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A FIRST SIMPLE MODEL FOR PERIODICALLY 
SELF-SURGING GLACIERS 
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Australia) 

ABSTRACT. A two-dimensional model of glacier flow is presented which includes periodical surging as a 
natural phenomenon for a certain class of glaciers . The input consists of the bedrock and balance profiles 
along the glacier, together with the ice Row properties and a fri c tional lubrication factor . The basal stress 
is determined from the condition of gross equilibrium for the whole glacier, together with the distribution of 
the fri c tional lubrication from energy dissipa tion a long the glacier. 

The difference between the basal stress and the down-slope stress of the glaciers produces longitudinal 
strain-rates which determine the basal sliding velocity. Since the velocity is a lso involved in the frictional 
lubrica tion, feed-back develops between the basal stress and sliding velocity. 

For a given lubrica tion factor, a critical stage can be reached fo r which the velocity becomes suffie iently 
high to lower the basal s tress, enough to cause very high velocities to develop. The model thus gives rise to 
three classes of glaciers with two modes of Row. 

"Ordinary" glaciers d o not have sufficient mass flux , for the given bedrock profile, to go beyond the 
"slow mode" in which the basal stress and velocity increase together as the glacier builds up to steady state. 

"Fast" glaciers have sufficient flux to remain continuously in the " fast mod e" with high velocities and 
relatively low basa l stress. 

"Surging" glaciers ha ve suHicient flux to reach the fast mode but not sul-Jicient to maintain it, and thus 
develop a periodically osc illating sta te be tween the fas t a nd slow modes with gradua l build up and rapid 
drainage. 

Sample results a re presentt"d for models of a typica l la rge valley surging glacier and for a very high-speed 
surging glacier. 

R ESUME. VII premier modile .rilllple pOllr de.r glaciers slyels a des erlles pi riodiqlles. On pn!sente un modelt" bi­
dimensionnel de l'ecoulement d 'un glacier qui prend en compte les crues periodiques comme des pheno­
menes naturels pour une certaine, ca tegoric de g laciers. Les donnees comprennent la forme du lit , les profils 
d 'equilibre le long du glacier, les proprietes d e l'ecoulemen t d e la glace et un facteur d e lubrifica tion de la 
fricti on . L'effort de friction a la base es t d e termine a partir des conditions d e I'equilibre general pour 
l'("nsemble du glacier a insi que la distribution d e la lubrification du frottemcnt a partir de la dissipa tion 
d 'energie le long du glac ier. 

Le difference entre l' effort de fri ction a la base e t la contrainte due a la pesanteu,' vers I'ava l des glaciers 
produit des eRo rts longitudinaux qui determinent la vitesse d e glissement sur le fond . Comme la vitesse 
inl en'ient ega lement dans la lubrifica tion du frottt'ment, il ,e deve loppe une retro-action entre !'effort a la 
base t"t la vitesse de glissem ent. 

Pour un factt"ur de fro ttement don ne, o n peut a tteindre un stade critique d a ns leq ue! la vitesse peut 
devcnir suffisall te pour diminuer !'effort d e fri c tion a la base de telle sorte que se d evcloppe de tres ha utes 
vitesses. Le modi-le d o nne alors naissa nce a une classification en 3 grouprs des glaciers a\"Cc deux modes 
d'ecoulement. 

Les g laciers "ordinai res" n 'on t pas un debit suffisant pour un profi l don ne du lit pour a ller au dela du 
"mode lent" dans lequel I'effort it la bas(' e t la vi tesse croissent ensemble jusqu'a ce que le g lacier a lleigne un 
etat d 'equilibre. 

Les glaciers " rapides" on t un debit assez e leve pour rester cons ta mment dans le " mode rapide" avec de 
iortes \·itesses et des e ffo rt s a la base rcla tivement faibles. 

Les glaciers "a crues" on t un debit suffi sa nt pour a lleindre le mode rapide ma is pas asscz fort pour I .. 
maintenir et manifestent done un eta t oscillan t periodique entre les modes rapide e t lent avec un gonflement 
progress if su i"i d'un (' debacle rapide. 

ZlJSA"~IENFASSUNG. E ill er.rles eil!/ache.r ,\-fodel! ji,r periodisch {lllsbrechende Clelseher. Es wird ein zweidimen­
sionales G lctschcrbcwcgungsmodell vorgeleg t, das periodische Ausbruche als natUrlich e Erscheinung fUr eine 
bestimmte Klasse von Gletsch('rn einschliess t. Die Ausgangswerte sind die Un tergrunds- und Hausha lts­
profile la ngs des Gletschers zusammen Illit d en Eigenschaften d er Eisbewegung und eine Reibungsgleit­
koellizienl. Die Spannung am Untergrund wird aus der Bedingung ungr fa hren Gleichgewichts fur den 
gesalllten Gletscher und unter Beriicksiehtigung der durch d en Energieverlust t"ntlang des Glt"tschers 
verursachten Reibungswa rme ermittelt. 

Die Differenz zwischen d er Spannung a m Untergrund d em H a ngabtri rb der Gletscher erzeugt Langs­
spannungen, die fUr die Gleitgeschwindigkeit am U ntergrund bestimlllend sind. Da die Geschwindigkeit 
aber auch lIlit der R eibungsgleitung zusammenhangt, entwickelt sich (' ine Ruckkopplung zwischen der 
Spannung am Untergrund und der Gleitgeschwindigkeit. 

