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RIGHT-ORDERED GROUPS
A. H. RHEMTULLA

1. Introduction. A group G is right-ordered if it can be totally ordered so
that for any a, b, ¢ in G, ¢ < b implies that ac < bc. Right-ordered groups,
considered as order preserving automorphisms of ordered sets, were studied
by Cohn in [4]; but the first systematic study of the structure of these groups
was made by Conrad in [5] where he gave several natural characterizations of
right-ordered groups. We mention here that the class of right-ordered groups
is precisely the subgroup closure of the class of lattice ordered groups (see
(6], [7], [9] or [10]).

Conrad was particularly successful in the study of the structure of groups G
which can be right-ordered in such a way that
(*) for each pair of positive elements a, b in G there exists a positive integer

n such that a*b > a.

The class of such groups coincides with the class of groups having a normal
system with torsion-free abelian factors. If G is a finitely generated group in
this class then G/G’ is necessarily infinite. We still do not know whether every
finitely generated right-ordered group G has the property that G/G’ is infinite.
We can only prove the following result.

THEOREM 1. A finitely generated group G = {e} can not be right-ordered if
G/G' is finite and G has a nilpotent subgroup of finite index in G.

The above question is significant because it is related to the problem of
deciding whether the integral group-ring of a torsion-free group can have
zero divisors. For any class 2 of groups, define the class of locally Z -indicable
groups to consist of those groups G in which every finitely generated non-
trivial subgroup has a non-trivial homomorphic image in Z". The terminology
is derived essentially from that of Higman [8] who proved that the integral
group-ring of a locally Z -indicable group has no zero divisors. (Here Z denotes
the class of infinite cyclic groups.) It was shown in [12] that the integral
group-ring of a right-ordered group has no zero divisors. Burns and Hale
[3, Theorem 2] observed that a locally RO-indicable group is an RO-group,
where RO denotes the class of right-ordered groups. In particular locally
% -indicable groups are RO-groups. We know of the existence of finitely
generated torsion-free groups G with G’ nilpotent and G/G’ finite (see, for
example, [11, p. 250] or [2]). Thus Theorem 1 effectively tells us that a different
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approach is needed to determine whether the integral group-rings of such
groups have zero divisors.

Let RO denote the class of those RO-groups in which every right order has
the property (*).

THEOREM 2. Every torsion-free locally nilpotent group is an RO-group.

THEOREM 3. A finitely generated group G # {e} can mnot be right-ordered if
G/G' 1is finite and G has a subgroup K of finite index in G with K € RO.

It is easy to see that Theorem 1 is a consequence of Theorems 2 and 3. In
§ 4 we produce an example of a metabelian RO-group that is not an RO-group.
We do not know if every polycyclic RO-group is an RO-group.

We now turn our attention to the following question raised by Ault in [1].
Can every partial right-order be extended to a full right-order in a torsion-free
nilpotent group? Ault proved the result in the special case when the group is
nilpotent of class two. A sub-semigroup P of a group G defines a partial right-
order on G if P /M P7! = ¢. The partial right-order is obtained by putting
x < v if and only if yx=! € P. A sub-semigroup Q is called an extension of the
partial right-order P if Q 2D P and QN Q7! = ¢, and Q is a (full) right-order
if in addition Q \U Q71U {e} = G.

THEOREM 4. Every partial righi-order can be extended to a right-order in a
torsion-free nilpotent group.

In § 4 we give an example of a metabelian RO-group in which not every
partial right-order can be extended to a right-order.

2. Proofs of Theorems 2 and 3.

LEmMA 2.1 (B. H. Neuman). Let G be a locally nilpotent group, X « subset
of G and S the semigroup generated by X. Then given u, v in S, there exists z, t in S
such that zu = tv.

Proof. We use induction on the nilpotency class of L = group {(u, v). If L
is abelian then take z = v and ¢ = u. If L is nilpotent of class » > 1, then
M = Group{uv, vu) is nilpotent of class » — 1 since vu = wuv[v, u]. Thus there
exists @, b in Semigroup{uv, vu) satisfying avu = duv. Take 2 = w and ¢ = bu.

