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CAUCHY-SCHWARZ FUNCTIONALS

Y.J. CHO, S.S. DRAGOMIR, S.S. KIM AND C.E.M. PEARCE

We treat a class of functionals which satisfy the Cauchy-Schwarz inequality. This
appears to be a natural unifying concept and subsumes inter alia isotonic linear
functionals and sublinear positive isotonic functionals. Striking superadditivity
and monotonicity properties are derived.

1. INTRODUCTION

One of the oldest classical inequalities is that associated with the names Cauchy,
Buniakowski and Schwarz. This inequality, which for brevity we term the Cauchy-
Schwarz inequality, states in its discrete form that if a*, 6j € R (i = 1,2,. . . , n) , then

Equality holds if and only if aj = rbi for all i = 1,2,.. . , n, for some r € R.

Various proofs of this inequality, as well as results connected with it, are given
in the book of Mitrinovic, Pecaric and Fink [10, Chapter 4] along with further refer-
ences. Despite its antiquity, this result admits numerous recent developments in general
settings (see, for example [1, 2, 3, 4, 5, 6, 7, 8, 9]).

In integral form, the Cauchy-Schwarz inequality reads

f
Ja

f2{x)dx [
Ja

where / , g : [a, b] —>• R are Riemann-integrable functions.

Let E be a nonempty set and L a class of real-valued functions on E possessing
the properties

(Li) f,g€ L=>af + bg€L for all a,b€R;
(L2) l £ l , that is, if f{t) = 1 for all t € E, then / e l .
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A functional A : L —> R is termed a positive linear functional if the conditions

(Ai) A(af + bg) = aA(f) + bA{g) for f,g € L and a,b e R;

(A2) f € L and f(t) > 0 on E imply A(f) ^ 0

are satisfied.

If w ̂  0 and wf2,wg2,wfg € L, then the Cauchy-Schwarz inequality

A(wf2)A(wg2) > \A(wfg)\2

holds for each positive linear functional A on L.

We are now ready for an overview of the paper.
In Section 2 we introduce a natural class K of real-valued functions on a nonempty

set E and define the Cauchy-Schwarz class CS (K, R) of functionals on K, also in a
natural way. It is known that isotonic linear functionals on K belong to CS (K, R). We
show that sublinear positive functionals do also, as well as a further class of sublinear
functionals that we term solid. We conclude Section 2 by proving that CS (K, R) is a
convex cone in the linear space of real-valued mappings on K.

In Sections 3 and 4 we establish striking superadditivity and monotonicity prop-
erties of functionals related intrinsically to the class CS (K, R). Section 5 provides a
strengthening of the results of Section 4 in a particular case. In Section 6 we conclude
by remarking on a few basic examples.

2. CAUCHY-SCHWARZ FUNCTIONALS

Suppose E is a nonempty set and K = K(E) a class of real-valued functions on
E with the properties

(Ki) f,g£K =» f + g€K;
(K2) f€K,a>0=>afeK;
(K3) f,geK => fgeK;
(K4) feK => | / | e if.

DEFINITION 2.1: We say that a real-valued functional A : K -> R is of Cauchy-
Schwarz type on K (written A 6 CS {K, R)) if

A(f2)A(g2) 2 [A{fgj\2 for all f,geK.

DEFINITION 2.2: An isotonic linear functional A : K —» R is a mapping satisfying

(7i) A{ctf + pg) = aA(f) + PA{g) for all f,g£Kanda,peR;
(I2) feKandf^O (that is, f(t) ^ 0 for all t € E) => A(f) ^ 0.
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It is well-known that such an A satisfies A 6 CS(K, R) (see [15, p.135]).

DEFINITION 2.3: A functional A : K —> R is sublinear and positive isotonic when

(51) Mf + 9) < Mf) + MQ) for all / , g € K;

(52) A{af) = aA(f) for aU a ^ O and feK;
(53) If 0 sC / ^ g, then A{f) ^ A(g);
(«4) \A(f)\ ^ A(\f\) for all feK.

