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Introduction. The purpose of this paper is to generalize the
results of Sherbert on Lipschitz algebras and to study the relationship
between homomorphisms of these algebras and continuous maps of the
underlying metric spaces. In Sections 1, 2, and 3 we associate with
each metric space a class of Lipschitz-type algebras and extend
Sherbert's results in [7] to this class; in particular Sherbert's theorem
5.1 is extended to non-compact metric spaces (3.3, 3.4, 3.5). In
Section 4 the relation between homomorphisms of these generalized
Lipschitz algebras and continuous metric space maps is shown to have
a natural expression in categorical terms, and in Section 5 this
expression is applied to the theory of quasiconformal mappings.

I. Moduli of Continuity

We refer the reader to Bourbaki [1] for basic properties of convex
and concave functions.

Definition. A real modulus of continuity o is a convex or concave

homeomorphism of the real half line [0, ®] onto itself with of0) = 0
and lim alx) =1,
x-00 X

Let CC be the set of all concave moduli of continuity; CV the set
of all convex ones; C = CCUCV. Note that CC/)CV consists of the
identity map, ofx) = x.

1.1. (Glaeser, [2, p. 8]). For any family F of bounded uniformly
equicontinuous functions on a metric space (X,d) with complex values
there exists a non-decreasing concave real function o, continuous at
0 with o0) =0, such that [f(x) - f(y) |_<_ a(d(x,y)) for all fe F, x,yeX,

1.2. We define a partial order on C by : oy < @ if and only if

@, (x)f_arz (x) for all x in [0, ®]. With this order, C is a lattice.

*These results appeared in the author's doctoral thesis, done at
McMaster University under the direction of Dr. B. Banaschewski.
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Proof. We note that if h is the identity map on [0, ], then

a<h for ¢ in CV and a>h for ¢ in CC. K ai,az are not

comparable in C, they must be both in CC or both in CV.

Let ay e, be non-comparable in CC. By concavity, the lower
envelope g(x) = ai(x) ~ az(x) is concave. Suppose g(x) = g(y) for

x < y. Since ., are strictly increasing, this can happen only if:
o, (%) vay(x) = @, (x) = a(y) = ai(Y)/\az(Y) .

But by the first equality and the monotonicity of oy (x) < az(x) < az(y) .

So g is strictly increasing on [0, . Also:

a (%)~ aZ(X) o, (x) az(x)
T Sl A ;e e

Thus ai(x) /\az(x) = a /\az(x) e CC.

ai(X) \V aZ(X)

By a similar argument, lim —————— = 1. However,
X—+00 x
ai(x) \V afz(x) may not be concave. By 1.1, 2 and a, have a concave

upper bound h which is continuous at 0. I h(x) = h(y) for x<y, then
there exists a point z >y with h(z) > h(y), so the line segment

[x, h(x)), (z,h(z)] lies above the graph of h at the point (y, h(y)), which
contradicts the concavity of h. Consequently h is strictly increasing.

The graph of h consists by definition of points lying on line segments
both ends of which are in {(x,y): 0<x < o, 0<y < ai(X) v az(x)}
including degenerate segments of one point only. Considering these point

sets, it is apparent that lim hx) =1. Hence h(x) = o, Y a (x)e CC .
x>0 X 1 2

For @ a, non-comparable in CV, ai(x)Vaz(x) e CV by convexity
and by the same argument as above, lim <o, (x)V o (x) = 1. To form

x—+0 x 1 2
a, /\az, let the set U be the complement in the first quadrant of the
ordinate set of ai(x) /\az(x), Take g(x) to be that function whose ordinate

set is the complement in the first quadrant of the convex hull of U. As in
1.1, ge CV and by a similar argument to that employed in forming the
join in the concave case, g(x) = a, A az(x) in CV.
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An elementary calculation shows that the sublattices CC and CV

are closed under composition. However, for 01 e CC, arz ¢ CV, the

composition a10a2, while still monotone increasing, may be neither
concave nor convex. It also follows trivially from the definitions that

for ae CC, a.1 ¢ CV and vice versa.