Fur einen gegebenen G leitkoel'fizicn ten kann ein kritischer Zustand crreicht werden, bei dem die Gesch­
windigkeit gross genug wird, um die Spannung am Untcrgrund zu vermindern, was dann zu sehr hohen 
Geschwindigkeiten fUhrt. Das Modell liefcrt somit 3 Gletscherklassen mit 2 Bewegungsarten. 
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"Normale" Gletscher haben keinen ausreichenden MassenAuss , d er ihnen bei einem gegebenen U nter­
grundsprofil erlauben wurde, sich schneller als in der "langsamen Gangart" zu bewegen , bei der die 
Spannung am Untergrund und die Geschwindigkeit zusarnrnen a nwachsen, so dass der Gletscher einen 
stationa ren Zustand erreich t. 

Bei "schnellen" Gletschern reicht der MassenAuss aus, urn standig die "schnelle Gangart" mit hohen 
Geschwindigkeiten und relativ geringer Spannung a m Untergrund b eizubehalten. 

Bei "ausbrechenden" Gletschern reicht der M assenAuss zwar zum Aufbau der "schnellen Gangart", 
aber nicht zu deren Beibehaltung aus; der Zustand dieser Gletscher wechselt deshalb periodisch zwischen 
der schnellen und der langsamen Gangart rnit allmahlichern Aufbau und schncllern AbRuss. 

I. INTRODUCTION 

It has been shown by Campbell and Rasmussen (1969, 1970) that a surge can be induced 
in a numerical model of a glacier by lowering the basal stress for some time. Physical 
mechanisms for the lowering of the basal strcss of a glacier by the production of melt water 
have been discussed by L1iboutry (1964,1969) and Weertm a n ( 1962, 1969) . 

The question arises as to how a water lubrication mecha nism for glacier sliding can be 
incorporated naturally into a numerical model. It is apparent fi'om the high speeds and low 
basal stresses of the surging and the fast polar glaciers that sliding is the key to the problem . 

A numerical model for glaciers in which sliding is small has becn developed by Budd and 
Jenssen (in press) and found to give reasonable approximations to real glaciers over a wide 
range of sizes. To extend this model to surging glaciers, a rcalisti c mathematical model for 
sliding must be developed . 

A number of theoretical studies of sliding have been presented c.g. Weertman (1957, 
1964, 1967), L1iboutry ( 1958[a], [b] , 1968[a] , [b] ), Nye ( 1959, 1970), Kamb ( 19 70). These 
theories have aimed at d e termining a direct relation between the basal stress and sliding 
velocity at a certain location of a glacier in terms of the roughness of the bed . W eertman and 
Lliboutry also deal with multi-valued relations between basal stress and velocity d epending 
on the basal melt water. Shumskiy (1965) argued that a direc t relation between the basal 
stress and the velocity at a point does not in general exist because the glacier as a whole 
governs what happens at each point. Meier ( 1968) and Hodge ( 1972) have shown that the 
Nisqually Glacier exhibits considerable independence between its basal stress and sliding 
velocity. 

The model to be presented here introduces a simple theory of sliding which requires no 
direct relation between the basal stress and the sliding velocity at a point, since both are 
determined from the properties of the whole glacier. 

2. PRINCIPLES FOR A SURGING MODEL 

The non-sliding model of Budd and Jenssen (in press) is stable in that if the input, con­
sisting of bedrock, balance, and the properties of the ice, are kept constant then the glacier 
eventually tends to a steady state from any initial configurati on . 

For a surging model the following principles are adopted: 

(a) With constant input consisting of the bedrock configuration, the accumulation-· 
ablation balance distribution, and the properties of ice, a steady-state glacier does not 
result, but instead the glacier builds up slowly then surges rapidly, stagnates then 
builds up, and repeats the process periodically. 

(b) The same laws and ice properties apply to the first order to all temperate glaciers. 
The final state of a glacier, as surging or non-surging, would then depend on the 
glacier's bed profile and balance profile . 

(c) Surging does not require as a necessary criterion any special features other than 
sufficient accumulation for the given bedrock profile. Other properties such as special 
bed smoothnesses, high geothermal flux , etc., are considered as secondary contributors 
to surging conditions. 
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(d) Surging is a large-scale phe n omenon which can be adequately represented at least 
to the III'st order by a numerica l model using discrete values at spacings co mparable 
to the ice thi ckness, It follows that small-scale bed features are not relevant except in 
so far as they contribute to bulk averages over larger scales, 

The aim of t his paper is to outline the theory for the simplest model of glacier flow which 
includes the class of periodically surging glaciers as a subgroup obeying the same laws, 

Numerica l results showing the surging sequences that result from such a model are given 
by Budd and McInnes (in press), These are discussed together w ith another example of a 
high-speed surging ice mass in Sect ion 8, The use of the model for studying particular real 
surging glaciers will be presented subsequently, 

3. SYSTEM OF EQUATIONS 

I n order to highlight the essential features req uired for periodically surging, the model 
here will be kept as simple as possible, concentrating on reproducing the most important 
properties of real surges first. Greater generality and sophistication can be added later to give 
closer representation to reality as ,'equired , 

H ence a two-dimensional model is chosen representing a vertical sec tion along the central 
flow line of a glacier or any flow line of an ice cap, Parameterization for making the two­
dimensional profile appropriate for a given valley glacier is discussed by Budd and J enssen 
(in press). Additional complica tions such as special effects of tributaries or valley sides are 
omitted at this stage. Since very wide ice masses surge, such as Rruarjokull in Iceland 
(Thorarinsson, (969), it may be expected that al though valley sides are importan t to a parti­
cula,' glacier, they are not an essential feature of surges generally, The most important 
features of surging glaciers can be represented in two dimensions as changes of ice thickness 
and velocity with time along the length of the flow line, 

Let Z be the ice thi ckness, V the average velocity through a column , and A the accumula­
tion- ablation balance at a point dista nce x along the glacier. Cr. Figure (1). 

