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A SUFFICIENT CONDITION FOR THE SECOND DERIVED
FACTOR GROUP TO BE FINITE

by J. R. HOWSE*
(Received 10th August, 1985)

1. Introduction

This paper concerns an application of an algorithm for the second derived factor
group as described by Howse and Johnson in [3]. This algorithm has as its basis the
Fox derivative (see [1]), a mapping from the free group F to the group-ring ZF, defined
as follows: let X be a set of generators of a group G, and let w=y, ...y, with each
y;€ X*1 Then the Fox derivative of the word w with respect to any generator x€ X is
defined to be

Yoo Yi-1» when  y;=x,
—=.Z a, where a;=J —y ...y, when y,=x"1,

0, when y;#xT!

Let ¢:F—-G (and also ¢:ZF—~ZG, etc.) and ¥:G—>G/G’ (and also y:ZG—-Z(G/G’), etc.).
The Jacobian J=0R/0X of the presentation G={X|R) is the |R|x|X| matrix whose
(i,j) entry is Or,/0x;. Let G/G'={z,,...,z,} and A be a matrix over Z(G/G’). Any entry
yeZ(G/G") of A is of the form y=2}'=1 o;z; and thus defines an n-tuple (o4, ..., a,). The
n-tuple corresponding to z;y(1<j<n) is a rearrangement of this, and we let m(y) denote
the nxn matrix having this as its jth row. Let m(A) denote the matrix of integers
obtained by applying m to each entry of 4. Then the integer matrix M =m(y¢(J)) is a
relation matrix for the group G'/G” ® Z®®~ 1. The invariant factors of G’/G” can be
computed from M by diagonalisation.

The proof of this algorithm together with examples illustrating it and applications of
it can be found in [2] and [3].

This paper applies the algorithm to 2-generator groups with finite derived factor
groups. The main result obtained is that the second derived factor group is finite if the
determinant of the matrix, with the above notation, A;;=m(y$(dr;/0x;)) for some r;eR
and x;e X of the group presentation G=<X|R) (|X|=2), is non-zero. This result is then
applied to groups with cyclic derived factor group and which have a presentation which
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contains at least one relator having a small number of syllables; in which case much
more explicit conditions for the second derived factor group to be finite are determined.

In the application of the algorithm the integer matrix m(y¢(dr/dx)) can be
represented by the “polynomial” y@(dr/dx), e.g. if r=x>, then Y¢(r/dx)=1+x+ x> and
this can represent the integer matrix

1 1 1
1 11
1 11

(assuming that G/G'~Z,). Moreover the integer relation matrix m(y¢(J)) can be
represented by the “polynomial” matrix y¢(J). Indeed row and column operations can
be performed on this “polynomial” matrix.

2. The main theorem

Consider the 2-generator group G=<{Xx, y|r1, ..., where 2<g<oo, with finite
derived factor group and |G:G’|=n. Fori=1,...,q, let ry=x%yb1  x%kybi where a;,+0
and b, #0 for h=1,...,k, if k;> 1.

Let Y ¥, ay=a; and Y ¥ by, =b,. Let G/G'={z,,...,z,}. Then the Fox derivatives of
the relator r; with respect to the generators x and y, modulo G, are of the form

—é‘;zailzl'*' +ainzn (mOd Gr)?

or; ,
EEBuZl + - +Binz, (modG).

Lemma 1- a,-l+"'+a,~,,=a,~ and bi1+...+bin=bi'

The proof is obvious from the definition of Fox derivatives.
The matrix (given in polynomial form)

appzy+ o+ agaZ, Brazit o + Bz,
i=| : :
aqlzl + - +aqnzn ﬁqlzl+ +Bqnzn

is a relation matrix for G'/G” @ Z®®~ 1. m(J) is a gn x 2n matrix, thus |G:G"| is equal to
the h.c.f. of the determinants of all (n+ 1)-rowed minors of m(J) when finite, and is
infinite when all these are zero.

