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ARRIVALS AND SERVICE TIMES
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Abstract

We use a sample-path technique to derive asymptotics of generalized Jackson queueing
networks in the fluid scale; that is, when space and time are scaled by the same factor
n. The analysis only presupposes the existence of long-run averages and is based on
some monotonicity and concavity arguments for the fluid processes. The results provide
a functional strong law of large numbers for stochastic Jackson queueing networks, since
they apply to their sample paths with probability 1. The fluid processes are shown to be
piecewise linear and an explicit formulation of the different drifts is computed. A few
applications of this fluid limit are given. In particular, a new computation of the constant
that appears in the stability condition for such networks is given. In a certain context of
a rare event, the fluid limit of the network is also derived explicitly.
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1. Introduction

In this paper, we consider a (single-class) generalized Jackson network and its fluid limit.
Such networks have been considered by, among others, Jackson [12] and Gordon and Newell
[10]. In [6], Chen and Mandelbaum derived the fluid approximation for generalized Jackson
networks. The queue-length, busy-time, and workload processes are obtained from the input
processes through the oblique reflection mapping due to Skorokhod [16] in a one-dimensional
setting, and to Harrison and Reiman [11] in the context of open networks. Using this fluid
approach and assuming that service times and interarrival times are independent and identically
distributed (i.i.d.), Dai showed in [7] that generalized Jackson networks are stable (i.e. positive
Harris recurrent) when the nominal load is less than 1 at each station. The first stability result
for generalized Jackson networks under ergodicity assumptions can be found in the paper of
Foss [9]. In [13], Majewski derived a unified formalism that allows for discrete and fluid
customers. The inputs for the model are the cumulative service times, the cumulative external
arrivals, and the cumulative routeing decisions of the queues. A path space fixed-point equation
characterizes the corresponding behavior of the network.

The framework that we use here is that of Baccelli and Foss [1], where only stationarity
and ergodicity of the data are assumed. We denote by Xn

0 the time taken to empty the system
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when n customers enter the network simultaneously from the outside world. On the basis of a
subadditive argument, the following limit is shown to hold in [1]:

lim
n→∞

Xn
0

n
= γ (0) almost surely (a.s.). (1.1)

The constant γ (0) corresponds to the maximal throughput capacity of the network. In fact,
the saturation rule [2] makes this intuition rigorous and ensures that the network is stable if
ρ := λγ (0) < 1, where λ is the intensity of the arrival process. In this paper, we provide a
new proof of (1.1), using fluid approximations, which gives an explicit formula for the constant
γ (0). One contribution of this paper is to provide a connection between the fluid approximation
of a generalized Jackson network and the stability condition for this network under stationarity
and ergodicity assumptions on the data. In particular, no i.i.d. assumptions are needed (on
interarrival times or service times) and we can consider more general routeing mechanisms
than Bernoulli routeing.

The other application of this paper will be linked, in a companion paper [3], to the calculation
of tails in generalized Jackson networks with subexponential service distributions. Here, we
are able to give the behavior (in the fluid scale) of the network in a ‘rare’ event. (We refer to
[3] for an exact notion of what we mean by ‘rare’ event.)

The results of [6] and [13] will be of minor help to us since a lot of work would be required
to obtain our explicit result from them; for these reasons, we have taken a different approach.
For each time t , we are able to give an explicit formulation of the fluid limit. The simplicity of
the result is due to the concavity of the processes in the fluid scale – a property that, to the best
of our knowledge, has not been proved before. In other words, given some drifts for the input
processes, when a queue becomes empty it remains empty forever. It seems that this basic fact
has not been exploited yet. It allows us to reduce the computation of the fluid limits (which are
solutions of a fixed-point network equation in a functional space, as described in [13]) to the
computation of a certain traffic intensity for a simplified network that evolves in time. Hence,
for a fixed time, we only have to compute a fixed-point solution of some traffic equations (see
Section 3). Proposition 3.3 gives the fluid approximation of generalized Jackson networks. To
obtain the time to empty the system, we simply observe that if the network is processing fluid,
then one of the queues has been working since the initial time. This gives us a very compact
way of obtaining the constant γ (0) (Theorem 4.1 of Section 4.1). Proposition 4.1 is a slight
extension of the main Theorem 4.1, and will be needed in the computation of the fluid picture
of a generalized Jackson network in the specific case of a ‘single big event’ (see [3]).

The paper is structured as follows. In Section 2, we introduce notation for single-server
queues and generalized Jackson networks. The fluid limits are established in Section 3. Then,
the computation of constant γ (0) is given in Section 4 with connections with the stability
condition of such networks. In Section 5, we give the fluid picture of the network in the
single-big-event framework.

2. General setting and notation

We will use the following notation.

1. A1 is the set of nonnegative sequences u = {ui}1≤i≤n such that n ≤ ∞ and ui ≥ 0 for
all i ≤ n. A

∗
1 is the set of such sequences such that, rather, ui > 0.

2. A2 is the set of nondecreasing sequences U = {Ui}1≤i≤n such that n ≤ ∞ and 0 ≤ Ui ≤
Ui+1 for all i ≤ n− 1. A

∗
2 is the set of such sequences such that, rather, 0 < Ui < Ui+1.
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We will denote by A and A
∗ the sets of discrete measures on R+ such that, for each member

dU of either set, there exists a U ∈ A2 or, respectively, a U ∈ A
∗
2 with dU = ∑

1≤i≤n δUi
.

Here, δx is the Dirac measure at x ∈ R+. To such a measure we can associate a sequence
u ∈ A1 or u ∈ A

∗
1 in the following manner: ui = Ui − Ui−1 for i ≥ 1, with the convention

that U0 = 0. A3 and A
∗
3 will denote the sets of counting functions U : R+ → N such that

U(t) =∑
1≤i≤n 1{Ui≤t} =

∫ t

0 dU with dU ∈ A or, respectively, dU ∈ A
∗. Clearly, the spaces

A, A1, A2, and A3 are isomorphic, and the same holds for A
∗, A
∗
1, A
∗
2, and A

∗
3.

2.1. Single-server queues

A single-server queue will be defined by Q = (τA, σ ), where τA = {τA
i }1≤i≤n and σ =

{σi}1≤i≤n belong to A2 and A1, respectively. The interpretations are the following: customer
i arrives in the queue at time τA

i and its service time is σi .
Associated to a queue Q, we define the departure process {τD

i }1≤i≤n ∈ A2, where τD
i is the

departure time of customer i, by

τD
1 = τA

1 + σ1,

τD
i = max{τA

i , τD
i−1} + σi, 2 ≤ i ≤ n.

Expanding this recursion yields

τD
i = max

j=1,...,i
(τA

j + σ(j, i)), 1 ≤ i ≤ n, (2.1)

with the notation σ(j, i) := σj + · · · + σi . Hence, we define a mapping � : A×A→ A such
that

τD = {τD
i }1≤i≤n = �(Q). (2.2)

We will use the following notation for the different counting functions:

• A(t) =∑∞
i=1 1{τA

i ≤t};

• �(t) =∑∞
n=1 1{σ(1,n)≤t};

• D(t) =∑∞
i=1 1{τD

i ≤t}.

For any nondecreasing function F , we denote by F←(x) = inf{t, F (t) ≥ x} the pseudo-
inverse of F (which is left continuous). We have F←(x) ≤ u⇔ x ≤ F(u). Moreover, we use
the notation ‘∧’ for ‘min’ and ‘∨’ for ‘max’. The following lemma gives a new description of
the departure process in terms of counting functions.

