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A FIRST SIMPLE MODEL FOR PERIODICALLY
SELF-SURGING GLACIERS

By W. F. Bubp

(Antarctic Division, Department of Science, 568 St Kilda Road, Melbourne, Victoria 3004,
Australia)

ABSTRACT. A two-dimensional model of glacier flow is presented which includes periodical surging as a
natural phenomenon for a certain class of glaciers. The input consists of the bedrock and balance profiles
along the glacier, together with the ice flow properties and a frictional lubrication factor. The basal stress
is determined from the condition of gross equilibrium for the whole glacier, together with the distribution of
the frictional lubrication from energy dissipation along the glacier.

The difference between the basal stress and the down-slope stress of the glaciers produces longitudinal
strain-rates which determine the basal sliding velocity. Since the velocity is also involved in the frictional
lubrication, feed-back develops between the basal stress and sliding velocity.

For a given lubrication factor, a critical stage can be reached for which the velocity becomes sufficiently
high to lower the basal stress, enough to cause very high velocities to develop. The model thus gives rise to
three classes of glaciers with two modes of flow.

“Ordinary” glaciers do not have sufficient mass flux, for the given bedrock profile, to go beyond the
“slow mode” in which the basal stress and velocity increase together as the glacier builds up to steady state.

“Fast” glaciers have sufficient flux to remain continuously in the “fast mode” with high velocities and
relatively low basal stress.

“Surging” glaciers have suflicient flux to reach the fast mode but not sufficient to maintain it, and thus
develop a periodically oscillating state between the fast and slow modes with gradual build up and rapid
drainage.

SaE\plc results are presented for models of a typical large valley surging glacier and for a very high-speed
surging glacier.

REsuME. Un premier modéle simple pour des glaciers sujels a des crues périodiques. On présente un modéle bi-
dimensionnel de I'écoulement d’un glacier qui prend en compte les crues périodiques comme des phéno-
meénes naturels pour une certaine, catégorie de glaciers. Les données comprennent la forme du lit, les profils
d’équilibre le long du glacier, les propriétés de I'écoulement de la glace et un facteur de lubrification de la
friction. L'effort de friction a la base est déterminé & partir des conditions de I'équilibre général pour
I'ensemble du glacier ainsi que la distribution de la lubrification du frottement a partir de la dissipation
d’énergie le long du glacier.

Le différence entre I'effort de friction a la base et la contrainte diie 4 la pesanteur vers I'aval des glaciers
produit des efforts longitudinaux qui déterminent la vitesse de glissement sur le fond. Comme la vitesse
intervient également dans la lubrification du frottement, il se développe une rétro-action entre I'effort a la
base et la vitesse de glissement.

Pour un facteur de frottement donné, on peut atteindre un stade critique dans lequel la vitesse peut
devenir suffisante pour diminuer Ueffort de friction a la base de telle sorte que se développe de trés hautes
vitesses. Le modéle donne alors naissance a4 une classification en 3 groupes des glaciers avec deux modes
d’écoulement.

Les glaciers “ordinaires” n’ont pas un débit suffisant pour un profil donné du lit pour aller au dela du
“mode lent” dans lequel I'effort a la base et la vitesse croissent ensemble jusqu'a ce que le glacier atteigne un
état d’équilibre,

Les glaciers “rapides’ ont un débit assez élevé pour rester constamment dans le “mode rapide” avec de
iortes vitesses et des efforts a la base relativement faibles,

+ Les glaciers “a crues” ont un débit suffisant pour atteindre le mode rapide mais pas assez fort pour le
maintenir et manifestent donc un état oscillant périodique entre les modes rapide et lent avec un gonflement
progressif suivi d'une débacle rapide.

ZUSAMMENFASSUNG.  Ein erstes einfaches Modell fiir periodisch ausbrechende Gletscher. Es wird ein zweidimen-
sionales Gletscherbewegungsmodell vorgelegt, das periodische Ausbriiche als natiirliche Erscheinung fiir eine
bestimmte Klasse von Gletschern einschliesst. Die Ausgangswerte sind die Untergrunds- und Haushalts-
profile lings des Gletschers zusammen mit den Eigenschaften der Eisbewegung und eine Reibungsgleit-
koeflizient. Die Spannung am Untergrund wird aus der Bedingung ungefihren Gleichgewichts fir den
gesamten Gletscher und unter Beriicksichtigung der durch den Energieverlust entlang des Gletschers
verursachten Reibungswirme ermittelt,

Die Differenz zwischen der Spannung am Untergrund dem Hangabtrieb der Gletscher erzeugt Lings-
spannungen, die fiir die Gleitgeschwindigkeit am Untergrund bestimmend sind. Da die Geschwindigkeit
aber auch mit der Reibungsgleitung zusammenhingt, entwickelt sich eine Riickkopplung zwischen der
Spannung am Untergrund und der Gleitgeschwindigkeit.