We now give our first result.

THEOREM 2 . 4 . Every sublinear and positive isotonic functional on K belongs

to the class CS (K, R).

P R O O F : Suppose A is sublinear and positive isotonic. For every t,z e E and
f,g € K(E), we have by the Cauchy-Schwarz inequality for real numbers that

z) + f2(z)g2(t) > 2\f(t)g(t)\\f(z)g(z)\,

so that

(2.1) f2(t)92 + 92(t)f2^2\f(t)g(t)\\fg\

for all t e E. Applying the functional A to this inequality yields

f2(t)A(g2) + g2(t)A(f2) > A[f\t)g2 + g2(t)f2} by (S1)

> A[2\f(t)g(t)\ \fg\] by (2.1) and (S3)

= 2\f(t)g(t)\A(\fg\) by (S2)

for all t G E. Hence

Applying the functional A again provides

2A(f2)A(g2) > A[A(g2)f2+A(f2)g2] by (50

>A[2A(\fg\) \fg\] by (2.2) and (S3)

by(S2).

Thus by (S4) we have proved in particular that

A(f2)A(g>) > [A(\fg\)}
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as required. D

DEFINITION 2.5: A functional A : K -> R+ is said to be sublinear and solid if

(01) A(f + g) < A(f) + A(g) for all /, g € K •
(02) A{af) = aA(f) for all a > 0 and / € K;
(03) I/I^M => ^(/K^tf).

The following theorem also holds.

THEOREM 2 . 6 . Every sublinear and solid functional on K belongs to the class
CS (K, R).

PROOF: Conditions (Oi) and (O2) are the same as (Si), (S2), while (O3)
matches (53) for f,g > 0. As (54) is used only in the last step in the proof of
the previous theorem, we have by the argument in that proof that

(2.3) Mf2)Ma2) > [M\fg\)]2-

Now 11/11 = I/I, so by (O3) we have both ^ ( | / | ) < A{f) and A{f) < A(\f\) and
thus A(\f\) = A(f) for all / G K. Hence

A{p)A{9*) > [A{fg)}2

by (2.3). D

REMARK 2.7. From the proofs, we have that sublinear and positive isotonic functionals
and sublinear and solid functionals both in fact satisfy (2.3).

We now address the structure of CS (K, R).

THEOREM 2 . 8 . The set CS (K, R) is a convex cone in the linear space of all
real-valued mappings on K, that is,

(d) A,BeCS(K,R) => A + BeCS(K,R);
(C2) A € CS (K, R) and a > 0 => aA e CS (K,R).

PROOF: Suppose A, B € CS ( # , # ) . Then

\A(fg)\ and [ i ^ / 2 ) ] 1 ' 2 ^ 2 ) ] 1 ^ \B(fg)\

for all f,g G K, which give on addition that

[ ] V2 ^ \A(fg)\ + \B(fg)\
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for all f,g € K. On the other hand, from the elementary inequality

{a2 + b2)ll\c2 + d2)X'2

for a,b,c,d^ 0,

so that
B)(f2)][(A + B)(g2)] > \(A + B)(fg)\2

for all f,g € K, that is, A + B e CS(K,R). The second condition is clear.

3. SUPERADDITIVITY AND MONOTONICITY OF fj,

Consider the functional fi: CS (K, R) x K2 -* R given by

We can verify immediately the following properties for all A € CS (K, R) and

(i)

(iii) n(aA, / , g) = afj,{A, f, g) for all a ^ 0.

Further, we have the following result for the mapping fj,(-,f,g).

THEOREM 3 . 1 .

(i) /x is superadditive;
(ii) \i is monotone nondecreasing.

