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1. Introduction. Let k be any algebraically closed field, and denote by /c((0) the field of
formal power series in one indeterminate / over k. Let

K= ()K(tllni)),
n = l

so that K is the field of Puiseux expansions with coefficients in k (each element of AT is a formal
power series in tllr for some positive integer r). It is well-known that K is algebraically closed
if and only if A: is of characteristic zero [1, p. 61]. For examples relating to ramified extensions
of fields with valuation [9, §6] it is useful to have a field analogous to K which is algebraically
closed when k has non-zero characteristic/?. In this paper, I prove that the set L of all formal
power series of the form £ajfe' (where (e,) is well-ordered, et = mx\npri, neZ, mteZ, atek,
rf e N) forms an algebraically closed field.

It is convenient to discuss the field L in connexion with a new class of relatively complete
fields, which arise by modification of the construction described by B. H. Neumann in [6].
Relatively complete fields which are not complete have previously been pointed out by
Ostrowski [7] (the absolutely algebraic /7-adic numbers, which have obvious generalisations)
and by Moriya [5] (infinite algebraic extensions of complete fields).

2. Field-families. Let E be a field, F an ordered abelian group written additively, and
si a family of subsets of F. Let ET denote the set of maps from the set of elements of F to the
set of elements of E, and, for x e ET, let S(x) = {y e F: x(y) ̂ 0 } denote the support of x. Let
Er(si) denote {x e Er: S(x) esf}. We define addition and multiplication in Er(sf) by

(1)
and

*j<y)= E *(«)J<0) (2)

wherever the operations are meaningful; thus Er(s/) is a ringoid. Let iF(r} be the family of
all well-ordered subsets of T. Then Hahn [2] has shown that ET{iK(T)) is always a field.
Clearly, if si strictly contains ^ ( F ) , definition (2) will not always make sense. On the other
hand, however, we shall see that si can be a proper subset of "^(T) and still lead to a field.

Definition, si is said to be afield-family with respect to T if

(i) j / c n r ( r ) ,

(ii) the elements of the members of si generate the group F,

(iii) Aesi,Besi => AuBesi,

(iv) Aesi,B<zA=>Besi,
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(v) A esi, y e F=> {a + y.ae A) e si,

and

(vi) A e si, A c F + =

where, in (vi), F + = {y e F: y ̂  0} and </4> is the set of elements of the semigroup generated
by the elements of A under addition in F.

As a special case of [6, p. 206, Theorem 3.4], we have the following:

LEMMA 1. A e ir(T), A c F + =» <,4> e-rF(F).
It is clear from this that W (F) is itself a field-family. Other examples of field-families are

given in §3 below.

THEOREM 1. If si is afield-family with respect to F, then Er(si) is afield.

Proof. From (i), (iii) and (iv), it follows that Er(si) is an additive abelian group under the
addition (1). From (i), (iii), (iv), (v) and (vi), multiplication is everywhere defined, and from
(1) and (2) it is distributive over addition. Commutativity, associativity and the existence of a
unit may readily be checked. It remains to show that each nonzero element of ET{si) has a
multiplicative inverse in Er{si). Suppose x # 0 , x e ET(si), and, to begin with, suppose that
the first element of S(x) is 0 e F. From [6, Theorem 4.9] it follows that x'1 e Er(ir(T)),
and from the proof of [6, Theorem 4.7], we have S(x~*) c <S(x)>. Thus S(x~*) e si, and so
x~l e Er(sf). Now to deal with the general case, let S{x) have first element y. By (ii) and (iv),
si contains a set with one element, so by (v), { — y}esi. Let yeET{si) be defined by
j(—y) = l,y(8) = 0 for 5 # —y. Now 0 is the first element of S(xy), and so

x~l =y(xyYleET(si).

This completes the proof of Theorem 1.

3. Some special cases. For any ordered abelian group F, let A(F) be the divisible envelope
of F to which the order of F has been extended in the natural way. The family Of (F) of well-
ordered subsets of F is a field-family with respect to T, and £A(r)(TT" (r)) is a subfield of
E^T\iir (A(F))) isomorphic to Er(W (F)).