Fiir einen gegebenen Gleitkoeffizienten kann ein kritischer Zustand erreicht werden, bei dem die Gesch-
windigkeit gross genug wird, um die Spannung am Untergrund zu vermindern, was dann zu sehr hohen
Geschwindigkeiten fithrt. Das Modell liefert somit 3 Gletscherklassen mit 2 Bewegungsarten.

a
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“Normale” Gletscher haben keinen ausreichenden Massenfluss, der ihnen bei einem gegebenen Unter-
grundsprofil erlauben wiirde, sich schneller als in der “langsamen Gangart” zu bewegen, bei der die
Spannung am Untergrund und die Geschwindigkeit zusammen anwachsen, so dass der Gletscher einen
stationdren Zustand erreicht.

Bei “schnellen” Gletschern reicht der Massenfluss aus, um stindig die “schnelle Gangart” mit hohen
Geschwindigkeiten und relativ geringer Spannung am Untergrund beizubehalten.

Bei “ausbrechenden” Gletschern reicht der Massenfluss zwar zum Aufbau der “schnellen Gangart”,
aber nicht zu deren Beibehaltung aus; der Zustand dieser Gletscher wechselt deshalb periodisch zwischen
der schnellen und der langsamen Gangart mit allmahlichem Aufbau und schnellem Abfluss.

1. INTRODUCTION

It has been shown by Campbell and Rasmussen (1969, 1970) that a surge can be induced
in a numerical model of a glacier by lowering the basal stress for some time. Physical
mechanisms for the lowering of the basal stress of a glacier by the production of melt water
have been discussed by Lliboutry (1964, 1969) and Weertman (1962, 1969).

The question arises as to how a water lubrication mechanism for glacier sliding can be
incorporated naturally into a numerical model. It is apparent from the high speeds and low
basal stresses of the surging and the fast polar glaciers that sliding is the key to the problem.

A numerical model for glaciers in which sliding is small has been developed by Budd and
Jenssen (in press) and found to give reasonable approximations to real glaciers over a wide
range of sizes. To extend this model to surging glaciers, a realistic mathematical model for
sliding must be developed.

A number of theoretical studies of sliding have been presented e.g. Weertman (1957,
1964, 1967), Lliboutry (1958[a], [b], 1968[a], [b]), Nye (1959, 1970}, Kamb (1970). These
theories have aimed at determining a direct relation between the basal stress and sliding
velocity at a certain location of a glacier in terms of the roughness of the bed. Weertman and
Lliboutry also deal with multi-valued relations between basal stress and velocity depending
on the basal melt water. Shumskiy (1965) argued that a direct relation between the basal
stress and the velocity at a point does not in general exist because the glacier as a whole
governs what happens at each point. Meier (1968) and Hodge (1972) have shown that the
Nisqually Glacier exhibits considerable independence between its basal stress and sliding
velocity.

The model to be presented here introduces a simple theory of sliding which requires no
direct relation between the basal stress and the sliding velocity at a point, since both are
determined from the properties of the whole glacier.

2, PRINCIPLES FOR A SURGING MODEL

The non-sliding model of Budd and Jenssen (in press) is stable in that if the input, con-
sisting of bedrock, balance, and the properties of the ice, are kept constant then the glacier
eventually tends to a steady state from any initial configuration.

For a surging model the following principles are adopted:

(a) With constant input consisting of the bedrock configuration, the accumulation-
ablation balance distribution, and the properties of ice, a steady-state glacier does not
result, but instead the glacier builds up slowly then surges rapidly, stagnates then
builds up, and repeats the process periodically.

(b) The same laws and ice properties apply to the first order to all temperate glaciers.
The final state of a glacier, as surging or non-surging, would then depend on the
glacier’s bed profile and balance profile.

(c) Surging does not require as a necessary criterion any special features other than
sufficient accumulation for the given bedrock profile. Other properties such as special
bed smoothnesses, high geothermal flux, etc., are considered as secondary contributors
to surging conditions.
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(d) Surging is a large-scale phenomenon which can be adequately represented at least
to the first order by a numerical model using discrete values at spacings comparable
to the ice thickness. It follows that small-scale bed features are not relevant except in
so far as they contribute to bulk averages over larger scales.

The aim of this paper is to outline the theory for the simplest model of glacier flow which
includes the class of periodically surging glaciers as a subgroup obeying the same laws.

Numerical results showing the surging sequences that result from such a model are given
by Budd and Mclnnes (in press). These are discussed together with another example of a
high-speed surging ice mass in Section 8. The use of the model for studying particular real
surging glaciers will be presented subsequently.

3. SYSTEM OF EQUATIONS

In order to highlight the essential features required for periodically surging, the model
here will be kept as simple as possible, concentrating on reproducing the most important
properties of real surges first. Greater generality and sophistication can be added later to give
closer representation to reality as required.