1.3. Every «a e C may be represented as:

X

ox) = [ p(tt,

where p is a right continuous function, bounded a.e. on any finite
interval, monotone increasing (decreasing) for o convex (concave).

Proof. By absolute continuity, every oe¢ C is differentiable a.e.
and is equal to the integral of its derivative as stated; in particular to
the integral of its right derivative. For o convex, a detailed proof is
given in [6, Theorem 1.1]; the proof for the concave case is similar.
Since o is finite for finite x, p must be bounded a.e. on {inite intervals.

We now consider the class Ca consisting of all e C such that

X pon x>0,

0 < lim inf
X0 a(x)
By concavity, 'CC C C . By definition, for ac¢ Ca’ we can say that

a
there exists K > 0 with %ﬁf’ > K for all %, all x>0,
-1

2
For example, al0) =0, ofx) = e* , in some interval 10, xi]

shows that caﬂ CV is properly contained in CV., All functions in C
k
of form ofx) =x , k > 1 in a neighbourhood of 0 are in CV( Ca;

the example of0) = 0, a(x) = - ’1‘2—; in an intérval [O, xi] shows that

such functions are not all of CV M Ca.

For at¢CC we have the following inequalities by concavity:

A ox) € a(hx) < alx) A <1

a(x) < a(Ax) < re(x) A > 1, for all x.

For atCVM C_, by convexity and the definition of C_,
a
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inf a(\t)

te[o, 0] [ oft) ] a(x) < alix) < re(x) <1
ralx) < ofAx) < sup [9’%;_)] oAx) A > 1.
te [o,00 &

By the definition of C, the supremum here is bounded. Consequently,

for ot Ca, any \ > 0, there exist Ki’ KZ > 0 with

.K1 ox) < a(Ax) < Kza(x) for all x,

A simple calculation shows that CV( ) C_ is closed under
a
composition, while it has already been established that CC has this
-1
property. We note that since CV = (CC) Ca is not closed under

inversion. Also, by the remarks following 1.2, C is not closed under
.. a
composition.

In order to get a more tractable class of functions, we consider
the equivalence classes of C  with respect to the relation:
a

a, (x) aﬁ(x)

if and only if 0 < lim inf —— < li
o ~a, and only i Xl_{)r()) inf o ) < Hm sup az(x)

- < w0,

It is easy to see that this is in fact an equivalence relation which
is preserved under composition and inversion in C .
a

We note that o ~ao), where ao)(x) = a(xx), ) real, if and only
if a¢ Ca .

The set G of equivalence classes of Ca is closed under

composition, as follows:

1.4. For a, B¢ Ca' there always exists v ¢ Ca with aop~7Y.

Proof. Suppose aofe Ca' By 1.3,

X X
a(x) = [ q(t)dt B(x) = [ qlt)at,
] o]

where p and q are monotone right continuous. Then

4
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X

aoB(x) = f p(B(t)) qg(t)dt
o
X
= f g(t)dt )
o

where g is right continuous and > 0 for any t> 0. If, for some
x , g(t) is monotone on 0 < x < xo, we can construct Y by:
° S

X

Y(x) = [ g(odt 0< x < x,
(o]

v (%) =x—x1 +y(x1) x > x1 ,

where x, is the relative extremum of aof (x) - x for 0< x< x .

If there is no neighbourhood of 0 on which g is monotone, we note
that 0 < g(0) < ©, since by right continuity:

(i) I g(0) =0, g must be monotone increasing in some neighbourhood
of O.

(ii) ¥ g(0) = ©w, g must be monotone decreasing in some neighbourhood
of 0.

. . oB(x
We then set y(x) = x. Obviously, ;{1—13(1) a'y’x) ) = g(0) and
A

%;ir—noo 1%) = g(1). In either case the inequalities (a) and (b) imply that
Y € Ca if « and B are. Consequently, G is a semi-group under

composition.

