c, and the other mass 
parameter, which we may choose to be a, as the only free parameters. Selection of 
a within this normalization has the effect of determining the mass values according 
to the identities m = (1 - a) / (1 + la) /2 and rm = a/ (1 + la). 

Note: This Hamiltonian has been scaled from the usual three-body energy expres­
sion by a factor 2m to allow a simpler presentation. This means that the usual 
system energy and usual binary angular momentum are given by 2mh and 2mc, 
respectively. 

2.1. REGULARIZAITON 

If c = 0 the equations of motion stemming from Eq. (1) are singular at the 
binary collision (qi = 0, (fe ^ 0) and at the triple collision (qi — qi = 0). (If 
c is small but nonzero the equations are near-singular at binary pericenter.) The 
singularity at or near the binary collision may be removed by the classical Levi-
Civita regularization. In order to preserve the Hamiltonian form, we shall adapt 
the regularization to the extended phase space. First, we introduce the generating 
function W = piQ\ + P2Q2, and the associated canonical transformation 

dW 
Pi = 

dW 

dpi' " ' dQi 

leading to the Hamiltonian 

H = 
Gm 

4Qf 

1,2, 

Gmj, 

s]0\ + Ql + 2Q\ 

Under these new variables one may construe (Qi, -Pi) as the state vector of the 
binary, and (Q2, Pi) as the state vector of the third mass. 

Introduction of the auxiliary variables Qo — t, Po — —h, and dr = dt/Q\ 
provides the new equations of motion 

dQi _ dr_ m ar 
0,1,2, (3) 
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where the new Hamiltonian function in the extended phase space r = Q2 {PQ + 7i) 
is given by 

On every trajectory we have the energy integral r = 0, and the equations of 
motion are now regular at the binary collision (Qi = 0, Q2 ^ 0). 

2.2. REGION OF POSSIBLE MOTION IN THE CONFIGURATION SPACE 

A general theory has been developed by Zare (1976) to obtain the regions of 
possible motion in the configuration space, and in particular the bifurcation sets 
of their topological classification (Zare, 1977). For the present problem we will 
follow the theory to obtain the maximum possible angular momentum for a given 
energy and to identify regions of bounded motion in the parameter space. 

Starting with Eq. (1) we obtain the inequality 

Gm Gm-i c2 

h> 4qi qiy/l+fi/tf 2ql 
By introducing the new variable 

0 = arctan^, -~ < 9 < J , 
qi 2 2 

this inequality can be recast as 

iP(qi,0)=4\h\q2-G(m + 4m3cos6)ql + 2c2 < 0, (4) 

where we have assumed h < 0. The variables here represent the configuration 
(6) and the scale (qi) of the triangle formed by the three bodies. Note that 6 = 0 
implies syzygy, and 9 = ±TT/2 implies either binary collision or the escape of the 
third mass. From Eq. (4) it is immediate that if c ^ 0 then q\ > 0 for all time, 
hence the binary collision is forbidden. The possible range for q\ is obtained from 
the quadratic equation where the discriminant is given by 

A (9) = G2(m + 4m3 cos 6f - 32c2 | h\ > 0. (5) 

Equation (5) provides the totality of possible configurations, independent of 
scale. Notice that c2\h\, sometimes referred to as the Zare integral, appears as an 
essential parameter. It is easy to show that A (0) has a maximum at 0 = 0 with 
maximal value 

A(0) = G2(m + Arm)2 - 32c2 \h\ > 0. 

From this we obtain the critical value 

c2 \h\ < (c2 \h\) =G2(m + 4m3)
2 /32. 
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If we apply the normalization of units given by Eq. (2) then we obtain the permissi­
ble range of angular momentum: 0 < c < \. (We shall assume c > 0, the direction 
of rotation being irrelevant to the dynamics.) 

Remark: The maximum value of c reflects an important orbit. Note that this value 
requires p\ = P2 = 0 and 6 = 0, which implies qi = 0. In this case we have q\ = \ 
under our normalization according to Eq. (4). So for c = \ the motion is limited 
to a single point in the phase space. This orbit is the so-called Euler solution. Here 
the binaries rotate on circular orbits with radius qi = \ and the third mass remains 
forever fixed at the binary center of mass. 