Hence a two-dimensional model is chosen representing a vertical section along the central
flow line of a glacier or any flow line of an ice cap. Parameterization for making the two-
dimensional profile appropriate for a given valley glacier is discussed by Budd and Jenssen
(in press). Additional complications such as special effects of tributaries or valley sides are
omitted at this stage. Since very wide ice masses surge, such as Bruarjokull in Iccland
(Thorarinsson, 1969), it may be expected that although valley sides are important to a parti-
cular glacier, they are not an essential feature of surges generally. The most important
features of surging glaciers can be represented in two dimensions as changes of ice thickness
and velocity with time along the length of the (low line.

Let { be the ice thickness, I” the average velocity through a column, and A the accumula-
tion-ablation balance at a point distance x along the glacier. Cf. Figure (1).

The variations of the ice thickness with time ¢ are then given by the equation of continuity

w2

il

o'x .
The balance curve A is given as input data together with the bedrock elevation profile b as
a function of x along the glacier. Thus if the average velocity IV can be expressed as a function
of £ and its derivatives at a point then this can be substituted in Equation (1) and the problem
is reduced to one of kinematic waves., For sliding however no such relation between the
velocity and the properties of the glacier at a point can be realistically assumed.

We separate the total average velocity I ofa vertical column into a basal sliding component
I’y and an average internal deformation component [ as

V= Vi+ Vy. (2)
For large-scale averages, if the longitudinal strain-rates are small and if a power law for flow
applies, the average internal deformation velocity can be satisfactorily expressed in the form

Vi=krynZ (3)
where ry, is the base stress and k£ and n are constants.

More general flow laws could be used here but it is shown by Budd and Jenssen (in press)
that this formula with » = 2 and k& = o.15 bar 2 year ' gives a reasonable approximation
to a wide range of glaciers of different sizes. For the case of large longitudinal strain-rates the
octahedral stress could also be used. This offers no special difficulty numerically but repre-
sents an additional complication at this stage which is not a necessary requirement for the
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Fig. 1. A representation of a two-dimensional model for a glacier is shown. In parl (i) a curve is given representing the net
accumulationjablation A as a function of distance x along the glacier. In part (ii) b represents the given bedrock profile, Z
the ice thickness, — o the surface slope, V the average total velocity, Vi the average internal deformational velocity, Vy the
sliding velocity and L the glacier length at time t = 2.

surging process. In fact since the base stress drops during the surge when the longitudinal
stresses become high, a compensating simplification is also introduced by using for the average
internal deformation the expression

Vi=krerZ (4)
where 7. is the down-slope stress on the centre line given by

Te = Spgal (5)
with p the ice density, ¢ the gravitational acceleration, « the surface slope, and s a shape
factor appropriate for the glacier cross-section, generally to be taken between 0.5 and 1.

Since
c(Z+b) x
e (6)
rx

and s, p, ¢ are constants, the internal velocity given by Equation (4) is determined at each
point along the glacier by properties of the glacier at that position. For the basal velocity
however we turn to the equation for longitudinal stress equilibrium for scales large compared
to the ice thickness and for small surface slopes from Budd (1970):

elas

cx

i = T¢—Th (7)

where G, is the average longitudinal stress deviator through the column at position .
We define the average generalized viscosity 5 through the column

iy = by (8)
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where ¢; is the average longitudinal strain-rate through the column. For the simplest model
7 can be taken as constant. More generally a power or hyperbolic sine flow law could be used.
In addition the octahedral stress could be used incorporating the horizontal shear stress as
well as the longitudinal stress, However during surges, if the longitudinal strain-rates tend
to dominate, it will be sufficient at this stage to neglect the effect of the horizontal shear on
the longitudinal strain-rate.

It is emphasized that the flow properties of the ice subjected to longitudinal stresses during
a surge are regarded as unknowns here to be determined from the deformation rates occurring
during real surges. In fact we wish to study the behaviour of the model to a wide range of
constant viscosity values in order to understand fully the role that the ice flow properties play
in the mechanics of the surging before moving to a highly non-linear flow relation.

A further simplification is introduced by considering that the changes in the mean longi-
tudinal strain-rate over the large scales we are dealing with are primarily associated with the
changes in sliding velocity rather than the internal deformation, i.e.

) Wy
S = T (9)
Thus Equation (7) can then be written simply as
7 'y
i - »E’n? = Te ™ The (10)
At this stage the basal stress 71, has still to be determined. Two principles are used to derive

it, viz:

(a) The local lowering of basal stress is due to frictional lubrication.
(b) The gross static equilibrium of an ice mass is preserved, i.e. complete break-off and
avalanching are not considered here,

If the basal stress is lowered at some point of the glacier, then, by Equation (7). longitudina
stresses are introduced up-stream and down-stream. If the glacier is not to accelerate as a
whole down the slope, then the basal stress must increase at some other part to prevent this.
To preserve the gross equilibrium we require the total basal stress over the whole length L.

of the glacier to be given by
L i

J-rhdx= frcdx. (11)

-
o O

In order to take account of local lowering of basal stress due to frictional lubrication, we
note that the rate of melt-water production is equal to the rate of encrgy dissipation due to
the motion 7.I". At this stage we do not wish to differentiate between water produced directly
at the base due to the sliding (7 F) and that produced from the total energy dissipation 7.l
This no doubt depends on the internal transport of water in the ice mass, which still requires
further investigation. For the numerical model calculations it does not matter greatly which
expression is used so we choose the total dissipation 7.I” for simplicity.