The variations of the ice thi ckness with time t are then given by the equation of continuilY 

?Z ?I'Z 
-::;- = A --~- . 
et r'X 

The balance curve A is given as input data togeth er with the bedrock elevation profile b as 
a function of x along the glacier. Thus if the ave,'age velocity V can be expressed as a function 
of Z and its derivatives at a point the n this can be substituted in Equation (1) and the problem 
is reduced to one of kinemati c waves, For sliding however no such relation be tween the 
velocity and the properties of the glac ier at a point can be realisticall y assumed . 

We separate the total average velocity Vof a vertical column into a basal sliding componenI 
Vh and an average internal deformation component I ' j as 

V = II j + Vh. (2) 

For large-scal e averages, if the longitudinal strain-rates are small and if a power law for flow 
applies, the average interna l deformation velocity can be satisfac torily expressed 10 the form 

Vj = hbnZ (3) 

where Tb is the base stress and k and n are constants . 
More general flow laws could b e used here but it is shown by Rudd and J enssen (in press) 

that this formula with n = 2 and k = O. I 5 bar- z year- I gives a reasonable approximation 
to a wide range of glaciers of different sizes, For the case of large longitudinal strain-rates the 
octahedral stress could also be used, This offers no special difficulty numerically but repre­
sents an additional complication at this stage which is not a necessary requirement for the 

https://doi.org/10.3189/S0022143000013344 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000013344


6 JOURNAL OF GLACIOLOGY 
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Fig. I . A representation of a two-dimensional model for a glacier is shown. In part (i) a curve is given represt1lt ing the net 
accllmlllation/ablation A a J afllnction of distance x along the glacier. In part (ii) b represents the given bedrock profile, .( 
the ice thickness , - ex the sllrface slope, V the average total velocity, VI the allerage internal diformational ve/ocity, Vb the 
Jtiding velocity and L the glacier imgth at time t = 2 . 

surging process. I n fact since the base stress drops during the surge when the longitudinal 
stresses become high , a compensating simplification is a lso introduced by using for the average 
interna l deformation the expression 

Vi = kTc" Z 

where T e is the down-slope stress on the centre line given by 

Te = JpgaZ (5) 

with p the ice density, g the gravitational acceleration, a the surface slope, and s a shape 
fa cto r appropriate for the glacier cross-sec tion , generally to be taken between 0.5 and I . 

Since 

IX = 
?(Z + b) 

f'x 
(6) 

and s, p, g are constants, the internal velocity given by Equation (4 ) is determined at each 
point along the g lacier by properti es of the glacier at tha t position. For the basal velocity 
however we turn to the equa tion for longitudinal stress eq uilibrium for scales large compared 
to the ice thickness and for small surface slopes from Budd ( 1970): 

2Zax' 
- 2 - _-- = T C- Th 

( 'X 

where ax' is the average longitudinal stress deviator through the column at position x. 
' t\le d efine the average generalized viscosity YJ through the column 

2YJ€x = ax' (8) 
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where £x is the average longitudinal strain-rate through the column. For the simplest model 
TJ can be taken as constant. More generally a power or hyperbolic sine flow law could be used. 
In addition the octahedral stress could be used incorporating the horizontal shear stress as 
well as the longitudinal stress. However during surges, if the longitudinal strain-rates tend 
to dominate, it will be sufficient at this stage to neglect the effect of the horizontal shear on 
the longitudinal strain-rate. 

It is emphasized that the flow properties of the ice subjected to longitudinal stresses during 
a surge are regarded as unknowns here to be determined from the deformation rates occurring 
during real surges. In fact we wish to study the behaviour of the model to a wide range of 
constant viscosity values in order to understand fully the role that the ice flow properties play 
in the mechanics of the surging before moving to a highly non-linear flow relation. 

A further simplification is introduced by considering that the changes in the mean longi­
tudinal strain-rate over the large scales we are dealing with are primarily associated with the 
changes in sliding velocity rather than the internal deformation, i.e. 

oVb 
£x = ox . 

Thus Equation (7) can then be written simply as 

? ( (I Vb) 
- 4 ex Z'YITx = 

(9) 

( 10) 

At this stage the basal stress Tb has still to be determined. Two principles are used to derive 
it, viz: 

(a ) The local lowering of basal stress is due to frictional lubrication. 
(b) The gross static equilibrium of an ice mass is preserved , i.e. complete break-off and 

avalanching are not considered here. 

If the basal stress is lowered at some point of the glacier, then , by Equation (7), longitudina 
stresses are introduced up-stream and down-stream. If the glacier is not to accelerate as a 
whole down the slope, then the basal stress must increase at some other part to pr'event this. 
To preserve the gross equilibrium we requIre the total basal stress over the whole length f. 
of the glacier to be given by 

L I . 