PROOF: (i) We have for A, B € CS (K, R) that

= [A(f2) + B(f2)]V2 [A(g2) + B(g2)]1/2 - \A(fg) + B(fg)\

2 - \A(fg)\ - \B(fg)\

(ii) Suppose A, B € CS (K, R) with A ^ B, that is, A - B G CS (X,
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Then

»(A, / , g) = fi((A -B) + B, f, g) > n(A - B, f, g) + ,M(B, f, g).

Since \i is nonnegative, we have

completing the proof. D

Now, suppose that A(E) is a nonempty family of subsets of E satisfying

(Pi) I,JeA(E) => IUJeA(E);

(Pa) I,JeA(E) => I\JeA(E).

We represent by xi '• E —¥ {0,1} the characteristic mapping of / , that is,

f l i f * e 7

|o ifteE\i.

DEFINITION 3.2: A class of functions K defined on E is a hereditary class related

to the family A{E) if

(if) / 6 K implies that Xi • f 6 K for all / e A(E).

For such a class K, we introduce the mapping rj : A(E) x CS (if, R) x K2 -* R,

denned by

v(I,A,f,g) :=

REMARK 3.3. For every fixed / € .A(£), the mapping ??(/, • , / , 3) is superadditive and
monotone nondecreasing on CS (K, R). This follows by an argument similar to that in
the proof of the preceding theorem.

We now consider the properties of 7/ as a function defined on A(E).

THEOREM 3 . 4 . Let K be a hereditary class of functions related to the family

A{E). If A is an isotonic linear functional on K and f,g € K, then the following hold:

(i) ?7(-, -A, / , 5) is superadditive on A(E);

(ii) T](-, A, f, g) is monotone nondecreasing on A(E).

P R O O F :

(i) Suppose I,J G A{E) with I f\ J = 0. Then

rj(I U J, A, f,g) - [A(Xif2) + A(Xjf2)] ^ [A(XI9
2) + A(Xjg

2)] ^

- \A(Xifg) + A(XJfg)\

- \A(xifg)\ - \A(XJfg)\

= T1(I,A,f,g) + rl(J,A,f,g).
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(ii) Suppose I,J € A(E) with J CI. Then by part (i)

Since 77 is nonnegative, it follows that

r]{I,A,f,g)

and we are done. U

COROLLARY 3 . 5 . If 0 ( ) is monotone nondecreasing and superadditive, then
<fi((j,) inherits the properties of \L in Theorem 3.1 and 4>{r}) those of rj in Remark 3.3
and Theorem 3.4.

4. SUPERADDITIVITY AND MONOTONICITY OF 7

Suppose that if is a hereditary class related to A(E) and consider the mapping
7 : A(E) x CS {K, R)xK2 -> R given by

-y(I,A,f,g) :=

It is evident that for all A € CS {K, R), I € A{E) and / , g € K, we have

(i) -r(I,AJ,g)2 0;

(ii) 7(/,A/,fl)=7(/,A<7,/);

(iii) 7 ( J , k, f, g) = ky(I, A, f, g) for all k > 0.

An important property of this functional is given by the following theorem.

THEOREM 4 . 1 . The mapping 7(7, •, / , g) is superadditive on CS (K, R).

P R O O F : Suppose A,B eCS (K, R). We have

(4.1)

72(/,A + 5,/,5) = [A(Xlf
2) +B(xif2)] [A(xi92)+B(xig2)}

- ([Mxifg)}2 + 2A(Xlfg)B(Xifg) + [Bixifg))2)

= 7
2(I, A, f, g) + 7

2(J, B, f, g) + A(Xlf
2)B(Xlg

2)

+ B{xif2)A(Xig2) - 2A(xifg)B(Xlfg).

We now prove that

(4.2) A{Xif2)B{xig2) +B(Xlf
2)A(Xlg

2) - 2A{Xlfg)B(X,fg)

>2y(I,A,f,g)y(I,B,f,g).
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Set

a = [A{xif2)} V2, b = [A{Xig2)]1/2, x = A(Xifg),

2, y = B(Xlfg).