II. The Algebras La.

For (X,d) a metric space, we denote by L (X, d) the algebra of all
a

complex -valued continuous functions on X which are finite in the norm:

sup { f(x) - £ly) %, yeX, aeCa}

el xty | odd(x y))

HE

hell, + el , -
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2.1. With this norm, La(X,d) is a Banach algebra for each a¢ C .
—_— a
Proof. La is trivially a linear space. The proof of completeness
is exactly the same as that given by Mirkil [4, Theorem 4.5].

The fact that the given norm is a Banach algebra norm follows from
the inequality

[£(x)e(x) - f(y)gly)] g(x) - gly) | £(x) - £(y)
2 (d(m y)) = B =gy e T )

Since L is a function algebra containing the constants, it is semi-
a
simple with unit f(x) =41, xe X. For each cc¢ Ca, L  is closed under
o

complex conjugation, inversion and truncation; consequently, by a result
given by Sherbert [7, Proposition 4.2], if L separates (X,d) itis a
a

regular algebra.

2.2. Let X be a locally compact metric space, act Ca . A

necessary and sufficient condition that L separate X is that for each
a

s € X, there exist Ks > 0 such that fs(x) = Ksa(d(x, s)) A1 be in La.

Proof. Sufficiency is obvious.

Necessity: For arbitrary seX, let K be a compact ball of
radius r > 0 about s. For each pair (x,y) ¢ K, x # y, there exists
g ¢ L. and open neighbourhoods Sx and S of x and y respectively
a y

such that |[g(u) - g(v) | >a> 0 for any (u,v)e SxX Sy. The sets
{Sx X Sy :(x,y) e K} form an open cover of KX K in X X X with the
metric product topology. Let {SX XS } i=1,...,n be a finite cover
i i
with associated functions g, € L . For each pair (x,v)eK, x#y,
a

) X i d . - g. > a.. Let
(x,y) e SXi Syi for some i an Igl(x) gl(y)[ > 2, e
a = min {ai: i=1,...,n} and set hi = (r/a)g. . Then for each

i

(x,y) e X and some 1i:

lh'i(x) j hi(y) ] S r [a(d(x, s)) A r - a(d(y, s)) A r|.
aldlx,v)) ~ od(xy)) — ald(x,y))

1
Thus K a(d(x,s)) Ale L , where K = =
s o s r
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It follows from the triangle inequality that if cod is a metric, then
L, contains fs with Ks =k for all s e X. The example :
a
ofx) = tan T% in a suitable interval [0, xi] shows that it is not necessary

that aod be a metric for La to separate x.

From the general theory, the maximal ideal space of L coincides
a
with its spectrum for each a. If L separates X, X corresponds
[*4
homeomorphically with a subset of the maximal ideal space Ma of L

a
which is dense in the Gelfand topology and the metric topology on X

coincides with the topology induced on X by the Gelfand topology on M ;
a
if X is compact, S and Ma are homeomorphic.
. ° ’ ) i i ) L
2.3. For any (X,d), if o ~a, in Ca then ) and LO[2

contain the same functions.

Proof. By the definition of equivalence, there exist Ki’ KZ > 0 with

K1 @ (x) < az(x) < K2 A (x) for all x £ [0, «].

The d,o norms for L and L  are thus boundedly equivalent,
“ %2
and the sup norm is independent of o .

2.4. For any (X,d), set r =1gId . Then for any ac¢ Ca , L (X,d)
- — o

and L (X, r) contain the same functions.
— T«

Proof. For d(x,y)<1

d )
a(d(x,y)) > a Tdiz,_;% = a(r(x,y))

> a d—‘—-ﬂ’;
> Kofd(x,y)) for some K> 0.
For d(x,y)> 1, any bounded f,
ORI ] Y
< < ®
a(d(x,y)) =  o1)
lfx) - i) 2] £l
P16 C 72 L &) .
7
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Consequently, a bounded function f on X is bounded in |* ”d o

if and only if it is bounded in || ”r o Since the uniform norm is

independent of the metric, L (X,d) and La(X, r) contain the same
a

functions.

2.5. Let (X,d) be any locally compact metric space; let

a, p € C_ such that lim inf ox) 0 and lim sup alx)
a ——— x>0 B(x) — x>0 B (x)

L‘3 separates X . Then La is properly contained in LB.