J Tb dx = f Te dx. 
o 

In order to take account of local lowering of basal stress due to fi' ictionallubrication , wc 
note that the rate of melt-water production is equal to the rate of energy dissipation due to 
the motion Te V. At this stage we do not wish to differentiate between water produced directly 
at the base due to the sliding (Tb Vb) and that produced from the total energy dissipation Te J·. 

This no doubt depends on the internal transport of water in the ice mass, which still requires 
further investigation. For the numerical model calculations it does not matter greatly which 
expression is used so we choose the total dissipation Te J' for simplicity. 

Thus we seek a formula which gives a local reduction in Tb with increasing Te V. Many 
such formulae of various complexity can be developed, but at this stage we look for the 
simplest. Hence we define the local lubrication-lowered stress as 

where r/> is an adjustable parameter called the friction lubrication factor. Here we take r/> 
as a constant, but for increased complexity it could be made variable and also include more 
complex functions of TC V. 
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To preserve gross equilibrium we d efine average stresses over the glacier by 
L 

f c = i J TC dx, 
o 

The basal stress Tb is then taken as 

L 

fc* = i J TC* dx. 
o 

Tb = fc + ( TC* - fc*). 

This equation has the property that gross equilibrium is preserved, i.e . 

and that locally the stress difference ( TC - Tb) is greatest where TC V is greatest. 

( 15) 

Having determined the basal stress distribution , the basal velocity can be obtained by 
integration of Equation (10), provided we can specify the boundary conditions. 

Since the boundary conditions are not well known the following will be taken as working 
assumptions. 

(i ) The longitudinal strain-rate due to sliding tends to zero at the terminus as Z tends to 
zero, i.e. 

2 Vb 
-- = 0 ox at x = L ( 16) 

This says that as the ice thi ckness becomes small near the front, any sliding that occurs 
tends to be like a block a t the end point. 

(ii ) The horizontal velocity at the star t is taken as zero, i. e. 

V = o at x = o. ( 17) 

For ice masses starting at ice divides this is certainly true, but for glaciers starting on s teep 
slopes some modification may be necessary. 

H ence we obtain for the longitudina l strain-ra te due to sliding 

The sliding velocity is then given by 

f CVt> 
-"-d,,. 

• (IX 

Thus, having determined the sliding velocity, the total veloci ty is given by Equations (2) 
and (4) . This is then used in the equation for basal stress and the system can be cycled for 
convergence. For a time-varying numerica l model , the velocity is fed into the continuity 
equation ( I) and the sys tem is cycled by time-stepping. The time step must be chosen suffi­
ciently small so tha t the glacier dynamics can keep up with the changes in ice thi ckness, or 
o therwise more frequent cycling for the velocities is required , cf. Table I. 

4. OPERATION OF THE MODEL 

To begin with, the model can b e run with the lubrication factor 4> zero, then the sliding is 
eliminated and the glacier grows to steady state. For steady state 

oZ 
- = 0 at 
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TABLE I. CALCULATION ROUTINE 

Set h, A as functions of x. 
Set k, 11, 'I, " s, p, g as constants. 
Specify grid spacing 3x and time step 8t. 
Any initial thickness profile Z' may be specified. 

Otherwise Z = 0, Vb = 0, at t = o. 

a(Z+b) 
IX = --a;--' 

TO = spgCtZ, 

• TO 

Tc = 1+'Tc V ' 

L 

To = if TO dx, 
o 

o 

L 

To· = if TC· dx, 
o 

8Z = [A - a( VZ)] 8t ~( ---____ 1 
ax ' 

andlthe glacier reaches a length L determined by 
L 

J A dx = o. 
o 

The maximum flux <1>m occurs at the firn line, say x = f, and is given by 
f L L 

<J)m = VmZm = f A dx = - f A dx = ! f IAI dx. 
o f 0 

9 

1* 

5* 

6* 

7* 

8* 

9* 

10* 

11* 

For sufficiently small non-zero rP, Tb is slightly less than Te, so a small amount of sliding 
occurs, depending on the value of the parameter TJ. Provided TJ is not too small, a new steady 
state is reached similar to that for zero </> except that, for the position of maximum flux, V is 
slightly greater and Z is slightly less than for the case of zero </>. As rP is increased the sliding 
velocity increases and, provided TJ is sufficiently small, a critical stage is reached for which 
.pre V is large enough to lower the base stress appreciably which causes the sliding velocity to 
increase and through the feed-back of Equations (5*) to (9*) gives rise to a high velocity 
zone near the region of the glacier where Te V is a maximum. This fast zone with longitudinal 
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extension up-stream and compression down-stream moves as a dynamic (non-kinematic) 
flux wave and spreads out down the glacier. The surge finishes as the fast velocity zone spreads 
through the terminus carrying mass with it and causing the rapid advance. After the surge, 
the reduced slope causes a reduction in the stress and the velocity which through Equations 
(3*) to (9*) reduces the sliding so that the motion reverts to the former slow mode. The 
advanced front then gradually becomes reduced by ablation while the accumulation zone 
thickens until T e V is sufficiently large once again and the surge is repeated. 

The speed of the surge depends on the values of 7] and cp, but also on the length of the 
glacier, the thickness, the bedrock slope, etc. If 7] is too large, the sliding is also reduced below 
the critical value to surge. 