Lemma 2.1. Given a queue Q ∈ A
∗ × A, let D = �(Q), where � is the mapping defined by

(2.1) and (2.2). In terms of counting functions, we have

D(t) = A(t) ∧ inf
0≤s≤t

�(t − s +�←(A(s))). (2.3)

The proof is postponed to Appendix A.

Remark 2.1. Equations (2.1) and (2.3) give two equivalent definitions of the mapping
� : A∗×A→ A. However, for τA ∈ A only (2.1) gives the correct definition of �. In particular,
notice that we always have τD

i ≥ σ(1, i)∨ τA
i , from which we derive that D(t) ≤ �(t)∧A(t).
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2.2. Generalized Jackson networks

We recall here the notation introduced in [1] to describe a generalized Jackson network
with K nodes. The networks we consider are characterized by the fact that service times and
routeing decisions are associated with stations and not with customers. This means that the
j th service at station k takes σ

(k)
j units of time, where {σ (k)

j }j≥1 is a predefined sequence. In
the same way, when this service is completed the departing customer is sent to station ν

(k)
j (or

leaves the network if ν
(k)
j = K + 1) and is put at the end of the queue at this station, where

{ν(k)
j }j≥1 is also a predefined sequence, called the routeing sequence. The sequences {σ (k)

j }j≥1

and {ν(k)
j }j≥1, where k ranges over the set of stations, are called the driving sequences of the

net. A generalized Jackson network will be defined by

JN = {{σ (k)
j }j≥1, {ν(k)

j }j≥1, n
(k), 0 ≤ k ≤ K},

where (n(0), n(1), . . . , n(K)) describes the initial condition. The interpretation is as follows: for
k �= 0, at time t = 0 and in node k there are n(k) customers with service times σ

(k)
1 , . . . , σ

(k)

n(k)

(if appropriate, σ
(k)
1 may be interpreted as a residual service time).

Node 0 models the external arrival of customers in the network. The following statements
then hold.

• If n(0) = 0, there is no external arrival.

• If ∞ > n(0) ≥ 1 then, for all 1 ≤ j ≤ n(0), the arrival time of the j th customer in
the network takes place at σ

(0)
1 + · · · + σ

(0)
j and it joins the end of the queue at station

ν
(0)
j . Hence, σ (0)

j is the j th interarrival time. Note that, in this case, there may be a finite
number of customers passing through a given station, so that the network is actually well
defined once finite sequences of routeing decisions and service times are given on this
station.

• If n(0) = ∞ then, if we assume that the sequence {σ (0)
j }j≥1, say, is i.i.d., the arrival

process is a renewal process.

To each node of a generalized Jackson network, we can associate the following counting
functions in A:

1. K + 1 functions associated to the service times σ (k) (as in the single-server queue);

2. K(K + 1) functions that count the number of customers routed from one node in
{0, . . . , K} to another node in {1, . . . , K};

3. K + 1 functions associated to n(k).

Hence, a generalized Jackson network with K nodes is an object in A
(K+1)(K+2) =: AJN. We

will use the following notation for each of these counting functions:

• N = (n(0), . . . , n(K)), with n(i) ≥ 0;

• σ (k) = {σ (k)
j }j≥1 and σ (k)(1, n) =∑n

j=1 σ
(k)
j for 0 ≤ k ≤ K;

• �(i)(t) =∑
n≥1 1{σ (i)(1,n)≤t} for 0 ≤ i ≤ K;

• Pi,j (n) =∑
l≤n 1{ν(i)

l =j} for 0 ≤ i ≤ K , 1 ≤ j ≤ K + 1.
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We denote the arrival and departure processes of each queue k of the network by A(k) and
D(k), respectively, with the following notation: A = (A(1), . . . , A(K)) and D = (D(1), . . . ,

D(K)). A procedure to construct the processes A and D is given inAppendix B. Given a departure
process �(0) for queue 0, departure processes X = {X(i)}1≤i≤K for the queues i ∈ [1, K], and
an initial number of customers n(i) in each queue, we construct the following arrival processes
Y = {Y (i)}1≤i≤K :

Y (i)(t) = n(i) + P0,i (�
(0)(t) ∧ n(0))+

K∑
j=1

Pj,i(X
(j)(t)).

We denote this by Y = 
(X, JN).
Finally, given an arrival process Y for each queue, we define the corresponding departure

process X and denote it by X = �(Y, JN). Hence, we have X(i) = �(Y (i), �(i)), where �

was defined for the single-server queue in (2.1).

Proposition 2.1. A and D, the arrival and departure processes of the generalized Jackson
network, are the unique solutions of the fixed-point equation{

A = 
(D, JN),

D = �(A, JN).
(2.4)

We will denote by � the mapping from A
JN to A

2 that to any Jackson network JN associates
the corresponding couple (A, D).

The proof is postponed to Appendix B.

Remark 2.2. This proposition gives the connection between two possible descriptions of a
generalized Jackson network. One of these descriptions was given in words at the beginning
of this section and is presented with greater precision in Appendix B. The other description is
in terms of fixed-point equation (2.4), which was introduced by Majewski in [13]. These two
descriptions are equivalent in the special case of discrete inputs and an empty network at time
t = 0−.

3. Fluid limit and bottleneck analysis

3.1. Fluid limit for single-server queues

For any sequence of functions {f n}, we define the corresponding scaled sequence {f̂ n} by
f̂ n(t) = f n(nt)/n. We say that f n→ f uniformly on compact sets (u.o.c.) if, for each t > 0,

sup
0≤u≤t

|f n(u)− f (u)| → 0 as n→∞.

Recall the following lemma, known as Dini’s theorem.

Lemma 3.1. Let {f n} be a sequence of nondecreasing functions on R+ and let f be a con-
tinuous function on R. Assume that f n(t) → f (t) for all t (weak convergence is denoted by
f n→ f ). Then f n→ f u.o.c.

The following Lemma can be found in Billingsley [4, p. 287]:

Lemma 3.2. If fn are nondecreasing functions and fn→ f , then f←n → f←.
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Proposition 3.1. Consider a sequence of single-server queues {Qn} = {τA,n, σ n} ∈ (A×A)N

with associated arrival process τA,n such that Ân(t)→ Â(t) for all t > 0, with Â concave on
R+, and associated service-time process σn such that �̂n(t)→ µt for all t ≥ 0, with µ ≥ 0.
For such a sequence, D̂n→ D̂ u.o.c, with D̂(t) = µt ∧ Â(t).

Proof. First observe that Dn(t) ≤ �n(t) ∧ An(t) (recalling Remark 2.1). Hence, making
the fluid scaling and taking the limit in n, we have D̂(t) ≤ µt ∧ Â(t). Proposition 3.1 follows,
in the case µ = 0, by Lemma 3.1. In the case µ > 0, we assume that Qn ∈ A

∗ × A for all n

and Â(0) = 0.
Since Â(0) = 0, Â is continuous on R+ and Lemma 3.1 gives Ân → Â u.o.c. Moreover,

by Lemma 3.2, the sequences �̂n and �̂n← converge u.o.c. to the respective functions t �→ µt

and t �→ t/µ.
For fixed t ≥ 0, we have

lim
n→∞

Dn(nt)

n
= lim

n→∞

{
inf

0≤u≤t

(
1

n
�n[n(t − u)+ (�n)←(An(nu))]

)
∧ An(nt)

n

}

= inf
0≤u≤t

(
lim

n→∞
1

n
�n[n(t − u)+ (�n)←(An(nu))]

)
∧ lim

n→∞
An(nt)

n

= inf
0≤u≤t

(µ(t − u)+ Â(u)) ∧ Â(t)

= µt ∧ Â(t),

by uniformity on compact sets, where the last equality follows from concavity of Â. Now, by
Lemma 3.1, the result follows in this case. To extend the result to the case of Qn ∈ A × A,
we consider the sequence τ

B,n
i = τ

A,n
i + 1/i, which belongs to A

∗. For any ε > 0, we have
An(n(t − ε)) ≤ Bn(nt) ≤ An(nt) for n ≥ 1/ε. Hence, Â(t − ε) ≤ B̂(t) ≤ Â(t) and, since Â

is continuous, we have B̂ = Â. Moreover, since τ
B,n
i ≥ τ

A,n
i , we have Dn

B = �(Bn, �n) ≤
�(An, �n), and we can apply the first part of the proof to B̂. Hence, Dn

B(t)→ Â(t) ∧ µt and
the result follows in this case.