Thus we seek a formula which gives a local reduction in 7, with increasing r.l". Many
such formulae of various complexity can be developed, but at this stage we look for the
simplest. Hence we define the local lubrication-lowered stress as

Te .
14t (12)
where ¢ is an adjustable parameter called the friction lubrication factor. Here we take ¢

as a constant, but for increased complexity it could be made variable and also include more
complex functions of 7.V.

e
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To preserve gross equilibrium we define average stresses over the glacier by

L L
fc::%f‘rc dx, fc*:%J"Tc*dx- (13)
o o
The basal stress 7, is then taken as
Tp = Fet(re*—Te*)- (14)
This equation has the property that gross equilibrium is preserved, i.e.
Top = Te (15)

and that locally the stress difference (7¢— 7p) is greatest where 7.V is greatest.

Having determined the basal stress distribution, the basal velocity can be obtained by
integration of Equation (10), provided we can specify the boundary conditions.

Since the boundary conditions are not well known the following will be taken as working

assumptions.
(i) The longitudinal strain-rate due to sliding tends to zero at the terminus as { tends to
Zero, i.e.
=174
dln =
— =0 at x = . (16)
ox

This says that as the ice thickness becomes small near the front, any sliding that occurs
tends to be like a block at the end point.
(ii) The horizontal velocity at the start is taken as zero, i.e.

V=o Al.x = 0, (17)
For ice masses starting at ice divides this is certainly true, but for glaciers starting on steep
slopes some modification may be necessary.
Hence we obtain for the longitudinal strain-rate due to sliding

X

oVyp 1
ox o 4.,37‘1

L

(Te-—Tn) dx. (18)

The sliding velocity is then given by

’ " F‘["h
"y = F—Adl (1g)
Thus, having determined the sliding velocity, the total velocity is given by Equations (2)

and (4). This is then used in the equation for basal stress and the system can be cycled for
convergence, For a time-varying numerical model, the velocity is fed into the continuity
equation (1) and the system is cycled by time-stepping. The time step must be chosen suffi-
ciently small so that the glacier dynamics can keep up with the changes in ice thickness, or
otherwise more frequent cycling for the velocities is required, cf. Table I.

4. OPERATION OF THE MODEL

To begin with, the model can be run with the lubrication factor ¢ zero, then the sliding is
eliminated and the glacier grows to steady state. For steady state

L.

5 = (20)
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TasLe I. CALCULATION ROUTINE

Set b, A as functions of x.

Set k, n, 7, ¢, 5, P, & as constants.

Specxfy grid spacing 8x and time step 5¢.

Any initial thickness profile £’ may be specified.

Otherwise { = 0, Vp =0, at t = 0.

70 = spgal, g%
Vi = kren, el
—— V=V+4Vy, 4
= 1 +1;ch’ 5*
L
1‘»e=%"‘rcdx, ;c*=£ff.,*dx, 6
o °
7o =7c*+ (Fo—Fe?), ™
*

%m‘*_’;_zz" (re—rv) ds, g+

X
e -

°
83 = [A—a(;;z)] B, < 10%
— 3 =X+82 *

and]the glacier reaches a length L determined by

L
f Adx =o. (21)
o
The maximum flux @y, occurs at the firn line, say x = f, and is given by
f L
o it o

For sufficiently small non-zero ¢, 7y, is slightly less than ¢, so a small amount of sliding
occurs, depending on the value of the parameter 5. Provided 7 is not too small, a new steady
state is reached similar to that for zero ¢ except that, for the position of maximum flux, V is
slightly greater and < is slightly less than for the case of zero ¢. As ¢ is increased the sliding
velocity increases and, provided 7 is sufficiently small, a critical stage is reached for which
¢V is large enough to lower the base stress appreciably which causes the sliding velocity to
increase and through the feed-back of Equations (5*) to (9*) gives rise to a high velocity
zone near the region of the glacier where 7.V is a maximum. This fast zone with longitudinal
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extension up-stream and compression down-stream moves as a dynamic (non-kinematic)
flux wave and spreads out down the glacier. The surge finishes as the fast velocity zone spreads
through the terminus carrying mass with it and causing the rapid advance. After the surge,
the reduced slope causes a reduction in the stress and the velocity which through Equations
(3*) to (9*) reduces the sliding so that the motion reverts to the former slow mode. The
advanced front then gradually becomes reduced by ablation while the accumulation zone
thickens until 7.V is sufficiently large once again and the surge is repeated.

The speed of the surge depends on the values of 7 and ¢, but also on the length of the
glacier, the thickness, the bedrock slope, etc. If 5 is too large, the sliding is also reduced below
the critical value to surge.