By the definition and nonnegativity of 7, we have

(4.3) ab — x > 0 and dc > y.

We have to prove that

By (4.3), both sides are nonnegative, so our task is to establish

(a2d2 + b2c2 - 2xyf > 4(a262 - x2) (d2c2 - y2).

By a simple calculation,

(abed - xy)2 > (a2b2 - x2) (d2c2 - y2)

so it suffices to show that

(a2d2 + b2c2 - 2x2/)2 ^ Mabcd - xy)2

or, since again both expressions in parentheses are nonnegative, that

a2d2 + b2c2 - 2xy ^ 2(abcd - xy),

which is immediate.

We have from (4.1) and (4.2) that

(4.4)

72(I,A + B,f,9)2l2(I,A,f,g)+7
2(I,B,f,g) + 2y(I,A,f,

= (-y(I,A,f,g)+'y(I,B,f,g))\

and so by the nonnegativity of 7

7 ( / , A + B, / , g) > 7(7, A, g, f) + 7(7, B, f, g),

as required.
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REMARK 4.2. The class K is trivially a hereditary class related to A(E) = {E, 0}.
Thus the map jo{A,f,g) := i{E,A,f,g), which is given by

l0(A,f,g) := (A(f2)A{g*) - [A(/fl)]
2)1/2,

is superadditive on CS (K, R).

THEOREM 4 . 3 . Let A be an isotonic linear functional on K. Then the mapping
7(-, A, / , g) is superadditive as an index-set mapping on A(E).

PROOF: Suppose 7, J € A(E) with / n J = 0. Then

72(/ U J, A, f,g) = (A(Xlf
2) + A(Xjf2)) (A(XI9

2) + A(Xjg2))

= 7
2(/, A, f,g) + 7V, A, f, g) + A(Xif2)A(xjg2)

+ A(Xjf2)A(xig2) - 2A(xif9)A(xjf9).

Arguing as in the previous theorem, we have

(4.5) A(xif2)A(Xjg2) + A{Xjf2)A(xig2) - 2A(xifg)A(XJfg)

so that
7(J U J, A, f, g) > 7(7, A, f, g) + j(J, A, f, g)

and the proof is complete. D

COROLLARY 4 . 4 . If <£(•) is monotone nondecreasing and superadditive, then
1/1(7) inherits the properties of 7 in Theorems 4.1 and 4.3.

REMARK 4.5. We have from Corollary 4.4 or (4.4) that

P(I,AJ,g):=f2(I,AJ,g)

is superadditive on CS (K, R). However stronger results exist, as we shall see in the
next section.

5. STRONG SUPERADDITIVITY AND MONOTONICITY OF /3

In this section, we study the nonnegative functional 0 introduced in the preceding
section, and given by

P(I,A,f,g) := A(Xlf
2)A(Xig2) -
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THEOREM 5 . 1 . The following hold:

(i) 0(-,f,g) is strongly superadditive on CS (K,R), that is, if A,B €
CS (K, R), then

0(1, A + B,f,g)- 0(1, A, f, g) - 0(1, B,f,g)

det
[A(xi92)]

[B(xi92)]

1/2

1/2

(ii) P(-,f,g) is strongly monotone nondecreasing on CS (K,R), that is, if
A> B, then

0(I,A,f,g)-0(I,B,f,g)

[A(Xif2) - B(Xif2)]V2 [A(Xig2) - B(Xig2)]

[B{XI92)]
det

1/2

I 1/2

PROOF: (i) Suppose A,B e C(S,K). We have from (4.1) that

(5.1)

Since A,B e CS (K,R),

\A(xifg)\

and thus

B(Xif2)A(xig2) - 2A(Xifg)B(xifg).