The case Â(0) �= 0 can be dealt with using the same monotonicity argument. For any ε > 0,
consider the sequence τ

C,n
i = τ

B,n
i ∨ iε: we have Ĉ(t) = (t/ε) ∧ Â(t) and τ

C,n
i ≥ τ

A,n
i . We

can apply the first part of the proof to Ĉ; hence, Dn
C(t)→ Ĉ(t) ∧ µt . For ε ≤ µ−1, we find

that D̂(t) ≥ µt ∧ Â(t).

3.2. Bottleneck analysis

We first define the noncapture condition, as follows.

Condition 3.1. (Noncapture (NC).) We say that the K×K matrix P = (pi,j )1≤i,j≤K satisfies
the NC condition if P is a substochastic matrix such that the stochastic matrix

R =

⎛
⎜⎜⎜⎝

p1,1 · · · p1,K 1−∑
i p1,i

...
. . .

...
...

pK,1 · · · pK,K 1−∑
i pK,i

0 · · · 0 1

⎞
⎟⎟⎟⎠

has only K + 1 as absorbing state, i.e. such that the Markov chain with transition matrix R

almost surely equals K + 1, eventually.
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The following lemma is proved in Appendix C.

Lemma 3.3. Let P be a K × K substochastic matrix. The following properties are equiva-
lent:

1. P satisfies the NC condition.

2. The Perron–Frobenius eigenvalue of P is r < 1.

3. (I − P
) is invertible, where P
 denotes the matrix transpose of P .

For x and y two vectors of R
K , we will write x ≥ y if xi ≥ yi for all i. For any matrix P

and any vectors α, y ∈ R
K+ , we define Fα : RK+ → R

K+ and Gy : RK+ → R
K+ by

(Fα)i(x1, . . . , xK) = αi +
K∑

j=1

pj,ixj ,

(Gy)i(x1, . . . , xK) = xi ∧ yi.

Proposition 3.2. If the matrix P satisfies the NC condition, the fixed-point equation

Fα ◦Gy(x) = x

has a unique solution x(α, y). Moreover, (α, y) �→ x(α, y) is a continuous, nondecreasing
function.

Remark 3.1. These relations have already appeared in Massey [14] and Chen and Mandelbaum
[6, Section 3.1]. In fact, as pointed out in [6], we can use Tarski’s fixed-point theorem [17]
to show the existence of this fixed point (called ‘inflow’ in [6]). However, here we give a
self-contained proof that illustrates the continuity and monotonicity properties of the solution.

Proof of Proposition 3.2. The existence of a solution to the fixed-point equation is a
simple consequence of monotonicity. Since Fα and Gy are nondecreasing functions and
Fα ◦Gy(0) ≥ 0, we see that (Fα ◦Gy)n(0)↗ b, say. Hence, b ≤ Fα(y) and Fα ◦Gy(b) = b.

For a given subset � of [1, K] and y ∈ R
K+ , we define F�

α,y : RK+ → R
K+ by

(F�
α,y)i(x1, . . . , xK) = αi +

∑
j∈�

pj,iyj +
∑
j∈�c

pj,ixj .

Therefore, F�·,· (·) depends only on {xi, i ∈ �c}, and Fα = F∅
α,y .

We fix y ∈ R
K+ and first study the case F�

α,y(x) = x. This equation is

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1 = α1 +
∑
j∈�

pj,1yj +
∑
j∈�c

pj,1xj ,

...
...

...

xK = αK +
∑
j∈�

pj,Kyj +
∑
j∈�c

pj,Kxj .
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In fact, we only have to calculate {xi, i ∈ �c} in order to obtain {xi, i ∈ �} also. Renumbering
the indices of x, and taking into account only those in �c, we have⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x1 = λ1(α, y)+
n∑

j=1

p�
j,1xj ,

...
...

...

xn = λn(α, y)+
n∑

j=1

p�
j,nxj .

(3.1)

P � = (p�
i,j , i, j = 1, . . . , n) is a substochastic matrix and I − P � is invertible (even for

� = ∅ – see Lemma 3.3). Hence, if λ(α, y) = (λ1(α, y), . . . , λn(α, y)), (3.1) has only one
solution: x̃� = λ(α, y)+ x̃�P � ⇔ x̃� = λ(α, y)(I − P �)−1.

We now return to our fixed-point problem x = Fα ◦ Gy(x). To show uniqueness of the
solution, take any solution z = Fα◦Gy(z). We have z ≥ 0 and, hence, Fα◦Gy(z) ≥ Fα◦Gy(0)

and z ≥ b. Let A = {i : zi > yi} and B = {i : bi > yi}. Then, we have B ⊂ A and b = x̃B

since FB
α,y(b) = Fα ◦Gy(b) = b. Moreover,

zi = αi +
∑
j∈B

pj,iyj +
∑

j∈A\B
pj,iyj +

∑
j /∈A

pj,izj ,

(FB
α,y)i(z) = αi +

∑
j∈B

rj,iyj +
∑

j∈A\B
pj,izj +

∑
j /∈A

pj,izj ,

and, hence, we have FB
α,y(z) ≥ z. However, since (FB

α,y)n(z) ↗ x̃B = b, this implies that
b ≥ z. We are forced to conclude that z = b.

For any �, (α, y) �→ x̃�(α, y) = λ(α, y)(I − P �)−1 is a continuous, nondecreasing
function. Fix any (α, y), and define A = {i : xi(α, y) ≥ yi} and B = {i : xi(α, y) > yi}.
Then x(α, y) = x̃A(α, y) = x̃B(α, y) and, for (β, z) in a neighborhood of (α, y), we have
x(β, z) ∈ {x̃A(β, z), x̃B(β, z)}, and the continuity of (α, y) �→ x(α, y) follows from that of
(α, y) �→ x̃�(α, y). Now, to see that this function is nondecreasing, take (β, z) ≥ (α, y). We
then have

Fβ ◦Gz(x(α, y)) ≥ Fα ◦Gy(x(α, y)) = x(α, y)

and the sequence {(Fβ ◦Gz)
n(x(α, y))}n≥0 increases to x(β, z).

3.3. Fluid limit for generalized Jackson networks

We consider the following sequence of Jackson networks:

JNn = {σn, νn, Nn} with

lim
n→∞

Nn

n
= (n(0), n(1), . . . , n(K)), n(0) ≤ ∞, n(i) <∞, i �= 0.

Thanks to Procedure 2, given in Appendix B, we can construct the corresponding arrival and
departure processes An and Dn. We assume that the driving sequences satisfy

�̂(0),n(t)→ �(0)(t), where t �→ �(0)(t) ∧ n(0) is a concave function;

�̂(k),n(t)→ µ(k)t for all k ≥ 1 and all t ≥ 0 (µ(k) ≥ 0); and

P̂ n
i,j (t)→ pi,j t for all t ≥ 0.