5 CRITICAL VALUES

In order to obtain an idea of the appropriate range of values to use for ¢, we examine the
function 7¢*. For the case of zero sliding, if we substitute V' from Equation (4) into (12) we

obtain
o .___..._...Tc —_—
T = T (23)
This function of 7, for constant ¢, k and £ has a maximum when
Te = (2¢kZ) 1. (24)

The studies of ordinary and fast glaciers for numerical modelling by Budd and Jenssen (in
press) suggest that a maximum 7. of about 2 bars is appropriate. Similarly with { & 500 m
the maximum deformational velocity would be V' = 300 m/year. Thus to obtain a maximum
of 7¢ for 7 & 2 bars and V & 300 m/year we may expect a maximum for ¢ of
¢ & (V)™
& 1.7 % 1072 bar~! m~tyear". (25)

Since the sliding velocity increases the value of 7.V, r¢* drops even lower, but Equation (25)
gives a starting point for the program and we can examine the range ¢ &~ 1075 —1072

The maximum value of 7.V may be expected to develop near the firn line for which from
Equations (5) and (22)

v i

TV = spga f Adx = spga®. (26)

0

Since this is independent of ice thickness, it follows that, for this model, glaciers of various
f

sizes may surge, provided the input, J. A dx, is sufficiently large. Glaciers of steeper slopes
o

would be expected to reach the critical stage earlier, i.e. for smaller thicknesses. To apply this

in practice however, it should be noted that the width needs to be parameterized.

To simulate the fast polar glaciers it is merely necessary to increase the accumulation
zone flux to sufficiently high values to maintain the glacier flow in the fast mode, i.e. high
velocities with relatively low base stresses.

Thus with this model a natural classification scheme for glaciers presents itself as follows:

(i) *“Ordinary glaciers” are those whose flux for their bed profile is low enough for the
glacier to remain in the “slow mode”, i.e. with the base stress increasing with the

velocity.
ii) ““Fast glaciers” are those whose flux is sufficiently high to maintain the glacier in
P =500 ¥ g M &
steady state in the “fast mode™, i.e. with a high velocity and a lowered base stress.
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(iii) “Surging glaciers” are those whose flux is sufficiently high for the glacier to reach
the fast mode before reaching steady state but not sufficient to maintain it in the fast
mode. Thus these glaciers build up slowly until they reach the fast mode, drain out
rapidly in a surge then slowly build up again—periodically oscillating from one
mode to the other.

In times of changing climate it is possible for surging or non-surging glaciers to pass from
one type to the other by sufficiently large changes in the balance.

As an estimate of the order of magnitude of the critical flux from Equation (26), the
studies of real glaciers for numerical modelling by Budd and Jenssen (in press) and Budd and
Allison (in press) suggest that a value of saV'Z ~ 500 m? year—! may separate the surging
from the ordinary glaciers.

6. SPECIAL CHARACTERISTICS OF SURGING GLACIERS

In order to test the hypothesis of a critical 7pV, we note from Equation (26) that for the
critical zone separating surging from non-surging glaciers the surface slope would be inversely
proportional to the flux rate ® times the shape factor 5. To calculate the shape factor we
really need the ice thickness, which is not available for most surging glaciers. However if we
select surging glaciers over a wide range of surface slopes and flux rates then the precise value
of the shape factor, which varies generally between 0.5 and 1, is not so important.

TasLe II. APPROXIMATE SURFACE SLOPES AND FLUX RATES FOR SOME SURGING GLACIERS
Only the main trunks of the glaciers are included here. In some cases tributaries could also be considered.

Glacier: Walsh Muldrow Steele Variegated ~ Medvezhyy Vernagt Kolka
a%, 2 3.5 45 8.3 13 17 30
S km? 540 200 240 26 17.5 11.4 0.7
A m/year 1.5 2 1.5 2.5 1.5 1.5 1.8
0 10° m?fyear 800 418 240 65 26 17 1.25
W km 4 2.8 1.9 0.9 0.5 0.9 0.15
@ m2 year! 400 300 250 146 104 38 1.7
References 1, 2 2, 3 4 2, 5 6,7 8 6,9

1. Post (1966), 2. Meier and Post (1969), 3. Post (1960), 4. Stanley (1969), 5. Post (1969), 6. Dolgushin and
Osipova (1971), 7. Dolgushin and Osipova (in press), 8. Hoinkes (1969), 9. Personal communication from Dr
V. M. Kotlyakov.

Hence in Table IT a list of glaciers is shown with estimates of the following quantities:

Mean surface slope &,

Area of accumulation zone §,

Average net accumulation rate above the firn line 4,

Total mass flux at the firn line Q = AS,

Width of the glacier near the firn line W/,

Flux rate ® = V.2 where I, is the centre-line surface velocity and { is the centre-line
thickness near the firn line.

The flux rate ® is estimated from the total mass flux Q by the relation

d=Wrg (27)
where W is the mean width of the section and F is the mean velocity over the section.
Two further shape factors are introduced following Budd and Jenssen (in press)

4

r_/’ (28)

83 =
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w
S5 = W (29)

The flux rate per unit widthat the centre line is then given by

Q
d = PR ; (30)

For the above calculations the product s,5; has been taken as = o.5.