5. CRITICAL VALUES 

In order to obtain an idea of the appropriate range of values to use for cp, we examine the 
function TC*' For the case of zero sliding, if we substitute V from Equation (4) into ( 12) we 
obtain 

This function of Te for constant cp, k and Z has a maximum when 

T e = (2cpk2:J -!. 
The studies of ordinary and fast glaciers for numerical modelling by Budd and Jenssen (in 
press) suggest that a maximum Te of about 2 bars is appropriate. Similarly with Z ~ 500 m 
the maximum deformational velocity would be V ~ 300 m /year. Thus to obtain a maximum 
of Te for Tb ;:::: 2 bars and V ~ 300 m/year we may expec t a maximum for cp of 

cp ~ (TbV) - 1 
~ I.7 X 10- 3 bar- I m-I year- I. (25) 

Since the sliding velocity increases the value of Te V, Te* drops even lower, but Equation (25) 
gives a starting point for the program and we can examine the range cp ;:::: 10- 5 -10- 2. 

The maximum value of Te V may be expected to develop near the firn line for which from 
Equations (5) and (22 ) 

f 

TeV = spgex f A dx = spgex<D. 

o 

Since thi s is independent of ice thickness, it follows that, for this model, glaciers of various 
f 

sizes may surge, provided the input, f A dx, is sufficiently large. Glaciers of steeper slopes 

, 0 

would be expected to reach the critical stage earlier, i. e. for smaller thicknesses. To apply this 
in practice however, it should be noted that the width needs to be parameterized. 

To simulate the fast polar glaciers it is m erely necessary to increase the accumulation 
zone flux to sufficiently high values to maintain the glacier flow in the fast mode, i.e. high 
velocities with relatively low base stresses. 

Thus with this model a natural classification scheme for glaciers presents itself as follows: 

(i) " Ordinary glaciers" are those whose flux for their bed profile is low enough for the 
glacier to remain in the "slow mode", i.e. with the base stress increasing with the 
velocity. 

(ii ) "Fast glaciers" are those whose flux is sufficiently high to maintain the glacier in 
steady state in the "fast mode", i.e. with a high velocity and a lowered base stress. 

https://doi.org/10.3189/S0022143000013344 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000013344


A FIRST MODEL FOR SELF-SURGING GLACIERS 11 

(iii) "Surging glaciers" are those whose flux is sufficiently high for the glacier to reach 
the fast mode before reaching steady state but not sufficient to maintain it in the fast 
mode. Thus these glaciers build up slowly until they reach the fast mode, drain out 
rapidly in a surge then slowly build up again- periodically oscillating from one 
mode to the other. 

In times of changing climate it is possible for surging or non-surging glaciers to pass from 
one type to the other by sufficiently large changes in the balance. 

As an estimate of the order of magnitude of the critical flux from Equation (26), the 
studies of real glaciers for numerical modelling by Budd and Jenssen (in press) and Budd and 
Allison (in press) suggest that a value of socVZ ~ 500 m2 year- I may separate the surging 
from the ordinary glaciers. 

6. SPECIAL CHARACTERISTICS OF SURGING GLACIERS 

In order to test the hypothesis of a critical Tb V, we note from Equation (26) that for the 
critical zone separating surging from non-surging glaciers the surface slope would be inversely 
proportional to the flux rate <I> times the shape factor s. To calculate the shape factor we 
really need the ice thickness, which is not available for most surging glaciers. However if we 
select surging glaciers over a wide range of surface slopes and flux rates then the precise value 
of the shape factor, which varies generally between 0.5 and I , is not so important. 

TABLE 11. ApPROXIMATE SURFACE SLOPES AND FLUX RATES FOR SOME SURGING GLACIERS 

Only the main trunks of the glaciers a re included here. In some cases tributaries could also be considered. 

Glacier: Walsh Muldrow Steele Variegated Medvezhyy Vernage Kolka 

ii% 2 3·5 4·5 8 ·3 13 I7 30 
Skm' 540 200 240 26 17·5 11 ·4 0·7 
if m/year 1.5 2 1.5 2·5 1.5 1.5 1.8 
Q 106 ml/year 800 418 240 65 26 17 1.25 
Wkm 4 2.8 1.9 0·9 0·5 0·9 0.15 
et> m' year- I 400 300 250 146 104 38 1.7 
References 1,2 2,3 4 2,5 6,7 8 6,9 

I. P03t (1966), 2. Meier and Post ( 1969), 3. Post (1960), 4· Stanley (1969),5. Post (1969), 6. Dolgushin and 
Osipova (1971 ), 7. Dolgushin and Osipova (in press), 8. Hoinkes (1969), 9. Personal communication from Dr 
V. M . Kotlyakov. 

Hence in Table 11 a list of glaciers is shown with estimates of the following quantities: 

Mean surface slope eX, 
Area of accumulation zone S, 
Average net accumulation rate above the firn line A, 
Total mass flux at the firn line Q = AS, 
Width of the glacier near the firn line W, 
Flux rate <I> = VcZ where Vc is the centre-line surface velocity and Z is the centre-line 

thickness near the firn line. 

The flux rate <I> is estimated from the total mass flux Q by the relation 

Q = wrz 
where W is the mean width of the section and r is the mean velocity over the section. 