We suppose that the routeing matrix P = (pi,j )1≤i,j≤K satisfies the NC condition.
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Proposition 3.3. The processes Ân and D̂n converge uniformly on compact sets to a fluid limit
defined by

Â(i)(t) = n(i) + p0,i (�
(0)(t) ∧ n(0))+

K∑
j=1

pj,iD̂
(j)(t), (3.2)

D̂(i)(t) = Â(i)(t) ∧ µ(i)t. (3.3)

Remark 3.2. 1. The existence and the uniqueness of solutions to (3.2) and (3.3) follow directly
from Proposition 3.2, as shown in the proof. Moreover, it easily follows from the proof that
each component of Â and D̂ is concave and that if �(0) is piecewise linear then so are the
processes Â and D̂.

2. Theorem 7.1 of [6] gives the fluid approximation of a generalized Jackson network. If we
take a linear function for �(0) then, from (Â, D̂), we can explicitly calculate the solution of the
equations of this theorem.

Proof of Proposition 3.3. For any fixed n ≥ 1, we define the sequences of processes
{An

t (k), Dn
t (k)}k≥0 and {An

b(k), Dn
b(k)}k≥0 with the same recurrence equation{

An(k + 1) = 
(Dn(k), JNn),

Dn(k + 1) = �(An(k + 1), JNn),

but with different initial conditions Dn
t (0) = (�(1),n, . . . , �(K),n) and Dn

b(0) = (0, . . . , 0).
We recall the notation


i(X, JNn)(t) = n(i),n + P n
0,i (�

(0),n(t) ∧ n(0),n)+
K∑

j=1

P n
j,i(Xj (t)),

�i(X, JNn)(t) = �(Xi, σ
(i),n)(t),

and we will use the scaled sequences Ân(k)(t) = An(k)(nt)/n and D̂n(k)(t) = Dn(k)(nt)/n.
We introduce the mappings 
s : C(R+)K → C(R+)K and �s : C(R+)K → C(R+)K (where
C(R+) is the set of continuous functions on R+):


s
i (x1, . . . , xK)(t) = n(i) + p0,i (�

(0)(t) ∧ n(0))+
K∑

j=1

pj,ixj (t),

�s
i (x1, . . . , xK)(t) = xi(t) ∧ µ(i)t.

(These appear implicitly in (3.2) and (3.3).) The following lemma holds for both top and bottom
sequences; hence, we omit the subscripts ‘t’ and ‘b’.

Lemma 3.4. Assume that, for a fixed k, D̂n(k)→ D̂(k) u.o.c. and that each component of D̂(k)

is a concave function. Then we have

Ân(k + 1)
n→∞−−−→ 
s(D̂(k)) = Â(k + 1) u.o.c.,

D̂n(k + 1)
n→∞−−−→ �s(Â(k + 1)) = D̂(k + 1) u.o.c.,

and the components of Â(k + 1) and D̂(k + 1) are concave functions.
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Proof. For any fixed t , we have

A(i),n(k + 1)(nt)

n
= n(i),n

n
+ P n

0,i (�
(0),n(nt) ∧ n(0),n)

n
+

K∑
j=1

P n
i,j (D

(j),n(k)(nt))

n
.

Hence, by Lemma 3.1, we have Ân(k + 1)
n→∞−−−→ 
s(D̂(k)) u.o.c. and each component of

Â(k+1) = 
s(D̂(k)) is clearly a concave function. The result then follows from Proposition 3.1.

We now return to the proof of Proposition 3.3. We have Â(k + 1) = 
s ◦ �s(Â(k)). This
equation gives the relation between two functions of a real parameter t . However, we can fix
this parameter and so obtain, for any fixed t , an equation between real numbers that we write as
Â(k+1)(t) = 
s ◦�s(Â(k)(t)) (even if 
s ◦�s is supposed to act on functions). Moreover, as
a consequence of Proposition 3.2, we know that the fixed-point equation 
s ◦�s(ζ (t)) = ζ (t)

has a unique solution, namely ζ (t) = x(α, µ(1)t, . . . , µ(K)t), with

α = (n(1) + p0,1(�
(0)(t) ∧ n(0)), . . . ,

n(i) + p0,i (�
(0)(t) ∧ n(0)), . . . , n(K) + p0,K(�(0)(t) ∧ n(0))).

For any t , the sequence {Âb(k)(t)}k≥1 is nondecreasing and {Ât (k)(t)}k≥1 is nonincreasing.
We have

Âb(k)(t)
k→∞−−−→ ζ (t) and Ât(k)(t)

k→∞−−−→ ζ (t),

and
D̂b(k)(t)

k→∞−−−→ �s(ζ (t)) and D̂t(k)(t)
k→∞−−−→ �s(ζ (t)).

Moreover, if we fix any n ≥ 1, the mappings · �→ 
(·, JNn) and · �→ �(·, JNn) are
nondecreasing, and {

An = 
(Dn, JNn),

Dn = �(An, JNn).

Hence, for all k ≥ 0, we have

An
b(k) ≤ An ≤ An

t (k),

Dn
b(k) ≤ Dn ≤ Dn

t (k).

Furthermore,

An
b(k)(nt)

n
≤ An(nt)

n
≤ An

t (k)(nt)

n
,

Âb(k)(t) ≤ lim inf
n

An(nt)

n

≤ lim sup
n

An(nt)

n
≤ Ât(k)(t),

and, hence, we have

lim
n

An(nt)

n
= ζ(t) for all t.

The result follows from Lemma 3.1.
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4. Maximal dater asymptotic

4.1. Motivation

We first recall the definition of a simple Euler network from Section 4.1 of [1]. Consider a
route p = (p1, . . . , pL) with 1 ≤ pi ≤ K for i = 2, . . . , L− 1. Such a route is successful if
p1 = 0 and pL = K + 1. We can associate to such a route a routeing sequence ν and a vector
φ as follows (‘⊕’ means concatenation).

Procedure 1.

– 1 – for k = 0, . . . , K do
ν(k) := ∅;
φ(k) := 0;

od

– 2 – for i = 1, . . . , L− 1 do
ν(pi) := ν(pi) ⊕ pi+1;
φ(pi) := φ(pi) + 1;

od

Note that φ(j) is the number of visits to node j in such a route.
A simple Euler network is a generalized Jackson network E = {σ, ν, N}, with

N = (1, 0, . . . , 0︸ ︷︷ ︸
d

).

The routeing sequence ν = {ν(k)
i }i=1,...,φ(k) is generated by a successful route, and σ =

{σ (k)
i }i=1,...,φ(k) is a sequence of real-valued nonnegative numbers representing service times.
Now consider a sequence of simple Euler networks, say {E(l)}l=1,...,∞, where E(l) =

{σ(l), ν(l), (1, 0, . . . , 0)} (here, σ(l) and ν(l) are the driving sequences of E(l)). We define σ

and ν to be the infinite concatenations of {σ(l)}l=1,...,∞ and {ν(l)}l=1,...,∞, respectively. Denote
by σc the sequence obtained from σ in the following manner: σc = (cσ (0), σ (1), . . . , σ (K)).