Consider the 2n x 2n “submatrix” of J

(ailzl + 4w,z Buzit o +Binza

=K"(saY)7
ajzy+ ¥z, Bzt +Bjnzn) Y
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where i#j. In integer form we will write this matrix as

M,y %y M(Biys-- s Bin
m(y, ..., %, m(Biy, .., Bin)

m(Kij)=(

Replace row n+1 by the sum of the last n rows, and column n+1 by the sum of the
last n columns and then consider the first n+ 1 rows and n+1 columns of the resulting
matrix to get (using Lemma 1) :

m(aila [RRE] ain) bi
b = M;; (say).
a; a; nb;

Now M;; is an (n+1) x(n+ 1) matrix (wilile not an (n+ 1)-rowed minor of J, M;; was
produced from J by matrix operation), thus we have

|G":G”|||det M,]. {1
Lemma 2. If a;#+0, then
Idet Mij|=n|a,~bj—ajb,-”detA,-|/|a,-|,

where A;=m(a;,, ..., ).

Ai bi
Proof. |det M| =|det b
a; ... a; nbj:
A; Y
- S B
b; &
Cn+1"a_z ¢ =|det 0
ik=1
na;b;
b.—a.b,
—n|20i" 90 |det 4], as required. O

Lemma 3. If a;#0, then ab;—a;b;#0 for some j.
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Proof. From the original definition of G, we have
|G:G'|=hcf(ab;—ab;i=1,...,q,j=1,...,9). 2

We will assume throughout this proof that a,#0. If b;=0, then there exists j such that
b;#0 from (2), because G/G’ is finite. So if b;=0, then a;b;—a;b;#+0 for some j. Now
consider the case b;#0. Assume, for a contradiction, that a;b;—a;b;=0 for all j. Thus
a;=a;b;/b; for all j. So for all j, k we have

b b.

akbl_ajbk= b

contradicting (2), because G/G' is finite. Thus a;b;—a;b;#0 for some j. d
We can now state a sufficient condition for |G’:G”| to be finite.

Theorem 1. Let G be a 2-generator group with G/G' finite. Let A;=m(y$(0r;/0x;)) for
a given generator x;. If det A;#0 for some i, then G'/G" is finite.

Proof. If a;=0, then det 4;=0, because each row-sum=g;=0, by Lemma 1; however,
there exists i so that a;#0, by the hypothesis that det A;,#0. Assume that a;#0. By
Lemma 3, a;b;—a;b;#0 for some j; so if det 4;#0, then det M;;%0 by Lemma 2. Thus
by (1), G'/G" is finite. g

3. Groups with cyclic derived factor group

When the derived factor group is cyclic, the matrix A4; of Theorem 1 is circulant. A
formula for the determinant of a circulant matrix is given in Lemma 4 below. From this
formula conditions can be found such that the determinant is not zero, giving further
conditions for the second derived factor group to be finite.

Lemma 4. Let C=C(ay,a,,...,a,) be a circulant matrix, and o be a primitive nth root
of unity. Then

detC=]] ¥ o0V~
i=1 j=1
The proof of this lemma can be found in [4].

The following theorems are concerned with groups with cyclic derived factor group.
We will consider groups having a presentation which contains at least one relator
having a small number of syllables, i.e. a relator of the form r=x“y’, or of the form
r=x“'y"‘x“2y"2.

Let G=<(x, y|R), where R is a finite set of relators, with G/G'={z|z"), where
x=z"(mod G') and y=z"*(mod G’), where 0<m;<n—1 and O<m,<n—1. (It should
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be noted that 0<m,, m, is an extra assumption, but the case x=1(mod G'), i.e. m, =0,
is considered in [2]. Moreover, either m,; or m, is not zero, unless G=G'=G")
Let M;={s;s|m;} (j=1,2) the set of all divisors of m;.

Theorem 2. Let G be as just stated. Let r=xy®, where a+0, reR. If (am;,n)eM,,
then G'/G" is finite.

Proof. Without loss of generality we can assume that a>0 (if a <0, then the relator
r=xy? can be rewritten as y "®x~“ and then as x " “y~%). Now

or _ ax"°
dx  Ox

=l+x4-+x7!

=14zM422M 4 - 4207 D™ (mod G).

Let f(z)=14z™ 422"+ -+ 4z V™ (Recall that z"=1). Then, by Lemma 4, det A=
[1:n=1 f(2) (Where A represents, in this case, the matrix A; of Theorem 1).