From the values of ® and & in Table II it is apparent that the inverse proportionality of
Equation (26) does tend to apply.

Using the empirical graph of glacier surface slopes versus velocity as discussed by Budd
and Jenssen (in press) and Budd and Allison (in press) these flux rates and surface slopes for
surging glaciers can be compared to corresponding values for the ordinary glaciers and the
fast polar glaciers, cf. e.g. Carbonnell and Bauer (1968).

The heavy dashed line in Figure 2 represents a curve of approximately constant « @ which,
for constant shape factor, would also be a constant ¥ curve. This curve tends to separate
the bulk of ordinary glaciers from the fast polar glaciers. The plotted points for the surging
glaciers tend to fall on the fast side of this curve. Thus for steady state these surging glaciers
would tend to have high 7, values if they were to flow in the ordinary mode.

In spite of the scarcity of data for surging glaciers this empirical analysis suggests that the
frictional lubrication basis for a surging model may at least match reality in the first approxi-
mation.

100

T Glader flux rate, -VZ 10°m?a” versus slope C<, velocity V, and thickness Z.

“30

%

o
-N-]

Slope

L ’ 10 = 0o ’ 100

Velocity (ma™)

Fig. 2. From a compilation of measuremenls on ordinary glaciers, the mean centre-line ice thicknesses Z are shown as a function
of surface slope o« and centre-line surface velocity V. From these curves the centre-line flux rale @ = V. is oblained as
shown by the full curves. Individual points for some fast polar glaciers are shown by the circles in the high-velocity region.
The crosses are oblained from the fluxes and slopes of some surging glaciers. These tend to be generally between the values
for the ordinary glaciers and the fast polar glaciers. The heavy broken line represents a constant a® curve which suggests
this may define a transition zone between the ordinary and fast glaciers.
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7. MATCHING REAL SURGES

In the present model the magnitude of the surge depends primarily on the amount by
which the flux, for the given slope and cross-section, is greater than the critical value. Thus
the size of the surge is altered by changes in the climate through the balance curve.

Similarly the period between surges is altered by changes in the balance associated with
climate changes. The length of the period depends on the time taken for the glacier to build
up to the critical size.

"The duration of a surge for the model is dependent on the speed of the surge and the length
of the glacier. Thus the values of % and ¢ in the model control the duration of the surge
through their control of the surge speed. The durations of real surges have considerable
variation, e.g. Kutiah 12 km in 2 months (Desio, 1954), Bruarjokull 8 km in 4 months
(Thorarinsson, 1969), Muldrow 6.6 km in about 2 years (Post, 1960), Walsh 11.5 km in
about 6 years (Post, 1966; Meier and Post, 1969).

Although the duration of a surge in the model of a particular glacier can be controlled by
the n and ¢ values, it may not be possible with the present model to match the wide range of
durations given above with the same values of y and ¢ for all glaciers. Two obvious extensions
can be made to the model which will effect the surge duration. First a non-linear longitudinal
stress—strain-rate relation would simulate a wide range of effective viscosities for surging, in
that those which develop large longitudinal stresses would have lower viscosity and surge
faster than those with smaller longitudinal stresses. Secondly the effect of the valley sides,
especially on glaciers wide relative to their depth, can be important to the shear-stress distri-
bution around the boundary of the cross-section. A simple partitioning scheme for separating
vertical and horizontal shear stresses as discussed by Budd and Radok (1971, p. 32) could
be useful for controlling the duration of the surge. This problem will be treated further in the
context of using the model in matching particular real surges.

8. SAMPLE RESULTS

There are a large number of different types of surging ice masses which could be examined
by the present model. Just two examples are presented here to show the scope of the model in
representing two particularly interesting types of different surging ice mass. The first is an
example of a typical large valley glacier (such as Walsh, Muldrow or Steele) which moves at
the rate of several km/year over a number of years. The second is an example of a high-speed
surging ice mass (such as Bruarjokull) which moves an order of magnitude faster at the rate of
several tens of km/year (over 100 m/d) for a period of a few months.

The same model is used in each case with just different values of the input, viz. the bedrock
profile and balance profile (or two-dimensional parameterized influx profile) characteristic
of the particular ice mass. In each case the model is examined for a wide range of the para-
meters viscosity 7 and lubrication factor ¢. :

For a particular run with the given input, the parameters n and 4 are set, and the ice is
grown from zero thickness and run for a pericd of from 700 to 1 000 years, by which time the
“final state” of the ice mass is apparent.

The input bedrock and balance (or influx) curves are shown for the two cases in Figures
3 and 5. In each case for small values of ¢ and reasonable » the ice masses grow up to a steady
state, as shown, e.g. in Figure 3b. As the lubrication factor ¢ is increased, the maximum value
of the sliding velccity increases. For any value of %, not too large, a certain stage is reached for
which the ice mass surges and continues to do so periodically until a final uniformly repeating
surging state is reached as shown in Figures 4 and 6.