We consider the corresponding sequence of Jackson networks {JNn
c }n = {{σc, ν, Nn}}n, with

Nn = (n, 0, . . . , 0). The Jackson network JNn
c corresponds to an empty network with n

customers in node 0 at time t = 0. We will denote by Xn
c the time to empty the system JNn

c ,
called the maximal dater of the network. By the Euler property of {E(i)}i≥1, we know that
Xn

c <∞ for all n (see [1]). We suppose that

lim
n→∞

σ
(0)
c (1, n)

n
= c

λ
,

lim
n→∞

σ (k)(1, n)

n
= 1

µ(k)
, µ(k) > 0, 1 ≤ k ≤ K, (4.1)

lim
n→∞

Pi,j (n)

n
= pi,j , 0 ≤ i ≤ K, 1 ≤ j ≤ K + 1. (4.2)

We assume that P = (pi,j )1≤i,j≤K satisfies the NC condition, and denote by πi the solution
to the following system of equations:

πi = p0,i +
K∑

j=1

pj,iπj , i = 1, . . . , K. (4.3)
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The constant πi is the expected number of visits to site i for the Markov chain with transition
matrix P and with initial distribution p0,i (see the proof of Lemma 3.3). We will prove the
following theorem.

Theorem 4.1. Under the previous conditions, we have

lim
n→∞

Xn
c

n
= max

1≤i≤K

πi

µ(i)
∨ c

λ
for all c ≥ 0.

4.2. Proof of Theorem 4.1

Given a routeing matrix P = (pi,j , i, j = 1, . . . , K) that satisfies the NC condition, and
a vector α = (α1, . . . , αK) ∈ R

K+ , we denote by πα
i the solution of the following system of

equations (see Lemma 3.3):

πα
i = αi +

K∑
j=1

pj,iπ
α
j , i = 1, . . . , K.

Proposition 4.1. Consider a sequence of Jackson networks, as in Proposition 3.3, such that
µ(k) > 0 for all k, �(0)(t) = λt/c with λ > 0 and c ≥ 0 (with the convention that division by
0 yields∞), and Xn <∞ for all n. For such a sequence,

lim
n→∞

Xn
c

n
= max

1≤i≤K

πα
i

µ(i)
∨ cn(0)

λ
,

where α = (n(1) + n(0)p0,1, . . . , n
(K) + n(0)p0,K).

Proof. To prove the lower bound, consider the auxiliary Jackson network ˜JN
n = {0, νn,

Nn}, and the associated vector Y (n), where Y (i)(n) is the total number of customers that pass
through node i in this network. We have

Y (i)(n) = n(i),n + P n
0,i (n

(0),n)+
K∑

j=1

P n
j,i(Y

(j)(n))

and, hence, limn Y (i)(n)/n = πα
i , by the NC condition on P .

Now consider the original network JNn
c . The number of customers that pass through

node i is still Y (i)(n). Hence, we have the following inequality for the maximal dater of
node i ≥ 1 : X(i),n ≥ σ (i),n(1, Y (i)(n)). For node 0, the analogous inequality is X

(0),n
c ≥

σ
(0),n
c (1, n(0),n). Therefore,

lim inf
n→∞

X(i),n

n
≥ lim

n→∞
σ (i),n(1, Y (i)(n))

n
= πα

i

µ(i)
,

lim inf
n→∞

X
(0),n
c

n
≥ lim

n→∞
σ

(0),n
c (1, n(0),n)

n
= cn(0)

λ
.

Since Xn
c = max1≤i≤K X(i),n ∨X

(0),n
c , the lower bound follows.

To prove the upper bound, we consider the original Jackson network. From Proposition 3.3,
we know that the corresponding arrival and departure processes An and Dn converge to the fluid
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limits Â and D̂, respectively. Let T (i) = inf{t > 0 : Â(i)(t) = D̂(i)(t)}, T = maxi∈[1,K] T (i),
and M = T ∨ cn(0)/λ. Then

Â(i)(t) = n(i) + p0,in
(0) +

K∑
j=1

pj,iÂ
(j)(t) for all t ≥ M

and, hence, we have
Â(i)(t) = D̂(i)(t) = πα

i for all t ≥ M. (4.4)

Writing i0 = arg max{T (i)}, we have Â(i0)(T ) = D̂(i0)(T ) = µ(i0)T by concavity of Â(i0) and,
hence, T = πα

i0
/µ(i0). Moreover, (4.4) implies that, for all t ≥ M ,

Y (i)(n)−D(i),n(nt)

n

n→∞−−−→ 0,

where Y (i)(n) is the total number of customers that pass through node i. Since Xn
c < ∞, we

know that

Xn
c ≤ nt +

K∑
i=1

σ (i),n(D(i),n(nt), Y (i)(n))+ σ (0),n
c (�(0),n(nt), n(0),n)

for any t .
Taking t = M , we have lim supn→∞Xn

c /n ≤ M = T ∨ cn(0)/λ = πα
i0
/µ(i0)∨ cn(0)/λ, and

the result follows.

Proof of Theorem 4.1. It is easy to see that the assumptions of Proposition 3.3 hold for the
Jackson networks JNn

c = {σc, ν, Nn}, with n(0) = 1 and n(i) = 0, i �= 0.

4.3. Stability of generalized Jackson networks

We now give the connection between this fluid limit and the stability region of generalized
Jackson networks under stationary ergodicity assumptions, following [1].

Assume that we have a probability space (�, F , P), endowed with an ergodic measure-
preserving shift θ . Consider a sequence of simple Euler networks {E(n)}∞n=−∞, say, where
E(n) = {σ(n), ν(n), (1, 0, . . . , 0)}. Let ξ(n) = {{σ(n)}, {ν(n)}}. The stochastic assumptions
of [1, Section 4.1] are as follows.

• The variables {σ(n)} and {ν(n)} are random variables defined on (�, F , P).

• The random variable ξ(n) satisfies the relation ξ(n) = ξ(0) ◦ θn for all n, which implies
that {ξ(n)}n is stationary and ergodic.

• All the expectations E[φ(k)(0)] and E[∑φ(k)(0)
i=1 σ

(k)
i (0)] are finite (φ(j)(n) is obtained by

Procedure 1 on E(n)).

In such a setting, we can find �0 such that, on �0, (4.1), (4.2), and Condition 3.1 (noncapture)
hold and P(�0) = 1. By the strong law of large numbers, we have, almost surely,

1

n
(φ(j)(1)+ · · · + φ(j)(n))→ E[φ(j)(0)] <∞,

1

n

(φ(j)(1)∑
i=1

σ
(j)
i (1)+ · · · +

φ(j)(n)∑
i=1

σ
(j)
i (n)

)
→ E

[φ(j)(0)∑
i=1

σ
(j)
i (0)

]
<∞.

https://doi.org/10.1239/jap/1118777184 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1118777184


504 M. LELARGE

From these equations, we derive condition (4.1):

lim
n→∞

σ (j)(1, n)

n
= E[∑φ(j)(0)

i=1 σ
(j)
i (0)]

E[φ(j)(0)] =: 1

µ(j)
a.s.

By the same kind of argument, we can show that limit (4.2) holds almost surely. To show that P
satisfies the NC condition, we write V (j) = E[φ(j)(0)] and V (j)(n) = φ(j)(1)+ · · ·+φ(j)(n).
Owing to the Euler property of the graphs, we have V (i)(n) = P0,i (n)+∑K

j=1 Pj,i(V
(j)(n)),

whence V (i) = p0,i +∑K
j=1 pj,iV

(j). Equation (4.3) has a finite solution, so P satisfies the
NC condition and V (i) = πi (see Lemma 3.3). Now we can define �0 as follows:

�0 =
{

σ (k)(1, n)

n
→ 1

µ(k)
,
Pi,j (n)

n
→ pi,j ,

V (j)(n)

n
→ πj

}
.