Let #"(F) be the family of subsets of A(F) of the form {\jd)A for all integers d > 0 and all
A e "W (F). It is clear that 3T(F) is a field-family with respect to A(F). For any positive integer

let ^ ( r ) be the family of all subsets of A(F) of the form

( = 0

for all B e 2T(F). Let ZP(T) = <&p{T)r\ir (A(F)). Then &p(T) is a field-family with respect to
A (although <&p(£) is not).

We have the chain of fields

Er(iT(T))•£ £A(r )(iT(r)) <= £A<r>(#(r)) c Eh(X\2£.(F))
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In the particular case in which E = k and F = Z, we have the fields of §1. Thus

*((/)) 3 *Q(iT(Z)), K^k<*{%{Z)) and L s

where p is the characteristic of £.

4. Relative completeness. With the notation of §2, let s4 be a field-family with respect to
F, and define a function v: ET{s4) -> Fu{oo} by setting v(x) equal to the first element of S(x)
for x # 0, and by setting v(0) = oo. Under the conventions that oo = oo +00 = 00 + y > y for
all y e F, v is a valuation of the field Er(sf), which we refer to as the natural valuation. We
have the properties v(xy) = v(x) + v(y), v(x±y) ^ min {v(x), v(y)}. The residue class field of
Er(sf) under v is E.

When a field with a valuation has the property that for each algebraic extension of the
field there is just one way of extending the valuation, the field is said to have the unique extension
property. If a field with a valuation has the property that Hensel's lemma (Lemma 3, below)
is true over its valuation ring, then the field is said to be relatively complete. A field is relatively
complete if and only if it has the unique extension property (see [10] and [11]).

It is well-known that Er(iP~ (F)) is relatively complete for any F and E [4, Theorems 26, 27
and 12]. Since kQ(£(Z)) is algebraic over kQ(ir(Z)), fco(#"(Z)) has the unique extension
property. More generally, we have the following result.

THEOREM 2. Let E be any field, F any ordered abelian group, and stf any field-family with
respect to F. Under the natural valuation, Er(s/) is relatively complete.

Proof. We prove that Hensel's lemma holds for ET(tf). Let B = {x e ET{sf)\ v(x) ^ 0}
extend v to be a function defined on the polynomial ring B[X] by putting

v £ a,X' = min v(a,).
\ j = 0 / i = 0 n

The extended function v has the properties

(3)
and

v(/±0)£min{v(/),v(0)}. (4)

Extend S to be a function from B[X] to si by putting

=o / >=o

We now follow through the usual proof of Hensel's lemma [8], paying attention to properties
of the function S. First we have a lemma which enables the induction to be carried through.

LEMMA 2. Letf, g, h,l,me B[X] be such thatg is monk, v(f) = v(g) = v(h) = 0, d°g < d°f
vtf-gh) = y>0,v(l-lg-mh) = 5>0. Let Q = S(f)uS(g)\jS(h)\jS(fi\jS(m). Then there
exist g',h'eB[X] such that g' is monk, v(g') = v(h') = 0, d°g = d°g', v(g-g')£y>0,
v(h-h') ^ y > 0,v(f-g'h') ^ y + mm{y,5},v(l-lg'-mh') ^ min {y,5},andSg' c Q,Sh'c Q.
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Proof. Since g is monic, we can divide (f—gh)m by g and obtain q, r e B[X] with d°r < d°g
such that (f—gh)m = gg+r. From the way in which the coefficients of q arise, we see that
vfo) ^ v(f—gh) + v(m) ^ y. We can deduce from (4) that v(r) ^ y. Moreover S(q) c Q, and
hence S^r) c g . Take g' =g + r and /*' = h + (l+q)l(f—gh) + qh. From the equation

/-<?'/<' = ( /"-^)(1 -10 ' mh) - /•<?(/*+Hf-gh)) - Im(f-gh)2

it follows that g', h' have all the required properties. This completes the proof of the lemma.

LEMMA 3 (Hensel's lemma). Assume the hypotheses of Lemma 2. Then there exist g0, h0

in B[X] such thatf= goho.