Two further shape factors are introduced following Budd and J enssen (in press) 

V 
S2 = V' 
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VIi 
S3 = W· 

The flux rate per unit width: at the centre line is then given by 

<I> =~ . 
SZS3W 

For the above calculations the product SzJ3 has been taken as ~ 0.5. 
From the values of (D and ii in Table 11 it is apparent that the inverse proportionality of 

Equation (26) does tend to apply. 
Using the empirical graph of glacier surface slopes versus velocity as discussed by Budd 

and Jenssen (in press) and Budd and Allison (in press) these flux rates and surface slopes for 
surging glaciers can be compared to corresponding values for the ordinary glaciers and the 
fast polar glaciers, cf. e.g. Carbonnell and Bauer ( 1968). 

The heavy dashed line in Figure 2 represents a curve of approximately constant ex <l> which, 
for constant shape factor, would also be a constant Tb V curve. This curve tends to separate 
the bulk of ordinary glaciers from the fast polar glaciers. The plotted points for the surging 
glaciers tend to fall on the fast side of this curve. Thus for steady state these surging glaciers 
would tend to have high Tb V values if they were to flow in the ordinary mode. 

In spite of the scarcity of data for surging glaciers this empirical analysis suggests that the 
frictional lubrication basis for a surging model may at least match reality in the first approxi­
mation. 

100~--~--~------~~----~~-'----------------------------------------------r 

Glacier flux rate, t NZ lo3m' a·' versus slape 0<, velocity V, and thickness Z. 

~30 

10 

1bO 
Velocity (ma·') 

o 
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o 

o 

o 

'1,0 0 

o 

o 
o 

o 

Fit. 2. From a compilation of measurements on ordinary glaciers, the mean centre-line ice thicknesses Z are shown as afunction 
of suiface slope IX. and centre-line suiface velocity V. From these curves the centre-line flux rate «ll = V Z is obtained as 
shown by the full curves. Individual points for some fast polar glaciers are shown by the circles in the high-velocity region. 
The crosses are obtained from the flllxes and slopes of some surging glaciers. These tend to be generally between the values 

for the ordinary glaciers and the fast polar g laciers. The heav.y broken line represents a constant a.«ll curve which suggests 
this m'!)' define a transition ZOlle between the ordinary and fast glaciers. 
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7. MATCHING REAL SURGES 

In the present model the magnitude of the surge depends primarily on the amount by 
which the flux , for the given slope and cross-sec tion , is greater than the critical" value. Thus 
the size of the surge is altered by changes in the climate through the balance curve. 

Similarly the period between surges is altered by changes in the balance associated with 
climate changes. The lenglh of the period depends on the time taken for the glacier to build 
up to the critical size. 

The duration ofa surge for the m odel is dependent on the speed of the surge and the length 
of the glacier. Thus the values of 7] and q, in the model control the duration of the surge 
through their control of the surge speed. The durations of real surges have considerable 
variation, e.g. Kutiah 12 km in :2 months (Desio, 1954), Bruarjokull 8 km in 4 months 
(Thorarinsson, 1969), Muldrow 6.6 km in about :2 years (Post, 1960), Walsh 11.5 km in 
about 6 years (Post, 1966; Meier and Post, 1969) . 

Although the duration of a surge in the model of a particular glacier can be controlled by 
the 7] and q, values, it may not be possible with the present model to match the wide range of 
durations given above with the same values of 7] and q, for all glaciers. Two obvious extensions 
can be made to the m odel which will effect the surge duration. First a non-linear longitudinal 
stress- strain-rate relation would simulate a wide range of effective viscosities for surging, in 
that those which d evelop large longitudinal stresses would have lower viscosity and surge 
faster than those with smaller longitudinal stresses. Secondly the effect of the valley sides, 
especially on glaciers wide relative to their depth , can be important to the shear-stress distri­
bution around the boundary of the cross-section. A simple partitioning scheme for separating 
vertical and horizontal shear stresses as discussed by Budd and Radok (1971, p. 32) could 
be useful for controlling the duration of the surge. This problem will be treated further in the 
context of using the model in matching particular real surges. 

8. SAMPLE RESULTS 

There are a large number of different types of surging ice masses which could be examined 
by the present model. Just two examples are presen ted here to show the scope of the model in 
representing two particularly interesting types of different surging ice mass. The first is an 
example of a typical large valley glacier (such as Walsh, Muldrow or Steele) which moves at 
the rate of several km /year over a number of years. The second is an example of a high-speed 
surging ice mass (such as Brualjokull) which moves an order of magnitude faster at the rate of 
several tens of km/year (over 100 m /d ) for a period of a few months. 

The same model is used in each case with just diffe rent values of the input, viz. the bedrock 
profile and balance profile (or two-dimensional parameterized influx profile) characteristic 
of the particular ice mass. In each case the model is examined for a wide range of the para­
meters viscosity 7] and lubrication factor q,. 

For a particular run with the given input, the parameters 7] and q, are set, and the ice is 
grown from zero thickness and run for a pericd of from 700 to I 000 years, by which time the 
"final state" of the ice mass is apparent. 

The input bedrock and balance (or influx) curves are shown for the two cases in Figures 
3 and 5· In each case for small values of q, and reasonable 7] the ice masses grow up to a steady 
state, as shown, e.g. in Figure 3b. As the lubrication factor q, is increased, the maximum value 
of the sliding velccity increases. For any value of 7], not too large, a certain stage is reached for 
which the ice mass surges and continues to do so periodically until a final uniformly repeating 
surging state is reached as shown in Figures 4 and 6. 