We will use the conventional notation µ(0) = λ for the intensity of the external arrival.
The limit calculated in Theorem 4.1 is exactly the constant δ(c) defined in [1, Equation (85)].

In the event �0, Theorem 4.1 applies and gives a new proof of Theorem 15 of [1], which says
that δ(0) = γ (0) = maxi πi/µ

(i). Moreover, the lower bound of Lemma 6 (in [1]) is in fact
shown to be the exact value of δ(c). Theorems 13 and 14 of [1] give the stability condition of
a Jackson-type queueing network in an ergodic setting. To be more precise, for m ≤ n ≤ 0 we
define σ[m,n] and ν[m,n] to be the concatenations of {σ(k)}m≤k≤n and {ν(k)}m≤k≤n, and then
define the corresponding generalized Jackson networks as

JN[m,n] = {σ[m,n], ν[m,n], N[m,n]}, with N[m,n] = (n−m+ 1, 0, . . . , 0).

We define X[m,n] to be the time taken to empty the generalized Jackson network JN[m,n]
and denote by Z[m,n] = X[m,n] −∑n−m+1

i=1 σ
(0)
[m,n],i the associated maximal dater. (Note that

our notation is consistent with [1].) The sequence Z[−n,0] is increasing, so there exists a limit
Z = limn→∞ Z[−n,0] (which may be either finite or infinite). We call this limit the maximal
dater of the generalized Jackson network JN = {σ, ν, N} where σ and ν are the infinite
concatenations of {σ(k)}k≤0 and {ν(k)}k≤0, respectively, and N = (∞, 0, . . . , 0). Let A be
the event

A =
{
Z = lim

n→∞Z[−n,0] = ∞
}
.

This event is of crucial interest, since a finite, stationary construction of the state of the network
can only be made on the complementary part of A. In other words, Z < ∞ if and only if the
network is stable. The following theorem follows from Theorems 13 and 14 of [1].

Theorem 4.2. Let ρ = λ max1≤i≤K πi/µ
(i). If ρ < 1 then P(A) = 0 while, if ρ > 1, then

P(A) = 1.

Remark 4.1. There exists a parallel stream of work that uses sample path methods – quite
different from those described in this paper – to prove a weaker form of stability called pathwise
stability or rate stability. Rate stability means that, with probability 1, the long-run average
departures must equal the long-run average arrivals at each station. In Chen [5], it was proved
that, for a multiclass queueing network under work-conserving service disciplines, the weak
stability of the fluid model implies the rate stability of the stochastic network. We refer the
reader to [5] for a detailed definition of the fluid model and weak stability; the main result of
[5] is that, under the usual traffic conditions, a generalized Jackson network is rate stable.
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Furthermore, in Dai [8] it was proved, under weak strong-law-of-large-numbers assumptions,
that if ρ > 1 (with our notation) then the number of customers in the network diverges to infinity
with probability 1 as time t →∞ (see Proposition 5.1 of [8]). This result corresponds to the
second part of our Theorem 4.2. To prove that ρ < 1 ensures stability of the generalized Jackson
network, Dai [7] needed i.i.d. assumptions and additional conditions on the interarrival times,
namely that they be unbounded and spread out. In this paper, we use fluid limits to derive the
same result under stationarity and ergodicity conditions only.

5. Rare events in generalized Jackson networks

The aim of this section is to give a picture of a particular kind of rare event in which the
maximal dater of a generalized Jackson network becomes very big. Under some stochastic
assumptions, we can prove that large maximal daters occur when a single large service time
has ‘taken place’ at one of the stations, while all other service times are close to their mean (see
[3]). We now give the corresponding fluid picture.

5.1. The single-big-event framework

We consider a sequence of simple Euler networks {E(n)}∞n=−∞, say, where E(n) = {σ(n),

ν(n), 1}. Considering the corresponding JN[−n,∞] network, we assume that

�̂(0),n(t)→ t/a for all t, (5.1)

�̂(k),n(t)→ µ(k)t for all t and all k ≥ 1, (5.2)

P̂ n
i,j (t)→ pi,j t for all t, i, and j . (5.3)

We further assume that P = (pi,j )1≤i,j≤K satisfies the NC condition, and we use the following
notation:

πi = p0,i +
K∑

k=1

pk,iπk, i = 1, . . . , K, (5.4)

xi = p0,i +
∑
k �=j

pk,ixk ⇒ xj = pj , i = 1, . . . , K, (5.5)

πj,i = δj,i +
K∑

k=1

pk,iπj,k, i = 1, . . . , K. (5.6)

Equation (5.4) is the traditional traffic equation of the network in terms of numbers of customers.
In (5.5), pj corresponds to the amount of traffic coming in queue j if queue i is blocked (its
departure process is null). Note that xi ≤ πi in this case. Equation (5.6) corresponds to the
traffic equation in the network when there is no input from the outside world and only queue j

is active. We introduce the corresponding loads

bj = πj

µ(j)
, b = max

j
bj , bj,i = πj,i

µ(i)
, and Bj = max

i
bj,i ,

and assume that the stability condition b < a holds. We suppose that the big event (i.e. the
large service time) occurs in the simple Euler network −n and, so, we replace E(−n) by an
extra E. The replacement network E is atypical in the sense that a large service time σ takes
place at station j and within the set of service times of E.
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Let us look at the corresponding maximal dater Z[−n,0](E) in the fluid scale suggested by the
limit of Proposition 4.1. If σ > na then the number of customers blocked at station j at time σ is
of order npj , whereas the numbers of customers at the other stations are small. So, according to
Proposition 4.1, the time taken to empty the network from time σ on should be of order npjBj ;
hence, in this case, the maximal dater in question should be of order σ − na + npjBj . On the
other hand, if σ < na then, at time σ , the number of customers blocked at station j is of order
pjσ/a, and the other stations have few customers; from time σ to the time of the last arrival
(which is of order na), station k has to serve approximately the load (pjσ/a)bj,k generated by
these blocked customers plus the load (na−σ)bk/a generated by the external arrivals in the time
interval from σ to the last arrival. In this time interval, the service capacity is of order na − σ .
Hence, the maximal dater should be of order maxk{pjbj,kσ/a+ (na− σ)bk/a− (na− σ)}+.

It is now natural to introduce the following function:

f j (σ, n) = 1{σ>na}(σ − na + npjBj ) + 1{σ≤na}max
k

{
pjbj,k

σ

a
+

(
bk

a
− 1

)
(na − σ)

}+
.

To make our discussion more rigorous, consider the network JNn(E) with input {Ẽ(k)}∞k=−n,
where Ẽ(k) = E(k) for all k > −n and Ẽ(−n) = E := {σ(E), ν(E), (1, 0, . . . , 0)}. That is, if
we denote byσ (k),n and ν(k),n the concatenations ({σ (k)(E)},{σ (k)(−n+1)}, . . . ,{σ (k)(0)}, . . . )
and ({ν(k)(E)}, {ν(k)(−n+ 1)}, . . . , {ν(k)(0)}, . . . ), respectively, then

JNn(E) = {σn(E), νn(E), Nn}, with Nn = (n, 0, . . . , 0).

The maximal dater of order [−n, 0] in this network will be denoted by Z̃n(E); of course,
Z̃n(E(n)) = Z[−n,0]. For all simple Euler networks E = {σ, ν, (1, 0, . . . , 0)}, let Y (j)(E) =∑φ(j)

u=1 σ
(j)
u . For some sequence of positive real numbers zn, we define

Uj (n) = {E is a simple Euler network such that Y (k)(E) ≤ zn for all k �= j},
Vj (n) = {E ∈ Uj (n), Y (j)(E) ≥ n(a − b), φ(j) ≤ L}.