2, \B(x,fg)\ < [B(Xif2)B(Xig2)}
1/2

A(xifg)B(xifg) ^ \A(xifg)B(Xifg)\

< [A(Xlf
2)B(Xlg

2)]V2 [A(Xjg2)B(xif2)}V2.

The desired result is immediate from this result and (5.1).

(ii) If A ^ B, we have

0(1, A, /, g) - 0(1, A-BJ,g)~ 0(1, B, f, g)

[A(XI9
2) - B(Xlg

2)]

[Hxig2))1'2
det

1/2

> 0
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and we are done. D

THEOREM 5 . 2 . Suppose A is an isotonic linear functional on K. We have the

following.

(i) /?(-, A, f,g) is strongly superadditive on A(E), that is, if InJ = 0, then

0(1 U J, A, f, g) - 0(1, A, f, g) - 0(J, A, f, g)

> det
[A(XI9

2)}

[A(XJ92)}

1/2

1/2

(ii) 0(-, A, f, g) is strongly monotone nondecreasing on A(E), that is, if I, J G
A{E) and J C I, then

0(I,A,f,g)-0(J,A,f,g)

det
[A(xif2) ~ A(Xjf2)] ^ [A(XI9

2) - A(XJg
2)}

1/2

P R O O F : (i) Let I,J e A(E) with / n J = 0. Then

(3(1 U J, A, f,g) = (A(xif2) + A{Xjf2)){A{xig2) + A(XJ92))

= 0(1, A, f, g) + 0(J, A, f,g) + A(Xif2)A{Xjg2)

+ A(XJf
2)A(xi92) - 2A(xifg)A(Xjfg).

As in Theorem 5.1, we deduce the inequality of part (i), which implies in turn that of
part (ii). D

6. APPLICATIONS

In this short section we note some immediate applications. First we define the
classes of sequences

J = {a = (an)neN :an€R for all n € N),

P = {I C N : I is finite},

J+ = {p = (pn)n€N : Pn > 0 for all n € JV}.

Consider the functional \i: P x J+ x J 2 -> R given by

1/2
\
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We have
n(I,p,a,b) = fj,(AitP,a,b),

where AjtP{x) = J2Pix* *s a n isotonic linear functional which belongs to CS (J,R).

Theorems 3.1 and 3.4 apply to fj..

Similarly Theorems 4.1 and 4.3 apply to the mapping 7 : P x J+ x J2 -» R given

by

-y(I,p,a,b) := ^ ;
Li6/

and Theorems 5.1 and 5.2 to the mapping /3 : P x J+ x J2 -> R given by

% ., , _ / _ \ 2

(3(I,p,a,b):=^Pia
2

Similar applications hold for Riemann-integrable functions. Let [a, b] be a real interval
and denote by R[a, b] the algebra of Riemann-integrable functions on [a, b] and by
R+[a, b] the class of nonnegative functions belonging to R[a,b}. Define the functional
fj.:R+[a,b] xR2[a,b)^> R by

r rb i-b "I 1/2 pb

fx(a,b;hj,g)~\ (h(x)f2(x)dx) h(x)g2(x)dx\ - / h{x)f{x)g{x)dx
Ua Ja J Ja

Then
H(a, b; h, f, g) = /J.(A[aMih, f, g),

where A[ab]h(f) = fa h(x)f(x)dx, is an isotonic linear functional which belongs to
CS(R[a, b], R). Clearly Theorems 3.1 and 3.4 apply to fj,.

Similarly Theorems 4.1 and 4.3 apply to the mapping 7 : R+[a, b] x R[a,b] -> R
given by

7(0,65/1,/,5):= [jT (h(x)f2(x)dx)J^ [h(x)g2(x)dx] - QT h(x)f(x)g(x)dx) 1

and Theorems 5.1 and 5.2 to the mapping /? : R+[a,b] x R2[a,b] -> R given by

0{a,b;h,f,g):= J h(x)f2(x)dxf h(x)g2(x)dx - (f h(x)f(x)g(x)dx\ .
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