Let G be a torsion-free locally nilpotent group, P the positive cone of a
given right-order on G and a, b in P. Suppose, if possible, that a*d < « for all
integers #n > 0. Let S = Semigroup(ab, a). By Lemma 2.1, there exists
z, t in S such that zab = fa. Since a, b are both in P, S € P so that ¢ > ¢ and
ta > a. Now gab = a*ba*?® ... a*b witha; > 0,2 =1,...,r. Since a®b < a
for all = > 0, a*ha*2b ...a*d < a**t...a*b < ... < a**t)h < a, a con-
tradiction. This completes the proof of Theorem 2.

We prove Theorem 3 by way of contradiction. Let < be a right-order on G.
By hypothesis G is finitely generated torsion-free, G/G’ is finite and G has a
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normal subgroup K of finite index in G with K € RO. Since K is a finitely
generated RO-group, K/K' contains elements of infinite order. Let I be the
isolator of K’ in K. Then K/I is torsion-free abelian. Choose coset repre-
sentatives ¢ = x; < 22 < ... < x, of K in G and take the transfer map
7: G — K/I given by
7(g) = Q_Il xfg(xig)_l>1,

where x.g is the coset representative of x;g. 7 is the trivial map since K/I is
torsion-free abelian and G/G’ is finite. Observe thatif e < x < y thene < yx~1
For any y = x,, y* € K and y* > «x,. Thus if g > x, and g € K, then
g% ...g"g > gand g®...g%g € I. Since K is a finitely generated RO-group,
there exists g > «x, in K such that the convex subgroup generated by g is K
(see § 4 of [5]). Let C be the union of convex subgroups of K not containing g.
Then K/C is isomorphic to a subgroup of the additive group of reals. Hence
I £ C. Also g > x for all x € C. This gives the required contradiction.

3. Proof of Theorem 4. Let G be a torsion-free nilpotent group and let P be
the positive cone of a partial right-order < on G. Assume, by way of con-
tradiction, that P is maximal but not a full right-order. Then for some
x #Z e x ¢ P\UPL Since P is maximal we conclude that

e € Semigroup(P, x) M Semigroup{P, x~1).
More specifically,
(1) X¥py .. L xmp, = e = xPlgy .. xPng,

where p1, ..., Pmyq1y---,¢, lie in P and a1,...,dn, B1,...,B, are all
positive integers.

If x € Z(G), the centre of G, then (1) reduces to x*p = ¢ = x#q for some
a, 8 > 0and p, g in P. This is not possible since it implies x*® = ¢ and af # 0.
Thus Z(G) = P\UP1\U {e}. Assume that Z,(G) £ P\U P71\ {e} but
2,.1(G) £ P\U P 1\U {e} for some integer 7 > 1. (Z;(G) denotes the jth
term of the upper central series of G.) Thus (1) holds for some
x € Z,(G)\Z—1(G). We now investigate the consequence of the left-hand side
of equation (1).

Let W be the set of all words x*!p; ... x*mp,, that are equal to e with «;’s
positive, m = 1 and p,'s in P. Define a function p from P to the set of non-
negative integers by the rule

) = {0 if [p,x] =e
g it [p,*] € Z;(G\Zm(G), 5= 1,2,... .