< o and such that

Proof. By 2.2, fssLﬁ for all s ¢ X. For any s and all x such

that B(d(s,x)) < 1, we have

[f (s) -f (%) | [ (s) - £ (x)]  d(s, x))
s s .4 .S s @, B ———l
K _p(d(s, %) R ofd(s, x)) p(d(s, x))

Thus [|f | is infinite for each s and so f_ is notin L . Let
s'd,a s %

feLa. By hypothesis, there exists K, 0 < K<, such that a(x) < Kg(x)
for all x ¢ [0, ©]. Consequently, f eL[5 . Note that L C L‘3 whether
=

L  separates X or not.

For each ac¢ Ca such that ch separates S, (X,d) a fixed metric

space, we introduce the metric ¢ on M as follows: For ¢, yeM
a a @

o (@) = sup {[o(f) - 4D [ s el [f]<1}.

We use the same symbol for the induced metric on X ,

cra(x, y) = sup {|f(x) - f(y) | : f¢ La, €] < 1}

2.6. For any locally compact metric space (X,d) of finite diameter
and any a¢ Ca such that La separates (X, d) and the set {fs: seX} is

bounded in LQ, the metric o is boundedly equivalent on X to the distance
a
given by aod.

Proof. By definition, ¢ (x,y) < a(d(x,y)).
E— a

By hypothesis, ”fs” < P for some finite P, all s ¢ X. Then for
1
x, yeX, set g(x)="/P fx(s) for se¢X . Then:
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o xy) > [gx) - gly)] 2 Keld(x.y).

COROLLARY. For any metric space (X,d) and any ce¢ Ca

satisfying the above conditions, there exists a metric on X such that
La is precisely the Lipschitz algebra with respect to that metric.

We note that if the triangle inequality for «od holds at all joints
of X, or fails at all points of X, (for locally compact X) the set
{fs : s e X} is bounded in L . The case in which aod satisfies the

a

triangle inequality at some points of X and not at others remains open.

Also, the uniform structures U on X generated by the sets
a

{(%,y) :a(d(x,y)) < €} are all equivalent to the metric uniformity
determined by d (i.e., U1). Hence for o with {fs : s ¢ X} bounded

in L, the o are uniformly equivalent metrics on X.
a a

I1I. Homomorphisms and Space Ma~3,

For every ac¢ Ca such that L (X,d) separates X, L 1is regular,
a a

closed under inversion and complex conjugation and contains the constant
functions. For a homomorphism T: L (X,d) - L[S(Y’ r), a,peC , we
a a

refer to the induced map t: Mﬁ-*M as the adjoint of T and write T*
a
for t. From the general theory we know that t is continuous; to ensure

that t(Y) CX we have:

3.14. Let A, B be algebras of continuous bounded complex-valued
functions on the topological spaces X, Y respectively, such that X is
dense in M, and every compact open neighbourhood c¢f the unit of A

contains a function of compact support in X. Then for any unitary
homomorphism T: A — B which is continuous in the compact open

topology, the adjoint t: M,B *MA carries Y into X.

Proof. Let yeY. My ={feB :f(y) # 0} 1is closed in the compact

open topology on B. Suppose ty ¢ X.

Mty = {fe A : f(ty) = Ti(y) = 0}

is exactly T_i(My) and hence is compact open closed in A. Since
ty ¢ X, all functions f in A of compact support in X are in Mty’

for if K is the support of f, X - K is dense in MA - X and thus
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-

f vanishes on MA - X. But every compact open neighbourhood of the

3

y
which is a contradiction of the fact that T 1is unitary, so ty ¢ X for all

veY.

unit, 1, of A contains a function of compact support. Hence 1 ¢ Mt

In other words, the given conditions ensure that the mapping t
carries fixed ideals of B to fixed ideals of A. An argument similar
to this was given by Nakai [3, Lemma 3.2] in the special case of the
Royden ring of functions on a Riemann surface, but as far as we know this
is its first statement as a general proposition.