2.2.1. The Region of Bounded Motion 

If the angular momentum is large enough the third mass cannot escape to infinity, 
while the binary remains bounded according to Eq. (4). This implies bounded 
motion for all particles for all time. To determine the smallest value of angular 
momentum where bounded motion is assured, let us continue by recasting Eq. (5) 
as 

J32c2 \h\ - Gm 

» - * v 4Gm3 • (6) 

From this we can see that for c2 \h\ > (c2 \h\)1 there exist no possible configura­
tions, and for c2 \h\ = (c2 \h\)1 only 0 = 0 is possible. But for c2 \h\ < (c2 \h\)1 

the possible configurations are \6\ < 0max, where 0max is obtained from Eq. (6). It 
is clear that 6ma.x — n/2 at the critical value 

(c2h) =G2m2/32. 

Recall that 9 = ±TT/2 corresponds to escape of mj if c > 0. Therefore the third 
mass may go to infinity for c2 \h\ < (c2 \h\)2 since the possible configurations are 
-7r/2 < 0 < 7r/2. But for c2 \h\ > (c2 \h\)2 we have \9\ < ix/2, and escape is 
impossible. After normalization of units according to Eq. (2) we have the final 
result 

! - « ,_ „ „ 
c > -r-r.—TTT => bounded motion. 

~ 4(1+ la) 

The corresponding region of the parameter space is plotted in Fig. 2. 

2.3. THE BOUNDARIES OF THE PARAMETER SPACE 

Each of the boundaries for the space of parameters (a, c) e (0,1] x 0, \ 
special significance. (See Fig. 2.) 

has a 
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0.2 0.4 0.6 0.8 1 
a - Mass Ratio 

Fig. 2. Region of bounded motion in the (a, c)-space of parameters. The special significance 
of each boundary is also depicted. 

1. c = 0. This is the planar isosceles problem. This boundary was the focus of 
Paper II, and the point on this boundary at (a,c) = (\, 0 J was studied in detail 
in Paper I. 

2. c = \. The motion here corresponds to an integrable solution of the gen­
eral three-body problem—the Euler solution discussed above. The motion is 
reduced to a single fixed point in the phase space. 

3. a — 0. Here the third mass is zero—the classical (restricted) Sitnikov problem. 
This is the only boundary that cannot be treated by the present formulation of 
the equations of motion. As one approaches this boundary, hyperbolic escape 
of m3 approaches full measure. (See Paper II). 

4. a = 1. On this boundary all of the mass is concentrated in the third body. This 
leads to Keplerian motion, so here again the solution is integrable. This is the 
double Kepler problem described in Paper II. Here every point is a fixed point 
under the Poincare mapping described in the next section. 

3. Reduction to a Poincare Mapping 

The properties of the Poincar6 map in the planar isosceles problem have been 
discussed extensively in Papers I and II. The primary aim of the present paper is 
to describe certain new properties which have appeared after extending the inves­
tigation to include nonzero angular momentum. For this reason, and for reasons of 
space, only a cursory introduction to the methods employed previously is presented 
here. For a comprehensive discussion, the interested reader is referred to Paper I, 
Paper II, and (Chesley, 1998). 

To arrive at the desired surface of section we eliminate P% using the integral 
of energy, and take as a section the plane Q% = 0 (syzygy crossing). Thus one 
obtains a mapping in the (Qi, Pi)-plane. This is an excellent surface of section 
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Fig. 3. Boundary curves for the regions of possible motion A in the Poincar6 section for 
varying angular momentum. The depicted curves correspond to the following values of c: 
{0,0.01, 0.025, 0.05, 0.075,0.10, 0.15, 0.20, 0.24}. 

because almost every isosceles trajectory intersects it, with the only exceptions 
being certain isolated triple collision orbits. The region of allowable motion A 
depends only upon the angular momentum c according to 

A = j(Qi,Pi) | Q\ + P? + ^ < 1, Qi > o l . 

We specify Q\ > 0 without loss of generality since q\ = Q\ > 0, and on this 
section Q\ = 0 implies a triple collision condition. Every point in A represents 
a unique initial condition with Q2 = 0 and P2 > 0 computed from the energy 
integral. The bounding curves for varying levels of c are depicted in Fig. 3. 

For c = 0 (the planar case) A reaches its greatest extent forming a semicircular 
region of unit radius. (In fact, the somewhat curious normalization of units in Eq. (2) 
has been selected to this end.) In this case the straight boundary of A (on which 
Qi = 0) corresponds to the triple collision state, while the semicircular boundary 
of A corresponds to the collinear homothetic solution. For c > 0 the boundary of 
A corresponds to the Euler (collinear) solution. 