For a given bedrock and balance profile the critical value of the lubrication factor for 
surging depends on the value of the viscosity 7] . The distribution of sliding velocities over the 
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Fig. 3. The input data for the model consists of the net accumulation/ablation balance curve (a) as function of distance along lhe 
glacier, and the glacier bedrock profile (b, lower curve). For the non-surging case the glacier builds up 10 a limiting sleady­
state profile (b, upper curve). For the surging case the glacier develops periodically a steep profile (c, 1) which rapidly 
transforms to an extended flatter profile (c, 2) during the surge. 

domain of lubrication factor and viscosity is shown in Figure 7. Here the surge-non-surge 
boundary is shown by the broken line which lies generally between the 101 and 103. m/year 
velocity isopleths. For low viscosities this boundary is very sharp but for high viscosities i~ 
broadens until the viscosity becomes too high for surging altogether. A variation of the input 
data for the balance or bedrock profiles results in a general shift in the sliding velocities with 
respect to the axes, but the general pattern is preserved. The data for Figure 7 come from 
several hundred different runs growing the ice mass from zero to a final state using the sam~ 
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Fig. 4. The growth of the model towards steady statefor an ordinary glacier ( I ) and a surging type glacier (2) is illustrated 
by the variation with time of the glacier's length (a), the maximum velocity (b), and the position of the maximum velocity (c). 
The ordinary glacier gradually tends towards a constant steady state whereas the surging glacier develops a periodically 
oscillating state characterized by a long period of slow build-up with retreat followed by a rapid advance at high speed. 
In the course of a surge cycle the position of maximum velocity travels down the g lacier as a flux wave with increasing speed 
from the accumulation zone to the region of the terminus. 

input but varying the values of </> and." . The output is very large and similar diagrams can 
be constructed for other features of the ice mass such as maximum thickness, surge duration, 
surge period, length of surge advance, etc., to show how these vary over the domain of </> 

and .". 
In this way it is possible to select some features of a measured glacier surge which can be 

matched by the model using certain values of 7J and 4>. 
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Fig. 5 . For an idealized smooth analogue to aj/ow line of the Bruarjokull, the inj/ux curve shown in (0) represents an accumulation! 
ablation balance curve modified to take some account of the varying width . A corresponding smoothed bedrock profile is shown 
in (b) and (c) . The resultant surface profile of the ice mass after about 700 years is shown for a retreal phase al 10 year 
intervals in (b) andfor a rapid advance phase in (c) at intervals of 0.1, 0.1, 0 . 15 years from the start of the advance. 

For temperate glaciers the value of TJ depends on the stress. Even at a stress of one bar, 
field and laboratory values seem to be scattered over an order of magnitude. Thus it is 
necessary to consider a wide range of TJ values. Typical values should lie between 10-1 and 
10 bar year. For cold ice masses the viscosity could be typically one to two orders of magnitude 
higher and Figure 7 shows that under similar conditions the cold ice mass would surge with 
lower velocities than the corresponding temperate ones. 

For the valley glacier example of Figure 3, a smooth bedrock and balance profile was 
selected similar to the measured values on Lednik Fedchenko but somewhat lower as one 
would expect without tributaries. An increase in 4> to 10-4 bar- l m-I year- I results in a surging 
glacier with maximum speed of over 4 km per year, advance duration 3 years, surge perioP 
88 years, and advance distance of 10 km, as illustrated in Figure 4. These surge features are 
not unlike those measured, e.g. on Walsh or Steele Glaciers. The change in the thickness 
profile is also of a similar magnitude as shown in Figure 3. 

https://doi.org/10.3189/S0022143000013344 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000013344


A FI R ST MODEL FOR SELF - SURGING GLACIERS 

'G-

I 

11 
£30' 
~ 
! 

" 

.t 

wf 

.J ,.... 
7 • 
-!, 

... . . ,. .. 
0 

1 
I • 

... 10 

e , 
e 
ii 
0 
f 

~lOO 100 

Fig. 6. The change in the length of the idealized Bruarjokull model is shown in (a) for the glacier grown from zero thickness with 
i,iflux and bedrock profiles given in Figure 5. After about 700 years the ice mass exhibits regular periodic srn-ging. I n (b) 
the magnitude of the maximum sliding velocity is shown on a logarithmic scale. The sliding velocity is very low for most of 
the period, gradual(y increasing to about 50 m/year after which the surge sets in and the velocity reaches 50 km/year for a 
few months before dropping back to nearry zero to repeat the cycle. 

The progress of the surge is characterized by the movement of a broad wave down the 
glacier as shown by the position of the maximum velocity shown in Figure 4c, 2. A similar 
wave can be seen as a travelling thickness perturbation for the second example in Figure 5. 
This wave starts building up in the accumulation zone right after the surge and moves down 
th e glacier with increasing speed towards the terminus. The rapid advance occurs as the 
wave passes through the terminus . 

With the same values of T/ and 4>, the surging glacier reverts to a non-surging glacier by a 
red uction of the balance curve. Similarly the non-surging glacier can be changed to a surging 
one by an increase in the balance curve. 

Variations of the bedrock slope also shift the pattern of sliding velocities and the surge­
non-surge boundary over the domain of YJ and 4>. 

Finally, even with this first simple model it seems to be possible to match measured glaciel­
su rges in many respects by an appropriate selection of the values of T/ and 4>. 