3.2. For X a locally compact metric space, let A be any regular
sub-algebra of C(X) which is closed under truncation and complex
conjugation. Then every compact open neighbourhood of the unit of A
contains & function h ¢ A with compact support in X.

Proof. Let K be any compact setin S, U an open neighbourhood

of K with compact closure. For each p ¢ MA - U, we have by regularity a

1
function f ¢ A with: f (p) = 1, {f (K) =0. Set V = s (@) | >=) -
on f ofP > , - la lp Q) | >3}

] , @ er of
Then p ¢ Vp and the sets U and {Vp}péU form an open cover o

M . We select a finite cover, U, V ...V

1 n

(W=
.
ad|
b=

Now set f =

For qeX, q ¢ U we have q eVp for some j, so
J
‘2

H

For qeK, f(q) =0 we take h 1 - [(4f)n1]eA,

1
fq) > lfpj (@) [7 >

h 1is then the required function.

It follows that we can refer to the adjoint t: Y - X of a compact
open continuous algebra homomorphism T : Ld(X) - LB(Y) when La(X)

separates X and X 1is locally compact.
Where t : X - Y is continuous, we will also refer to the induced
algebra homomorphism T : C(X)~ C(Y) defined by Ti(x) = f(tx) as the

adjoint of t and write t¥ for T.

We classify the continuous maps of one metric space (X,d) into
another (Y, r) as follows:

A continuous map t: X—Y is B-modally continuous if it satisfies
rtx, ty) < Kg(d(x, y)} (*¥) for B e Ca, some K > 0 and all x,yeX. We

10

https://doi.org/10.4153/CMB-1969-001-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-001-2

will denote the fact that a continuous map t satisfies condition (%) for
a particular B ¢ Ca by writing t: (X,d)—~ (Y,r) (B). We note that if

t is B-modally continuous and a ~f in Ca, then t is a-modally

continuous.

3.3. Let t:(X,d)— (Y,r) be B -modally continuous. For
@€ Ca, the restriction T of the adjoint T of t to L determines a
—_— g —— - - o

compact open continuous homomorphism T : L (Y)—= L oﬁ(x)' (We
a a a

consider acP to be replaced by an equivalent element of Ca when

necessary, as in 1.5.)

Proof. For fe L (Y);
— a

1

sup {|f(tx) | : x ¢ X}
sup {[f(y) | 1y e ¥} = [£] .

It | _ sup {le(x) - Ti(y)]

d, aop x#y aof (d(x, y))

f(tx) - f(ty) I
aoB (d(x, y))
[f(tx) - fgtx)l .

sup {K' o (x, ty) x, yeX}.

1 sup {lfgs)-fgt)['

1
K' s#t \ oe(s ) © otV Tk hell, -

I ll,

IA

:x, yeX}

sup { :x, yeX}.,

1IN

IN

Thus T(L (Y))C L op (X) and T is trivially a homomorphism. To show
a - a
that T is compact open continuous, for €> o, ge LQ(Y), K compact in

X, consider:

N(Tg, K, ¢) = {f¢ Laoﬁ(X) : ”f—TglKlLo < ¢},
and

N(g, tK, ¢) = {f¢ L (Y): ”f—g[tKlLo< e} .

The continuity of t implies that tK is compactin Y, so N(g,tK, ¢)
is an element of the subbase of the compact open neighbourhood system of
g and T(N(g, tK,¢)) C N(Tg, K, €) since Hf—gltK]l°° = || T¢- TglK”w.

This establishes the compact-open continuity of T. In the case where
Y is compact, T is continuous in the uniform topology of L (Y), since
the two topologies coincide. «

11
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3.4. Let (X,d), (Y,r), where (X,d) is locally compact be

-1
metric spaces with a¢ Ca such that L (X) separates S, a « Ca and
such that &, separates ane
the set {fs: s ¢ X} is bounded in L (X). Let T: L-a(X) - L@(Y) be a
lne set 1s boundec in L et o€ @

compact-open continuous homomorphism for some f ¢ Ca. Then its

adjoint t is an open a—ioﬁ—nﬁodally continuous map of (Y. r) into (X dj.