Proposition 5.1. Under the previous assumptions, there exists a sequence zn → ∞, with
zn/n→ 0, such that

sup
E∈Vj (n)

∣∣∣∣1

n
(Z̃n(E)− f j (Y (j)(E), n))

∣∣∣∣ n→∞−−−→ 0. (5.7)

5.2. Computation of the fluid limit (Proof of Proposition 5.1)

We take a sequence of simple Euler networks Fn ∈ Vj (n) and write JNn = JNn(Fn).
Since zn/n tends to 0, we have

�̂(0),n(t)→ t/a for all t, a.s.,

�̂(k),n(t)→ µ(k)t for all k �= j ≥ 1 and all t, a.s.,

P̂ n
i,j (t)→ pi,j t for all i and j and all t, a.s.

We write ζn = Y (j)(Fn) ∈ [n(a− b),∞) and denote by Tn the time taken by station j to com-
plete its first φ(j)(Fn) services in the network JNn. From monotonicity, we obtain ζn ≤ Tn ≤
ζn +∑

k �=j Y (k)(Fn). Hence, we have limn→∞ Tn/ζn = 1, since zn/ζn ≤ zn/n(a − b)→ 0.
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If we assume that ζn/n → ζ < ∞, then JNn is such that �(j),n(t) ≤ L for t ≤ Tn. Hence,
�(j),n(nt)/n ≤ L/n for nt ≤ Tn, so that �̂(j),n(t) → 0 for all t ≤ ζn. We see that this last
fluid limit does not hold on the whole positive real line. Nevertheless, consider the Jackson
networks with the same driving sequences as JNn except for at station j , where we take the
concatenation of ({σ (j)(Fn)},∞, . . . ). For this new network, the fluid limit for station j holds
on R+ and we can directly apply Proposition 3.3. However, it is easy to see that, for t ≤ Tn,
this network and the original Jackson network JNn have exactly the same dynamics. Hence,
Proposition 3.3 applies for t ≤ ζ , so that for each k the sequence {Â(k),n} converges u.o.c. to a
limit Â(k) when n tends to∞, with a similar result and notation for the departure process. We
have, with λ = a−1,

Â(i)(t) = p0,iλ(t ∧ a)+
K∑

k=1

pk,iD̂
(k)(t),

D̂(i)(t) = Â(i)(t) ∧ µ̃(i)t with µ̃(i) = µ(i) for i �= j and µ̃(j) = 0.

We can rewrite the first expression as

Â(i)(t) = λp0,i (t ∧ a)+
∑
k �=j

pk,iD̂
(k)(t).

Hence, with the notation introduced in Section 5.1, we have

Â(i)(t) = D̂(i)(t) = λxi(t ∧ a) ≤ λπi(t ∧ a) for t ≤ ζ and i �= j,

Â(j)(t) = λpj (t ∧ a) for t ≤ ζ.

In what follows, we will consider the (new) Jackson network obtained by taking the state
of the initial network at time Tn as initial condition and, as routeing and service sequences, the
routeing decisions and (residual) service still unused at this time. This network will be denoted
by ¯JN

n = {σ̄ n, ν̄n, N̄n}, with

σ̄ (0),n = {�(0),n←(�(0),n(Tn)+ 1)− Tn, σ
(0),n

�(0),n(Tn)+2
, . . . },

ν̄(0),n = {ν(0),n

�(0),n(Tn)+1
, ν

(0),n

�(0),n(Tn)+2
, . . . },

N̄ (0),n = n−�(0),n(Tn),

and, for i �= 0,

σ̄ (i),n = {r(i),n, σ
(i),n

D(i),n(Tn)+2
, . . . },

ν̄(i),n = {ν(i),n

D(i),n(Tn)+1
, ν

(i),n

D(i),n(Tn)+2
, . . . },

N̄ (i),n = A(i),n(Tn)−D(i),n(Tn), where

r(i),n =
⎧⎨
⎩

σ
(i),n

D(i),n(Tn)+1
if A(i),n(Tn) = D(i),n(Tn),

D(i),n←(D(i),n(Tn)+ 1))− Tn otherwise.

We have

lim
n→∞

1

n
A(i),n(Tn) = lim

n→∞
1

n
D(i),n(Tn) = Â(i)(ζ ) = D̂(i)(ζ ) for i �= j,

lim
n→∞

1

n
A(j),n(Tn) = λpj (ζ ∧ a), and lim

n→∞
1

n
D(j),n(Tn) = 0.
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Hence,

N̄n

n
→ (λ(a − ζ )+, 0, . . . , λpj (ζ ∧ a), . . . , 0)

ˆ̄�(0),n(t)→ λt for all t,

ˆ̄�(i),n(t)→ µ(i)t for all i ≥ 1 and all t,

ˆ̄P n
i,j (t)→ pi,j t for all i and j and all t .

We can apply Proposition 4.1 with a parameter α that depends on the quantity a − ζ . If
ζ ≥ a we then have α = pjej , where ej = (0, . . . , 1, . . . , 0) with the 1 in the j th position,
and

πα
i = pjπj,i .

Proposition 4.1 gives

Z̃n(Fn)+ na − Tn

n
→ pj max

i

πj,i

µ(i)
(5.8)

and, hence, we have

Z̃n(Fn) = (Tn − na + npjBj )(1+ o(n)) = f j (Tn, n)(1+ o(n)). (5.9)

On the other hand, if ζ < a we then have α = λ(a−ζ )P0+λpj ζej , where P0 = (p0,1, . . . ,

p0,K), and
πα

i = λ[(a − ζ )πi + pjπj,iζ ].
In this case, Proposition 4.1 gives

Z̃n(Fn)+ na − Tn

n
→ (a − ζ ) ∨ λ max

i

[
(a − ζ )πi + pjπj,iζ

µ(i)

]

and, hence, we have

Z̃n(Fn) = (1+ o(n)) max
i

[
pjbj,i

Tn

a
+ (na − Tn)

(
bi

a
− 1

)]+
= f j (Tn, n)(1+ o(n)).

In the case ζn/n→∞, which corresponds to ζ = ∞, our results up until (5.8) still hold and,
hence, (5.9) holds as well.

This proves that ∣∣∣∣ Z̃n(Fn)− f j (ζn, n)

n

∣∣∣∣ n→∞−−−→ 0 (5.10)

for any sequence Fn ∈ Vj (n) with Y (j)(Fn) = ζn ∈ [n(a − b),∞) such that ζn/n→ ζ ≤ ∞.
However, this result holds for any sequence Fn ∈ Vj (n). Consider any Fn ∈ Vj (n) and
suppose that

lim sup
n→∞

∣∣∣∣ Z̃n(Fn)− f j (Y (j)(Fn), n)

n

∣∣∣∣ = l > 0.
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By extracting a subsequence of {Fn}, we can replace ‘lim sup’ by ‘lim’. Moreover, by making
a further extraction, we may suppose that Y (j)(Fn)/n → ζ ≤ ∞ and, for this subsequence,
limit (5.10) is violated. Hence, for any sequence Fn, we have∣∣∣∣ Z̃n(Fn)− f j (Y (j)(Fn), n)

n

∣∣∣∣ n→∞−−−→ 0. (5.11)

Now consider a sequence Fn ∈ Vj (n) such that∣∣∣∣ Z̃n(Fn)− f j (Y (j)(Fn), n)

n

∣∣∣∣ ≥ sup
E∈Vj (n)

∣∣∣∣ Z̃n(E)− f j (Y (j)(E), n)

n

∣∣∣∣− εn,

with εn→ 0. We then see that (5.7) follows from (5.11).