For a given bedrock and balance profile the critical value of the lubrication factor for
surging depends on the value of the viscosity 9. The distribution of sliding velocities over the
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Fig. 3. The input data for the model consisis of the net accumulation|ablation balance curve (@) as function of distance along the
glacier, and the glacier bedrock profile (b, lower curve). For the non-surging case the glacier builds up lo a limiting steady-
state profile (b, upper curve). For the surging case the glacier develops periodically a steep profile (c, 1) which rapidly
transforms to an extended flatter profile (c, 2) during the surge.

domain of lubrication factor and viscosity is shown in Figure 7. Here the surge—non-surge
boundary is shown by the broken line which lies generally between the 102 and 103 m/year
velocity isopleths. For low viscosities this boundary is very sharp but for high viscosities it
broadens until the viscosity becomes too high for surging altogether. A variation of the input
data for the balance or bedrock profiles results in a general shift in the sliding velocities with
respect to the axes, but the general pattern is preserved. The data for Figure 7 come from
several hundred different runs growing the ice mass from zero to a final state using the same
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Fig. 4. The growth of the model lowards steady state for an ordinary glacier (1) and a surging type glacier (2) is illustrated
by the variation with time of the glacier’s length (a), the maximum velocity (b), and the position of the maximum velocity (c).
The ordinary glacier gradually tends towards a constant steady state whereas the surging glacier develops a periodically
oscillating state characterized by a long period of slow build-up with retreat followed by a rapid advance at high speed.
In the course of a surge cycle the position of maximum velocity travels down the glacier as a flux wave with increasing speed
Srom the accumulation zone to the region of the terminus.

input but varying the values of ¢ and 5. The output is very large and similar diagrams can
be constructed for other features of the ice mass such as maximum thickness, surge duration,
surge period, length of surge advance, etc., to show how these vary over the domain of ¢
and .

In this way it is possible to select some features of a measured glacier surge which can be
matched by the model using certain values of  and ¢.
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Fig. 5. For an idealized smooth analogue to a flow line of the Briarjokull, the influx curve shown in (a) represents an accumulation|
ablation balance curve modified to take some account of the varying width. A corresponding smoothed bedrock profile is shown
in (b) and (¢c). The resullant surface profile of the ice mass after about 700 years is shown for a relreat phase at ro year
intervals in (b) and for a rapid advance phase in (c) at intervals of 0.1, 0.1, 0.15 years from the start of the advance.

For temperate glaciers the value of n depends on the stress. Even at a stress of one bar,
field and laboratory values seem to be scattered over an order of magnitude. Thus it is
necessary to consider a wide range of # values. Typical values should lie between 107! and
10 bar year. For cold ice masses the viscosity could be typically one to two orders of magnitude
higher and Figure 7 shows that under similar conditions the cold ice mass would surge with
lower velocities than the corresponding temperate ones.

For the valley glacier example of Figure 3, a smooth bedrock and balance profile was
selected similar to the measured values on Lednik Fedchenko but somewhat lower as one
would expect without tributaries. Anincreasein ¢ to 104 bar~™' m~! year™ results in a surging
glacier with maximum speed of over 4 km per year, advance duration g years, surge period
88 years, and advance distance of 10 km, as illustrated in Figure 4. These surge features are
not unlike those measured, e.g. on Walsh or Steele Glaciers. The change in the thickness
profile is also of a similar magnitude as shown in Figure 3.
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Fig. 6. The change in the length of the idealized Briarjokull model is shown in (a) for the glacier grown from zero thickness with
influx and bedrock profiles given in Figure 5. After about 700 years the ice mass exhibits regular periodic surging. In (b)

the magnitude of the maximum sliding velocity is shown on a logarithmic scale. The sliding velocity is very low for most of

the period, gradually increasing to about 50 m|year after which the surge sels in and the velocity reaches 50 km| [year for a
Sew months before dropping back lo nearly zero to repeat the cycle.
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The progress of the surge is characterized by the movement of a broad wave down the
glacier as shown by the position of the maximum velocity shown in Figure 4c, 2. A similar
wave can be seen as a travelling thickness perturbation for the second example in Figure 5.
This wave starts building up in the accumulation zone right after the surge and moves down
the glacier with increasing speed towards the terminus. The rapid advance occurs as the
wave passes through the terminus.

With the same values of 5 and &, the surging glacier reverts to a non-surging glacier by a
reduction of the balance curve. Similarly the non-surging glacier can be changed to a surging
one by an increase in the balance curve.

Variations of the bedrock slope also shift the pattern of sliding velocities and the surge-
non-surge boundary over the domain of 5 and ¢.

Finally, even with this first simple model it seemns to be possible to match measured glacier
surges in many respects by an appropriate selection of the values of  and .