Proof. By the preceding discussion, t carries Y into X _ M,
£Ioo e

Since T is a Banach algebra homomorphism, the set {Tfs: 3¢+ Xy 18

bounded in norm in Lﬁ’ say by K. For all x, ye Y.’

| Tf_(x) - TE_(y)]

K >
B(r(x, y))
> K La(dgsv tX)) - Q‘(d(S, tﬂu
- s B(r(x, y))
Then for s =ty :
Ksa/(d(tx, ty)) < KB (r(x,y))
i.e., d(tx, ty) < K' cr-1 op (r(x,vy))

for suitable K' > 0 since ar—i € Ca by hypothesis.

In the case where X is compact, we note that all three of the
conditions of 3.3 are still necessary in order to reach the same conclusion.
If « =g =1, the identity in C , this reduces to the case of the L:pschitz

a

algebras of X and Y as considered by Sherbert, In this case, the
. . -1 L
separation of X by L, the inclusion of « in Ca and the boundecness
a

of {fs tseX} in L follow from the definition of L .
a o

From here on, we will consider all metric spaces used to be locally
compact.

3.5. A compact-open continuous homomorphism

T:L (X,d)-> L (Y, r)
1 a

-1
where o "¢ Ca and the set {fs :seY} is bounded in L (Y), isan

isomorphism of Li(X) onto L (Y) if and only if the adjoint t : Y - X
[*3

is a homeomorphism of Y onto X satisfying

12
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(3.5.0) K'a(r(x,y)) < d(tx, ty) < K a(r(x, y))

for some K, K'! > 0, 11 %, yeY,

Proof. Let T be a compact open continuous isomorphism of

L1(X) onto L ({Y). Since T is onto, t is 41-1, so t-ith MZ is
a

defined on t(M ). Now suppose t: M = M, is notonto, so tha. .here
a a

1
exists e Mi' boét <Ma)' Since Ma is compact, t(M ) is compact in

a
Mi' By the regularity of Li’ there exists f ¢ L1 with T(y) = 1, f(x) =0

for all x e t(M ).
a
So Tf () = f(ty) = 0 for all e M
o

This contradicts the assumption that T is 1- 4, so t must be

onto, M - M, . Likewise 1M =M isonto ond
a

1

- -1
t 1 (X)cy ct (Mi) = Mn
i.e., XCtY since t is 1-1. By the compact open continuity of T,
tY CX, so t¥Y =X and t is onto.
The rest of the proof follows,exactly as in Sherbert [7, Theorem 5.1].

COROLLARY. Every compact open continuous automorphism T of

L (X,d) where o le C, and the set {f_ :secX} isboundedin L , is
of the form: Tif(x) = f(tx) f ¢ La’ x e X where t: X=X is a homeo-

morphism satisfying

K'd(x,y) < d(tx, ty) < K d(x,y) x, ye X, K, K' >0,

IV, Categorical Considerations
We can express some aspects of the relationship between modally
continuous space maps and compact open continuous algebra homomorphisms

in terms of suitable categories. The following proposition is obvious:

4.1, Let Ca be directed by the lattice order and assign to each

ace Ca the corresponding algebra La on a fixed metric space (X, d).

13
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For a<p in Ca let hi: La-* L. be the mapping of L onto itself
— - — a

as a subset of Lﬁ. (La' hi) then forms a direct system of Banach

algebras and Banach algebra homomorphisms.

Since by 1.1 every uniformly continuous function on (X, d) satisfies
some modulus of continuity in Ca' the union of this system is the algebra

of all uniformly continuous complex-valued bounded functions on X. It

is conjectured that the uniform closure of this algebra is the direct limit

of this system in the category of commutative semi-simple Banach algebras.
Now let G stand for the set of equivalence classes of Ca under

the relation defined above. G inherits the lattice order of Ca and is

closed under composition by 1.4. We have then associated with each

metric space (X,d) the direct system of algebras (L (X), K )