Remark 5.1. In the stochastic framework of Section 4.3, we see that our assumptions on the
limits (5.1), (5.2), and (5.3) are justified. In particular, if the sequence of simple Euler networks
{E(n)}∞n=−∞ is i.i.d., then we deduce from the previous proposition that

sup
E∈Vj (n)

∣∣∣∣ Z̃n(E)− f j (Y (j)(E), n)

n

∣∣∣∣ n→∞−−−→ 0 a.s.

Appendix A. Proof of Lemma 2.1

For 1 ≤ j , we define the point process 
j as follows:

τ

j
n = 0 for 1 ≤ n ≤ j − 1,

τ

j
n = τA

j + σ(j, n) for n ≥ j .

The construction of 
j is depicted in Figure 1. For j ≥ 1, we have


j (t) =
{

j − 1 for t < τA
j ,

�(t − τA
j + σ(1, j − 1)) for t ≥ τA

j ,

with the convention that σ(1, 0) = 0.
From (2.1), we have t ≥ τD

n ⇔ t ≥ τ

j
n for all j ≤ n and, hence,

D(t) ≥ n⇔ inf
j≤n


j (t) ≥ n.

However, for all j ≥ n+ 1, we have 
j (t) ≥ n for all t so, in fact, D(t) = infj≥1 
j (t). We
also have

inf
j≥1


j (t) = inf
j≥1,τA

j ≤t

�[t − τA
j + σ(1, j − 1)] ∧ A(t),

and we now show that infj≥1 
j (t) = A(t)∧ inf0≤s≤t �[t − s+�←(A(s))]. Since τA
j ∈ A

∗
2,

on each interval [τA
j−1, τ

A
j ) (we use the convention τA

0 = 0), we have A(s) = j − 1 and the
function s �→ �[t − s +�←(j − 1)] is nonincreasing. Hence,

inf
s∈[τA

j−1,τ
A
j )

�[t − s +�←(A(s))] = �[t − τA
j + σ(1, j − 1)].
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j − 1 j − 1j − 1

A t( ) �( )t 
 ( )t

σ(1, 1)j − τ j

j

Aτ j
A

Figure 1: Construction of 
j .

Moreover, for τA
k ≤ t < τA

k+1 we have

inf
s∈[τA

k ,t)

�[t − s +�←(A(s))] = �(�←(k)) ≥ k = A(t).

Finally, we have

A(t) ∧ inf
0≤s≤t

�[t − s +�←(A(s))] = A(t) ∧ inf
j≥1,τA

j ≤t

�[t − τA
j + σ(1, j − 1)]

= inf
j≥1


j (t).

Appendix B. Construction of arrival and departure processes

Here we give a procedure that constructs the processes A and D.

Procedure 2.

– 1 – t := 0;
for i ≥ 0 do

R(i)(t) := σ
(i)
1 ; A(i)(t) := n(i); D(i)(t) := 0;

od

– 2 – V := min{i : A(i)(t)−D(i)(t)≥1} R(i)(t); γ := arg min{i : A(i)(t)−D(i)(t)≥1} R(i)(t);

– 3 – if V = ∞ then END;
fi

– 4 – D(γ )(t + V ) := D(γ )(t)+ 1; A(γ )(t + V ) := A(γ )(t);
if A(γ )(t + V )−D(γ )(t + V ) ≥ 1 then R(γ )(t + V ) := σ

(γ )

D(γ )(t+V )+1
; fi

j := ν
(γ )

D(γ )(t+V )
;

if j �= K + 1 then A(j)(t + V ) := A(j)(t)+ 1; D(j)(t + V ) := D(j)(t);
if A(j)(t)−D(j)(t) = 0 then R(j)(t + V ) := σ

(j)

A(j)(t+V )
; fi

fi
for i /∈ {γ, j} do

R(i)(t + V ) := R(i)(t)− V ; A(i)(t + V ) := A(i)(t); D(i)(t + V ) := D(i)(t);
od
t := t + V ;

– 5 – goto 2;
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Remark B.1. Since the sequences {σ (k)
j }j≥1 and {ν(k)

j }j≥1 are infinite, the variables ν
(γ )

D(γ )(t+V )
,

σ
(γ )

D(γ )(t+V )
, and σ

(j)

A(j)(t+V )
in step – 4 – are always available. Also note that the procedure ends

in step – 3 – if
∑K

i=0 n(i) < ∞. If
∑K

i=0 n(i) = ∞, on the other hand, the procedure never
ends. The latter situation corresponds to a network with an infinite number of customers. In
this case, there exists T ≤ ∞ such that limt→T A(t) = limt→T D(t) = ∞.

Proof of Proposition 2.1. If we define J (k) = sup{j : ∑j
i=1 σ

(k)
i = 0}, the generalized

Jackson network is equivalent to

{
{σ (k)

j }j≥J (k)+1, {ν(k)
j }j≥J (k)+1, n

(k) +
K∑

i=0

Pi,k(J
(i))

}
.

Hence, we can assume that J (k) = 0 for all k and we have A(i)(0) = ni and D(i)(0) = 0 for
time t = 0. For t ≥ 0, let

D̃(i)(t) = A(i)(0) ∧ inf
0≤s≤t

�(i)[t − s +�(i)←(A(i)(0))],

Ã(i)(t) = n(i) + P0,i (�
(0)(t) ∧ n(0))+

K∑
j=1

Pj,i(D̃
(j)(t)).

Denote by

t1 = inf{t ≥ 0 : �(0)(t−) �= �(0)(t) or there exists an i such that D̃(i)(t−) �= D̃(i)(t)}
the first time of jump for processes D̃ and Ã. Then,

A(i)(t) = Ã(i)(t) for 0 ≤ t ≤ t1,

D(i)(t) = D̃(i)(t) for 0 ≤ t ≤ t1,

provide a solution pair to (2.4) over t ∈ [0, t1]. In fact, this solution is exactly the one
constructed by Procedure 2. Now suppose that a solution pair (A, D) has been constructed on
[0, tn], where tn is a jump point for either A(i) or D(i). As above, let X(s) = A(s) for s ≤ tn and
X(s) = A(tn) for s > tn, and for t ≥ tn define

D̃(i)(t) = X(i)(t) ∧ inf
0≤s≤t

�(i)[t − s +�(i)←(X(i)(s))],

Ã(i)(t) = n(i) + P0,i (�
(0)(t) ∧ n(0))+

K∑
j=1

Pj,i(D̃
(j)(t)).

Letting

tn+1 = inf{t ≥ tn : �(0)(t−) �= �(0)(t) or there exists an i such that D̃(i)(t−) �= D̃(i)(t)}
leads us to the same conclusion as above. The uniqueness of (A, D) is a consequence of this
construction procedure.

Remark B.2. This construction is very similar to the construction of the reflection mapping
made in the proof of Theorem 2.1 of [6].
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Appendix C. Proof of Lemma 3.3

By Corollaries 1 and 2 of Seneta [15], part 3 of our Lemma 3.3 follows from part 2, which
in turn is a consequence of part 1. To see that part 3 implies part 1, just write the equations
for the expected number of visits of the Markov chain (Xn) with transition matrix R to state
i �= K + 1, i.e.

Vi = E

[∑
n

1{Xn=i}
]
= P(X0 = i)+

K∑
j=1

pj,iVj for all i ∈ [1, K]. (C.1)

Since (I − P
) is invertible, (C.1) has a finite solution. Hence, the only absorbing state of
(Xn) is K + 1.
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