The selection of this surface of section permits a useful physical interpretation 
of the mapping since Q2 — 0 represents the syzygy configuration. Every trajectory 
started from a point in A must return to another point in A at the next syzygy 
crossing unless m.3 escapes or goes to triple collision. This may be viewed as a 
two-dimensional map / : A —> A, where A C A is the set of points which neither 
escape nor lead to triple collision. Thus, for a given binary state po = (Qi,-Pi)o € A, 
we define / (po) to be the binary state p\ = (Qi ,Pi)i € A taken at the next syzygy 
crossing. 
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Fig. 4. The geometrical description of / with a. = \ (equal masses) and c = 0 (planar). 
The left diagram depicts the partitioning of A into Ak, (k — 0,1,2,...). The right diagram 
depicts the images of the Ak • Here the preimages are shown with dashed lines to emphasize 
the intersections discussed in the text. 

3.1. PROPERTIES OF THE MAPPING 

The global description of / , which is given in greater detail in Paper I, proceeds 
as follows. Since each point in A must return for a subsequent syzygy crossing, 
we may assign to it a non-negative integer k representing the number of binary 
percenters which ensue before the next syzygy crossing. This will partition A into 
open subsets Ak where all points in each subset have the same assigned k (see 
Fig. 4). Additionally, we denote the points which lead to hyperbolic escape of m? 
by Aoo. Separating Ak and Ak+i is a locus of points Bk which lead to a binary 
pericenter at the next syzygy (triple collision in the planar problem) after k binary 
collisions. The boundary of A^, which we denote by Boo, corresponds to a set of 
points leading to parabolic escape of 7713. 

Due to the conservative nature of this system and the associated time reversibility 
we have a useful symmetry. Consider the reflection p about the Qi-axis in the 
(Qi, -Pi)-plane defined by 

(Qi, Pi)-^ (Qu-Pi) • 

Now p can be considered as a reversal of the velocity, or, alternatively, a reversal of 
the arrow of time. Thus the backward orbit of the reflection of p is the same as the 
reflection of the forward orbit of p and it has the same number of binary collisions 
as the forward orbit of p. This leads to the identity pf = f~lp. It also follows that 
for any p e Ak, we have pf (p) 6 Ak or / (p) e p (Ak). That is 

f(Ak) = p(Ak). (7) 
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Furthermore, if the orbit of p corresponds to the escape of m.3 the orbit of p (p) 
corresponds to the capture of m^. If the orbit of p terminates with a triple collision 
the orbit of p (p) initiates with a triple ejection. 

The identity (7) holds only for the Ak and is not true for other sets in general. 
However, it provides a convenient means of obtaining the forward images / (Ak). 
The asymmetry and the intersections of these subregions Ak with the Qi-axis are 
the necessary ingredients for the intersections Aj Dp (Ak) illustrated in Fig. 4. These 
intersections allow one to ascertain the existence and amount of communication 
between the Ak. They are also a necessary condition for the existence of period-one 
and -two orbits under / as discussed in the next section. 

This partitioning of A into Ak and Bk is particularly conducive to a symbolic 
sequence representation of an orbit. We define the nth character in the symbolic 
sequence to be k if fn (p) € Ak, for all integer n. Thus a sequence of k' s corresponds 
to the sequence of Ak's visited under fn (in both directions of time). If fn (p) is not 
defined due to hyperbolic escape (capture) then we terminate the sequence on the 
right (left) with the symbol "00". If fn (p) € Bk we may terminate the sequence 
with some appropriate symbol, say "*&". These sequences and subsequences are 
very valuable in any effort to qualitatively categorize and characterize orbits. 

3.2. NEW RESULTS FOR c > 0 

For c = 0 the regions Ak for k > 2 were crescent shaped (Fig. 4), but for c > 0 
they are segments of a spiral structure. Fig. 5 provides a particularly clear example 
of the spiral shape. In this figure there are two distinct curves along which the 
value of k changes (the shading in the figure changes). The curve with an obvious 
spiral shape is the set of points for which the orbit returns to syzygy at pericenter. 
This spiral comprises the Bk, which were the orbits that returned to triple collision 
in the planar problem. The other, relatively straight, curve in Fig. 5 is the set of 
points for which the orbit begins at pericenter. In the planar case these were the 
points corresponding to triple collision. Geometrically what is happening is that, 
as the angular momentum increases above zero, the tips of the crescent-shaped Ak 

of Fig. 4 bend inward to touch across this curve. On the other hand, as c decreases 
to zero the curve diminishes to a segment on the Qx-axis—the segment forming 
the border with A,*, in Fig. 4. 