P Y b ¢'n.oeG
where LQ(X) is the algebra with compact-open topology given by
ae Ca and ¢ is the equivalence class of ¢ in G, Lq)(X) then consists

of the same set of functions as L (X) for all oe ¢, and it is easily seen
@

that this is again a direct system of algebras over (X,d). Moreover, any
p-modally continuous map t: (X,d) - (Y, r) with B ¢ Ca determines by

its adjoint the algebra homomorphisms T¢ : Lq)(Y)»L(:)O (X) for all ¢eG,
n

where 7 is the equivalence class of 3 in Ca

This leads us to consider the category B Jefined as follows

The objects are the direct systems of topological algebras:

n
(Bdb, h¢)¢: neG, ¢ <n

¢

algebra homomorphism hg :B = B is in fact the natural injection.
. n

¢

The morphisms are pairs of the forms:

with the property that, for ¢ <7, B, is a sub-algebra of B , and the
- n

€ = ((T¢)¢) e G, nlne G

where T :B - B is compact open continuous with
= ¢ oon
6! = T! T ), 1
6 o ((QOno ¢) non')
14
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where defined, and for any ¢ <n, T oh!' =T ,ie. T [B =T
R T S nl B =

The composition defined is evidently associative and 6 is the identity
homomorphism of B¢ and m is the equivalence class in G containing

the identity map in Ca.

On the other hand, we consider the category £ whose objects are
the metric spaces (X,d) and whose morphisms are the n-modally
continuous maps for n € G; (t,n) such that t: (X,d) - (Y, r) (8) for
any B in the class n of G.

Again, it is readily seen that
(t', m") o (t,m) = (t' ot, qon")

where defined; this composition is associative and the identity for (X, d)
is simply the pair (t,n) where n is the identity equivalence class in
G and t is the identity mapping on X.

We can now define the category mapping F : £~ 8 as follows

F(X,d)

L(X, d, ¢), h] ‘
(L( ®) ¢)¢,n£G,¢<n

F(t,n)

n

((T), g

on the objects and morphisms respectively of £.

4.2. This mapping F : £+ B(G) is a contravariant functor which
maps the set of modally continuous t: (X,d)—= (Y, r) (n) ne¢G one to one
onto the set of all morphisms F(Y,r) - F(X, d).

Proof. Let 6 = ( (T¢)¢£G, n) for n € G. Inorder to show that

F is onto, we need to find (t,n) in £ such that F(t,n) = 8. We take

t = Tp*, the adjoint of an algebra homomorphism Tp : Lp (Y) - Lp o (X)
n
in 8 such that L (X) satisfies the requirements of L in 3.4. Itis
a

sufficient to take p the equivalence class of the identity map in Ca .

By 3.4, t:(X,d) = (Y,r) (n). Moreover, we claim that
TTD (X) = T$ (X) for all ¢ € G, all xeX where Tg is defined. Suppose

that ¢ < P, so that Ld) (Y) € Lp(Y). Then T, = Tpl L, i.e.,

¢ ¢
T’;( ) = T* (x) where defined, so the above assertion holds.
x p

15
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For LP(Y) C L(Y), we recall that the adjoint t of
T : Lp (Y) - Lpon (X) carries all points (i.e., fixed maximal ideals)
of X to points of Y. Since L (Y) separates Y, if two ideals are

identified by t, they correspond to the same point of Y. Suppose

tx, = txz; consider the adjoint h of T¢ : L¢(Y) - Ldp on(X)' Suppose

hx_ . ;
hox, $ , - Thenfor all seX, f (hx,) } £ (hx);

i.e., T¢fs (Xi) = T¢fS(X2) .

But since fs e L (Y) for all seY:
P

Trbfs(xi) = Tp fs(xi) = Tpfs(xz) = T¢fs(x2) .

So we must have hx1 = hx2 = ty1 for the adjoint of T . This takes care

P
of all cases, since for ¢, pe G we have that ¢ <p, p < ¢ or ¢ and o
are not comparable, we canfind ¢ G with n >¢ and n > p, and in
this case, Lﬂ(Y) will have the same properties as Lp(Y) . This reduces

the matter to the two cases we have considered. It follows that the adjoint

of every T¢ £ 6 is determined by that of T , SO we can take t = T%
P
and then F(t,n) = € as required.
inall =
Finally, let 91 ((T1¢)¢£G'n‘l)
= T
92 (( 2¢)¢£G'n2) .