For the very high-velocity example, a smooth bedrock profile similar to a flow line for
Bruarjokull is used as shown in Figure 5. The influx curve is a modified balance curve chosen
to include some effects of the varying width of the ice mass along the flow line, although no
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Fig. 7. The variation in the maximum sliding speed of the idealized Briiarjokull model of Figure 5, over the domain of different
values for the viscosity n and lubrication factor ¢, shown in m[year. The dashed line shows the division between the steady-
state, to the left, and the surging resulls, to the right. The maximum speed for the steady-state results usually occurs early
in the development so that final sliding speeds much greater than 100 m|year tend to develop surging.

attempt to give an exact match has been made at this stage. The resultant sliding velocity
distribution over the domain of ¢ and 7 is that shown in Figure 7. For values to the left of
the dashed line a steady state is reached while those to the right result in regular periodic
surging as shown by the velocity and length changes in Figure 6. The steady-state profiles
of ice thickness tend to be generally thicker than the measured profile, whereas the surging
profiles of ice thickness as shown in Figure 5 are somewhat thinner. This is a result of higher
average velocities for surging ice masses. It is expected that closer matching can be achieved
by using a more representative influx curve.

Nevertheless the example given has many features similar to those associated with the
measured surges of Bruarjokull. If a realistic value of 9 of 1 bar year is chosen, then a value
of § = 1.7 X 107+ gives a maximum surge speed of 51 km/year and a surge duration of 0.3
year. These results are illustrated in Figures 5 and 6. The observed features of the 1963 surge
included an average speed of 5 m/h (44 km/year) over a duration of less than 3 months
(Thorarinsson, 1969). The advance derived from the model is 7 km, a little less than that
measured. The change in thickness also seems compatible with the measured changes. The
period of the surging is about 64 years compared to 73 years between 18go and 1963. It is
expected that the period increases slightly with the ice thickness here.

The changes in the thickness profile for 10 year intervals through a retreat phase is shown
in Figure 5b. The dashed line shows the most advanced position just after the surge identical
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to that of Figure 5¢c, which shows the changes in the profiles during an advance for the times
0, 0.1, 0.2, 0.35 years from the commencement of the advance. These illustrate the rapid
movement of the thickness wave to the terminus and beyond within just a few months.

The pattern of thickness changes with time also have a remarkable resemblance in general
form to the few data available from measured glacier surges, including the bulged advancing
front and the straightening retreating profile. Figure 6 shows the change in length and sliding
velocity with time. The logarithmic scale on the velocities illustrates the dramatic changes
during and after the surge. The gradual approach to regular periodic surging over 700 years
is clearly apparent.

Finally it also seems possible on this simple model to match these high-speed surging ice
masses by appropriate values of the parameters. The difference in parameters from one ice
mass to another will depend on a number of factors such as the effect of valley sides, the
general bed roughness, and the geothermal flux. For zones with unusually large geothermal
flux rates (say ¢ in mechanical units), it may be appropriate to include this as an extra para-
meter contributing to the melt production rate by writing

Te

1+¢(g+7oV)’

This would tend to give surges more readily in regions of high geothermal flux. Variations
in the appropriate  values from one ice mass to another will be dependent on the stress level
as well as the temperature. It is expected that the use of suitable non-linear flow laws and
octahedral stresses will clarify this.

The output for the programme includes profiles of other features of the ice mass such as
base stress, longitudinal stress, longitudinal strain-rate, 7¢, 7.*, V, mpV, V.Z, etc. The changes
of these features during surges will be left to a separate paper in which a study of the matching
of a variety of ice masses such as those of Table 11 will be presented.

¥ =

9. ConcLusioNns

The model presented here has been simplified to include just those features of an ice mass
required to represent the essential physical processes of surging. These include the variations
of ice thickness, stress, strain-rate and velocity along the central flow-line as a function of time.
The information required for input include the bedrock and balance profiles, the flow
properties of the ice, and the frictional lubrication factor.

Thus, with suitable two-dimensional parameterization, real glaciers, both surging and
non-surging, can be modelled directly. A measure of the accuracy of the model can be ob-
tained by a comparison of the calculated velocities and ice thicknesses with those of the real
glaciers.

The model has considerable scope for improvement by increased generality and sophisti-
cation without changing the basic principles upon which it depends. The obvious extensions
include generalization to three dimensions, use of more complex flow relations and octahedral
stresses, and the development of more complex relations for base-stress lubrication. Even so,
the present model has considerable flexibility in being able to match real surges in magnitude,
speed, duration, and period.

By using the model to match real glaciers, important conclusions can be drawn on other-
wise difficult problems such as the magnitude and distribution of the longitudinal stresses, the
magnitude of the base stress, the sliding velocity, and the propagation of dynamic waves in
glaciers during surging and non-surging conditions. The general problem of glacier sliding
can be approached from a phenomenonological viewpoint with this model. Surging glaciers
need not then be regarded as presenting any new difficulties, but rather as throwing consider-
able light on the processes of glacier sliding. This may then be used to improve the model to
provide closer agreement with reality.
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Thus the model presented here may be regarded as the simplest model to include periodi-
cally surging glaciers as a natural sub-group of glaciers generally.
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