For the very high-velocity example, a smooth bedrock profile similar to a flow line for 
Bruarjokull is used as shown in Figure 5. The influx curve is a modified balance curve chosen 
to include some effects of the varying width of the ice mass along the flow line, although no 
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Fig. 7. The variation in the maximum sliding speed of the idealized Bruarjokull model of Figure 5, over the domain of different 
values for the viscosity TJ and lubrication factor cp, shown in m/year. The dashed line shows the division between the steady­
state, to the lift, and the surging results, to the right. The maximum speed for the steady-state results usually occurs ear(y 
in the development so that final sliding speeds much greater than 100 m/year tend to develop surging. 

attempt to give an exact match has been made at this stage. The resultant sliding velocity 
distribution over the domain of cp and 7J is that shown in Figure 7. For values to the left of 
the dashed line a steady state is reached while those to the right result in regular periodic 
surging as shown by the velocity and length changes in Figure 6. The steady-state profiles 
of ice thickness tend to be generally thicker than the measured profile, whereas the surging 
profiles of ice thickness as shown in Figure 5 are somewhat thinner. This is a result of higher 
average velocities for surging ice masses. It is expected that closer matching can be aCQieved 
by using a more representative influx curve. 

Nevertheless the example given has many features similar to those associated with the 
measured surges of Bruarjokull. If a realistic value of 7J of 1 bar year is chosen, then a value 
of cp = I. 7 X 10-4 gives a maximum surge speed of 51 km/year and a surge duration of 0 .3 
year. These results are illustrated in Figures 5 and 6. The observed features of the 1963 surge 
included an average speed of 5 m/h (44 km/year) over a duration of less than 3 months 
(Thorarinsson, 1969). The advance derived from the model is 7 km, a little less than that 
measured. The change in thickness also seems compatible with the measured changes. The 
period of the surging is about 64 years compared to 73 years between 1890 and 1963. It is 
expected that the period increases slightly with the ice thickness here. 

The changes in the thickness profile for 10 year intervals through a retreat phase is shown 
in Figure 5b. The dashed line shows the most advanced position just after the surge identical 
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to that of Figure 5c, which shows the changes in the profiles during an advance for the times 
0,0.1,0.2,0.35 years from the commencement of the advance. These illustrate the rapid 
movement of the thickness wave to the terminus and beyond within just a few months. 

The pattern of thickness changes with time also have a remarkable resemblance in general 
form to the few data available from measured glacier surges, including the bulged advancing 
front and the straightening retreating profile. Figure 6 shows the change in length and sliding 
velocity with time. The logarithmic scale on the velocities illustrates the dramatic changes 
during and after the surge. The gradual approach to regular periodic surging over 700 years 
is clearly apparent. 

Finally it also seems possible on this simple model to match these high-speed surging ice 
masses by appropriate values of the parameters. The difference in parameters from one ice 
mass to another will depend on a number of fac tors such as the effect of valley sides, the 
general bed roughness, and the geothermal flux . For zones with unusually large geothermal 
flux rates (say q in mechanical units), it may be a ppropriate to include this as an extra para­
meter contributing to the melt production rate by writing 

This would tend to give surges more readily in regions of high geothermal flux . Variations 
in the appropriate TJ values from one ice mass to another will be d ependent on the stress level 
as well as the temperature. It is expected that the use of suitable non-linear fl ow laws and 
octahedral stresses will clarify this. 

The output for the programme includes profiles of other features of the ice mass such as 
base stress, longitudinal stress, longitudinal stra in-rate, 'Tc, 'Tc* , V, 'Tb V, V.(, etc. The changes 
of these features during surges will be left to a separate paper in which a study of the matching 
of a variety of ice masses such a s those of Table 11 will be presented. 

9. CONCLUSIONS 

The model presented here h as been simplified to include just those fea tures of an ice mass 
required to rep resent the essential physical p rocesses of surging. T hese include the variations 
of ice thickness, stress, strain-rate and velocity a lo ng the cen tral fl ow-line as a function of time. 
The information req uired for input include the bedrock and balance profil es, the flow 
properties of the ice, and the fri ctional lubrication factor. 

Thus, with sui table two-dimensional pa rameterization, real glaciers, both surging and 
non-surging, can be modelled directly. A m easure of the accuracy of the model can be ob­
tained by a comparison of the calculated velocities a nd ice thicknesses with those of the real 
glaciers. 

The model has considera ble scope for improvement by increased generality and sophisti­
cation without changing the basic principles upon which it depends. The obvious extensions 
include generalization to three dimensions, use of m ore complex flow rela tions and octahedral 
stresses, and the development of more complex relations for base-stress lubrication. Even so, 
the present model has considerable fl exibility in being able to match real surges in magnitude, 
speed, duration, and period. 

By using the model to match real glaciers, important conclusions can be drawn on other­
wise difficult problems such as the magnitude and distribution of the longitudinal stresses, the 
magnitude of the base stress, the sliding velocity, and the propaga tion of dynamic waves in 
glaciers during surging and non-surging conditions. T he general problem of glacier sliding 
can be approached from a phenomenonological viewpoint with this model. Surging glaciers 
need not then b e regarded as presenting any new difficulties, but rather as throwing consider­
able light on the processes of glacier sliding. This may then be used to improve the model to 
provide closer agreement with reality. 
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Thus the model presented here may be regarded as the simplest model to include periodi­
cally surging glaciers as a natural sub-group of glaciers ge·nerally. 
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