As described above, for large enough values of c there is no possibility of escape. 
However, being below that curve is only a necessary condition for escape; it is not 
sufficient. There must, however, be a curve—on or below the one providing the 
necessary condition—that gives the sufficient condition. This curve can be defined 
as the locus of parameter values for which the only escape orbits are parabolic. 
Above this curve Aoo has been destroyed. As the mass ratio or angular momentum 
continues to increase each Ak is destroyed sequentially until only Ao and A\ 
survive. So for each k > 2 there is a curve in the parameter space marking the 
destruction of the corresponding Ak. This is quite intuitive because as c increases, 
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Fig. 5. Partitioning of Ak at a = 0.67, c = 0.025, showing the spiral effect described in 
the text. The axes are the same as Fig. 3. 

the maximum ejections of the third body become more and more limited until 
c = \, at which point Q2 (t) = 0. An approximate plot of the first and last curve is 
given in Fig. 6. The lower curve marks where A& is destroyed. The upper curve 
is where Ax—indeed all Ak, for k > 2—have been destroyed, and above this only 
Ao and Ai survive. 

In terms of the symbolic dynamics, the destruction of A^ is very important 
because it implies that all sequences are bi-infinite (except for a zero measure set of 
triple collision orbits). Furthermore, the symbolic alphabet becomes finite. These 
factors make the symbolic dynamics more tractable, and potentially more useful. 

In Paper II we discussed a curious global bifurcation in the planar problem 
that occurred when, at a particular value of a, all of the Ak for k > 2 moved 
above the Qi-axis. This "instantaneous" event, where an infinity of periodic and 
triple ejection-collision orbits are simultaneously destroyed, no longer occurs for 
c > 0. The reason is that the Ak are no longer crescent shaped, but rather they 
have the spiral shape discussed above. This means that the Ak move above the 
Qi-axis sequentially rather than simultaneously. Thus the intersections illustrated 
in Fig. 4 and the associated periodic orbits (as opposed to the regions themselves) 
are gradually destroyed as c or a increase until all of the Ak, k > 2, are above 
the Qi-axis as in the example of Fig. 5. The dashed curves in Fig. 6 reflect this 
movement, the global bifurcation occurring where they intersect at c = 0. 

4. Stability of the Main Periodic Orbit 

In Paper I considerable attention was given to the main periodic orbit and the 
surrounding stable (quasi-periodic) region, where it was shown that this orbit 
has an important impact on the global dynamics. The orbit corresponds to the 
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Fig. 6. Regions where particular Ak survive. Below the lowest solid curve, all of the Ak 
persist, including A^. Above the upper solid curve, only A0 and Ax exist. The sequential 
elimination of the Ak takes place between these two curves. The dashed curves depict the 
region where the Ak move above the Qi-axis, also sequentially. 

0.25 | 1— —| 1 1 

| 0.2 A -

i 0.05 ^fllN^---

0.2 0.4 0.6 0.8 1 

a - Mass Ratio 

Fig. 7. Stability of the main periodic orbit. Unstable regions are shaded. 

case when syzygy crossing occurs at binary apocenter, and there is exactly one 
binary pericenter between syzygy crossings. This means that triple interactions are 
minimized on this orbit, and the corresponding symbolic sequence for this orbit 
takes the form " . . . 1 ,1 ,1 . . . " . In Paper II we showed that the main periodic orbit 
for the planar problem (c = 0) is stable for all values of a < 0.563.. . Now, for 
completeness, let us briefly expand that discussion to the entire parameter space. 

The author has identified through computer experiments two bands in (a, c)-
space where the main periodic orbit is unstable. (See Fig. 7.) Each of these bands is 
bounded above and below by a bifurcation curve. The uppermost bifurcation curve 
is of the ordinary period doubling type, while the three lowest curves represent 
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inverse period doubling bifurcations. The path of the curves very close (within 
0.005) to the limiting values of a is not known at present. An analytic treatment of 
these situations would likely yield definitive answers, but this must be left for future 
study. Recently, Dvorak and Sun (1997) have obtained similar results, although they 
have studied only the equal mass (a = j) case, and they have not computed orbits 
below approximately c = 0.05 since their equations of motion are unregularized. 

An investigation is underway on the stability of the main periodic orbit within the 
framework of the general three-body problem. The important question is whether 
there exist regions of quasi-periodic motion in the full phase space, implying at 
least the possibility of the existence of near-isosceles triple stellar systems. 
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