For any w = x*1p; . .. xmp, in W, let |w| = max{u(p;) :71=1,2,...,m}.
Note that |w| =0 implies that [x,p;] =¢ for ¢ =1,...,m so that

x%1py . .. xomp,, = x*p with e = > %12, >0 and p = p1...pn € P. Hence
x— € P. We will show that there exists w in W with |w| = 0. Suppose, if
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possible, that |w| > 0 for every w € W. Let W, be the subset of W consisting
of those words w with |w| minimal. We call p; a dominant component of
W = x®1py ... x%p, il u(p;) = |w|. Since w = e, there are at least two domi-
nant components in w. Let W, be the set of those words in TW; with the least
number of dominant components. Let WW; be the set of those words
W = X%y ... x*mp,, in Wy with u(p1) = |w|. Let 7 > 1 be the smallest integer
such that for all w = x*1py . .. x%p,, in Ws, u(p,;) < wu(p1) for all 7 satisfying
1 <1 <4, but p(p;) = u(p1) for some w in Ws. Let W, be the set of those
w = x%py ... xmp, in Wy with u(p;) = p(p1). Finally, let W5 be the set of
those w = x*p; ... x%mp, in W, with m minimal. Of course we are assuming,
by way of contradiction, that m > 1.

Pick any w = x*1p;...xp, in Wis. Since x2ip; = p;(x[x, p,;])*/, we must
have [x, p;] < e, for otherwise

Xpy L L xmp,, = x%py L x% P py(xlx, pi])dixitt L p,=w €W

and |w| = |w'| = p(p1) Z u(p’';-1) where p'yy=pyap, If j=2 or
w(p1) > wu(p’;—1) then we contradict the choice of W, and if j % 2 and
p(p1) = p(p’;—1) then we contradict the choice of Wi Thus [p;, x] > e and

Wy = X¥Ppy .. x4, it lp it o € W,
where p;1 = p,[p;, x] € P and u(pj1) = u(p;). Repeated application of the
above argument yield w;, ¢ = 1, ..., a;31 where
W; = &Py .. Pyt ip it p
pii = Pialpjim, x] € P oand u(p1) = p(py:). Now w, € Wi for 7 < ajyy,

but
Wajpy = X¥P1. . . pyg@itaitip/yaive  po

where p' = pja,p1Ps41 € P and w(p’) < u(p1). Now wu(p’) < p(p1) contra-
dicts the choice of W, and u(p’) = u(p1) contradicts the choice of W;. Note
that should j = m, we take x*! for x*i+t and in this case we have

Wy, = xam+a1(pmalpl)xa2p2 . xam—xpm_l

which contradicts the choice of W,.

We have thus established that x*p = e for some integer « > 0 and some
» € P. Similarly we obtain x#q = ¢ {for some 8 > 0 and some g € P as a
consequence of the right-hand side of (1). These two equations imply that
x* = ¢ with a8 # 0, a contradiction.

4. Examples. We give two examples to show the limitations of Theorems

2 and 4.
Let G be the group generated by two permutations, @ and 7, of the real line
given by:
xa =x 4+ 1
xT = x/2.
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Thus x(rar™') = x/2{ar™!) = ((x + 2)/2)7! = xa®. In fact it is easy to
verify that G is isomorphic to Group{e, 7; rar™! = «?) which is metabelian.
G is a subgroup of the group of order-preserving permutations of the real line
in the sense that x < y implies x8 < 38 for all § € G. Thus G is an RO-group
and we can order it in the fashion described by Conrad in [4], by well-ordering
the set R of real numbers in any appropriate way and then, for any 6 € G,
look at the first » € R in the well-ordering for which 78 £ . Put 8 > e if
768 > r and 6 < e otherwise. In particular, by well-ordering R so that 0 is the
first element and —1 is the second, we make a > ¢, 7 > ¢ and ar > e. But
(ar)'r(@r)™* < e for all # > 0 since 0 is mapped to (2" 1/2") — 1 under
(ar)"a~'. Thus the right-order on G described above does not satisfy the
property (*). This example is basically similar to Example III [5] of Conrad,
except that Conrad’s example is more complicated and not metabelian.

Our second example is G = Group{a, b; aba = b~1). It is a metacyclic
RO-group. P = Semigroup{a?, b, ba—?) defines a partial right-order on G.
This is easily verified since [a2?, b] = e. Under any extension of P to a full
right-order on G we must have a > e since a* € P. Also ba=? € P implies
ba=1 > a > e and hence aba—! = b~! > ¢, a contradiction.
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