Then if 61=92, we have n1=n2, T1p=T2¢, for all ¢ ¢ G.
In particular, Tip = sz for p as above, and since these homomorphisms
are enough to determine t, 6, and €_ are the image under F of the same

1 2
(t,m) in £; so F 1is one to one as stated.

Since F is a functor, it takes isomorphisms of £ to isomorphisms
of B8. An isomorphism in & is amap t: (X,d) = (Y, r) (n) such that

-1 - -1
t exists with t = : (Y, r) = (X,d) (n 1) where m € G. Such a map
must correspond under F with € = ((T¢)¢5G'n) where all T¢ are
isomorphisms T¢ : L¢(Y) - L¢On(X). We note that the existence of t

-1 . - < s
and t as above implies that t satisfies

16
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r(tx,ty) < K od(x,y)) x,yeX, aen

d(t-iz, t-iw)f_ CB(r(z,w)) z,weY, B en-i

Hence, for suitable Ki' K2 >0,

K, e (@(xy) < rltx ty) < K, @ (d(xy) -

Thus the isomorphisms of B come from maps (t,n) in £ such that

-1 . . -1 e .
t is defined, n ~ ¢ G and t satisfies the above double condition with
respect to o, for any o in the equivalence class 7 .

V. Quasiconformality.

We take as definition of quasiconformality the following, shown by
Gehring [5 p. 97] to be equivalent to the classical definition in terms of
the moduli of rings:

For t a homeomorphism of a plane domain D, we define, for
x ¢ D:

L(x,r) = sup [tx- tyl
|x-y|=r

£(x,r) = inf [tx - ty|
|x-y|=r

H(x) = lim sup L(x, r) .

r—o 2(x, 1)

We say that a topological mapping of a domain D is quasiconformal
if and only if H(x) is bounded on D.

We have the following relation between quasiconformal mappings and
the morphisms discussed in the last section:

5.4. Let X and Y be plane domains. The direct systems S(X)
and S(Y) of generalized Lipschitz algebras over X and Y are objects
of the category #. Let 8 be a B-isomorphism, 6:S(X)—=+S(Y). Then
the adjoint t of 6 is a quasiconformal map of Y onto X.

17

https://doi.org/10.4153/CMB-1969-001-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-001-2

Proof. As shown above, t is a homeomorphism satisfying

Kpallx-y[) < |-ty < K, of|x-y]) x y ¢ Y.

where o is in the equivalence class of y and [x - y| is the usual
metric in the plane. Then for every ye¢ Y:

suE[tx- tzl

Hly) = lim sup [tx - ty] |-yl = =

K, a(lx-t]) K

< Hm K, o([x-yD X

V]

In general, a quasiconformal map of one domain onto another cannot be
shown to give rise to a f-isomorphism of the associated direct systems
of algebras, since such a map does not necessarily satisfy the double
ineguality

Kyallx-y]) < |- ty] < K, a(]x - y])

for any o ¢ C . However., using a well known result from the theory of
a
quasiconformal mappings, we have:

5.2. Let t be a K-quasiconformal map of the open unit disc U
in the plane onto itself, with t(0) = 0. The adjoint T of t determines

2 8 -morphism

€ = (L), qn) ie. €:SU) = SO )

of the direct system S(U) into istelf, where n 1is the equivalence class
T

of a(x) = xE. Moreover, for each ¢ ¢ G, we have :

Lyog @ ST, (L) L

where B (x) = x

Proof. This follows from the results in Section 3 and 4 and from

the fact that for the map t and each pair of points z40 2, in U:

18
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-K K
c lzi-zzl < [t(zi)nt(zz)l < clzi-z

Rl

where C is an absolute constant whose smallest possible value is 16.

[5. p. 102].

These results may be extended without difficulty to the case of

domains in real n-space.
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