If det A=0, then f(w)=0 for some nth root w of unity, and if det 4#0, then G'/G" is
finite by Theorem 1. Let (am,,n)e M,, and, for a contradiction, assume that f(w)=0
where w is an nth root of unity. Then

(1-w")f(w)=0=>1—-2z"""=0=z""1=1.
Thus w™" =1 and hence w™ =1, because (am,,n)e M, and so (am,, n) divides m,. So
fW)=14+wm 4 - +we-Hm_gLQ
the required contradiction. So det A#£0 and G'/G” is finite by Theorem 1. O

Theorem 3. Let G be as defined above. Let r=xy*'x*2y*2, where re R and a, +a, #0.

(i) Let nbeodd. If (aym,,a,m,n)e M, and (b,m,,b,m,,n)e M, then G'/G" is finite.

(ii) Let nbe even. If (aym,,a,m;,n)e M, (b,m,,b,m,,n)e M, and ((a, —a)m,,n)e M,,
then G'/G” is finite.

Proof. The proof proceeds along similar lines to that of Theorem 2. We have

ar ox™
=——+

or . ax*?
ox  0x

Ox

x°1yb
=a,+az+ - +a,2""! (modG).

Let f(z)=a, +ayz+ - +a,z" L.
There are four cases to consider depending on the signs of a, and a,. However in
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each case we obtain
(1 —z"")f(Z) =1 —zmm 4 o1m +bymy —zom fbnmz +azm. (3)

Now, by Lemma 4, det A=[]..—, f(z) (where A is the matrix equivalent to the matrix
A; of Theorem 1). If det 4=0, then f(w)=0 for some nth root w of unity, and if
det A#0, then G'/G” is finite by Theorem 1. Assume, for a contradiction, that det A =0,
so there exists w such that f(w)=0, where w"=1. Then (1 —w™)f(w)=0 and so, by (3),

1 — wormi +wa1m1+b1mz_wa1m1+b1m2+azml___0' (4)

Let w''™ =p; +iqy, W™ "0 = p; +igy, and wm TN = py +ig;, where p} +4f =1
(j=1,2,3), (where i2= —1).
From (4) we have

1—p;+p,—p3=0=>p,=1+p,—p; (5)

and —¢q,+4,—¢;=0=>9,=9¢,—qs.
Now p?+g2=1, so (1+p,—p3)?+(q,—q3)*=1. Multiplying out, factorising, and
squaring, we have

(14 p2)2(1—p3)* =(1— p2)(1 — p2).

There are three cases to consider

(a) p3=1, so wim*hmatam =1 hence, by (4), ™ =wim™ Thim2— b= | Hence
wlartami _ 1 Algg yler Ha2imy+( +b2)mz — 4 (because r =zl tazymi +{by +b2)mz (mod G')),
bama
SO wmi=1,

(b) py=—1, so wirm*tbima— _

(€) (1+py)(1 —p3)=(1—p;)(1+p;) ie. 1 +p,—p3—p,p3=1—ps+p3—p,P3, hence p,=
ps. Thus, from (5), p, =1, so w*'™ =1. By (4), wPtm2=nhrm2tammi_ gq yam = |,

Assume that n is odd. In case (b) w'™*bim2— _1 5o this case has no solution
(because n is odd), so we need only consider cases (a) and (c). In case (a) w*'™2=1 and
wbrm2 =1, while in case (¢) w*™ =1 and w**™=1. So if (a,m,,a,m;,n)e M, and
(bym,, bym,, n)e M, then w™ = 1. Hence f(w)=a, +a,w™ *?1™2 Now w"=1, where n is
odd, and a, +a,+#0, so f(w)#0 contradicting det 4=0. So det A#0 and G’/G”" is finite
by Theorem 1, proving (i).

Assume that n is even. In case (b) w™*b1m2— _| so, by (4), w'™2*a2™m = ] and
thus w®1=92m = In case (a) wP'™ =1 and wb?™?=1. In case (c) w*™ =1 and w*™ =1,
So if (aymy,aym;,n)eM,, (bym,,bym,,n)eM,, and ((a,—a,)m;,n)e M,, then w™ =1.
Thus f(w)=a,+a,w*™*b'm2 f(w)+0, because a,+a,#0 and a,+#a, (because
((a, —a;)m,, n)e M) contradicting det A =0. So det 4#0 and G'/G" is finite by Theorem 1,
proving (ii). O
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