Proof. Let 2T be the family of triples (gt, hh y,) such that gx is monic, d°gi = d°g
v(g-9d>0, v(h-hd>0, v(l-!gt-mhd>0, vif-gth,) = y,, S(g,)<=Q and S(hd <= Q.
Define a partial order on 9~, (g,, hit y,) < (g^hj, yj), to mean y, < y,, v(gi,—gy) ^ yis

v(h, — hj) ^ y;. ^" is non-empty. Any chain in 9~ has an upper bound in £T, for if {(gt, hh y,)}
is a chain (a totally ordered set) then we define g by g(X) =YJQjXi> where a/<x) = a,;(a)
provided a < yf for some y-t in the chain (where g{{X) =YJdijX

J), and otherwise aj(a) = 0.
Define h~ similarly. With y = v(f-gE), it is clear that y ̂  yt for each /. Then (g, h~, y) e ^".
It is important that S(g) c g and S(/i) c Q by construction, and that Qe sf.

From Zorn's lemma, ^" has a maximal element, say (g0, h0, y0). By Lemma 2, if y0 # oo,
then (g0, h0, y0) is not maximal. Hence y0 = oo a n d / = goho. Lemma 3 is now proved.

Theorem 2 follows at once from Lemma 3.

5. Algebraically closed fields.

LEMMA 4. Let k be an algebraically closed field of characteristic p # 0, let Abe a divisible
ordered abelian group, let si be afield-family with respect to A. Then any finite normal extension
M ofkA(s/) is ofdegree p" {for some n e N), and contains a normal subextension of degree p over
k\sf) generated by a zero of the polynomial Xp—X— a, where a e kA(s#) and v(o) < 0.

Proof. Since k\si) has the unique extension property, the ramification theory for valua-
tions (expounded in [12]) shows that the decomposition field of M/kA(stf) is kA(sf). Because k
is algebraically closed, the inertia field is k\ji/), and because A is divisible the ramification
field is also kA(stf). Hence [M:kA(s/)] is the degree of M over the ramification field, and is
therefore a power of p. The existence of a normal subextension of degree p follows trivially
from Sylow theory. By a well-known result [3, p. 98, ex. 4] this extension is generated by a
zero of X"—X—a for some ask. For v(a) ^ 0 it follows from Hensel's lemma that X"—X-a
is reducible (in fact, has a linear factor). Hence v(a) < 0, and the lemma is proved.

THEOREM 3. Let k be an algebraically closed field of characteristic p ^ 0, let T be an
ordered abelian group, and let A be the divisible envelope ofT. Then k*(Zp(T)) is algebraically
closed.

Proof. Suppose not. Then there exists a e ifcA(3?p(r)) such that v(a) < 0 and X"-X~a is
irreducible. We may write a = fli + a2, where

S(Ol) = {y e S(a): y < 0}, S(a2) = {y e S(a): y ̂  0}.
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As in the proof of Lemma 4, Xp—X—a2 has a linear factor, so there exists c in k\
such that c"—c = a2- We shall next show that there exists b in kA(2?p(T)) such that bp—b =
Let b e kA be defined by

for each a e A. The sum is finite for each a < 0, because (p'a) is an infinite strictly descending
sequence, and the support of at is well-ordered. For a ^ 0, fc(a) = 0 since S(ai)nT+ = <f>.

Since S ^ ) is well-ordered and S ^ ) <= {}>:y < 0},

0 J>"'S(«i)

is also well-ordered. This may be seen as follows. Let, if possible,

be an infinite strictly descending sequence in

CO

where each y{ e S ^ ) . By the well-ordering of S(ai), there is an infinite subsequence of
(P~"yi) m which (y,) is nondecreasing. Because each yt < 0 on this infinite subsequence, the
corresponding infinite sequence (jp~") must be strictly increasing. As the r,'s are all positive
integers, this is a contradiction. Hence

00

UP"1-

is well-ordered.

Because, by the definition of b,

S{b) c 0 p

it follows that b e k\%SY)). Moreover b"-b = al, since

Wenowhave(6 + c)p-(fe + c) = ai + a2 = a, so that Xp-X-a is reducible over k\2p(T)).
It follows that k\2?p(T)) has no proper algebraic extension.

COROLLARY. The field L described in §1 is algebraically closed.
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