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Summary

Owing to their ability and flexibility to describe individual gene expression at different time points, random
regression (RR) analyses have become a popular procedure for the genetic analysis of dynamic traits whose
phenotypes are collected over time. Specifically, when modelling the dynamic patterns of gene expressions in the
RR framework, B-splines have been proved successful as an alternative to orthogonal polynomials. In the so-
called Bayesian B-spline quantitative trait locus (QTL) mapping, B-splines are used to characterize the patterns
of QTL effects and individual-specific time-dependent environmental errors over time, and the Bayesian
shrinkage estimation method is employed to estimate model parameters. Extensive simulations demonstrate that
(1) in terms of statistical power, Bayesian B-spline mapping outperforms the interval mapping based on the
maximum likelihood; (2) for the simulated dataset with complicated growth curve simulated by B-splines,
Legendre polynomial-based Bayesian mapping is not capable of identifying the designed QTLs accurately, even
when higher-order Legendre polynomials are considered and (3) for the simulated dataset using Legendre
polynomials, the Bayesian B-spline mapping can find the same QTLs as those identified by Legendre polynomial
analysis. All simulation results support the necessity and flexibility of B-spline in Bayesian mapping of dynamic
traits. The proposed method is also applied to a real dataset, where QTLs controlling the growth trajectory of
stem diameters in Populus are located.

1. Introduction

Dynamic traits are those that change over time in the
developmental process of life or other quantitative
factors (e.g. environmental condition). These traits
are often observed in the fields of biology and medi-
cine, such as growth and developmental traits, milk
production, egg production and drug response. Any
development in plant and animal experiences both
systematic and individual-specific processes, and
quantitative trait loci (QTLs) are genes across the
whole genome that control the systematic component
of this developmental process. Mapping QTL of

dynamic traits can be conducted in various ways: the
simplest approach consists of performing single-trait
analysis at each time point, this is the least restrictive
approach in the sense that no parametric restrictions
are imposed on the curve shape that is formulated
by observed data points. However, the single-trait
approach may not be efficient because the inference of
QTL effects at each time point does not benefit from
‘borrowing’ information from other time points.
A natural alternative is to conduct a multiple-trait
analysis in which measurements at each time point are
regarded as different traits. Although the multiple-
trait method takes into account the correlations
among measurements, it can only identify the QTL
for the measured time points. If too many measuring
points exist, the solution to multivariate analysis will
be infeasible. In contrast, random regression (RR)
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analysis (e.g. Henderson, 1982; Jamrozik et al., 1997;
Schaeffer, 2004) fits the dynamic pattern of the genetic
effect for each QTL, which can not only detect the
QTL-controlled dynamic trajectories but also infer
QTL at arbitrary time points (Macgregor et al., 2005;
Yang et al., 2006, 2007; Yang & Xu, 2007). Along
with these ideas, Wu and his colleagues (Ma et al.,
2002; Wu et al., 2002, 2003, 2004) have developed a
functional-mapping strategy that uses some struc-
tured models to fit residuals (Jin et al., 2010). But in
RR analysis, fitting time-dependent residuals by
polynomials can take advantages of the many well-
developed inference methods available in linear model
literature.

In order to map QTL for traits with dynamic pat-
terns, both parametric and non-parametric models
are used to describe the change of genotypic effects
over time. Emphasizing on the interpretability of
mapping results, earlier functional mapping (Ma et al.,
2002; Wu et al., 2002, 2003, 2004) fits QTL pheno-
typic effects by biologically meaningful mathematical
functions. However, its applicability is limited due to
non-linearity and the pool of candidate mathematical
functions (Yang et al., 2006, 2007, 2009; Yang & Xu,
2007). In contrast, Legendre polynomials have been
widely used for mapping dynamic traits. In addition
to the flexibility of fitting biological curves with arbi-
trary shapes, the Legendre polynomial is a linear
model, and thus theories and algorithms that devel-
oped in linear models could be applied directly to es-
timate QTL parameters. However, although higher-
order polynomials are capable of modelling changes
in means and variances along a continuous scale, such
polynomials often overemphasize on observations at
the extremes and may result in Runge’s phenomenon.
That is, the goodness of fit to curve decreases with
the order of polynomials, due to oscillations at two
extremes of the curve (de Boor, 2001). Alternatively,
the splines that construct curves from pieces of lower-
degree polynomials smoothed at selected pointed
(knots) are more commonly used in non-parametric
data analysis. As a particular type of spline curve,
B-splines yield the same fit as splines based on trunc-
ated power functions, but have better numerical
properties (Ruppert et al., 2003). The applications of
the B-splines to mapping QTL for dynamic traits have
been firstly discussed by Yang et al. (2006) and in-
troduced by Yang et al. (2009), respectively.

Frameworks for mapping dynamic trait loci have
been developed from the interval-mapping procedure
under maximum likelihood to the Bayesian-mapping
method. Compared to interval mapping that detects
one QTL at a time based on a single QTL model,
Bayesian mapping based on a multiple QTL model
can simultaneously identify multiple QTLs across the
entire genome, which greatly enhances the statistical
power of QTL detection. In this paper, using B-spline

to model the dynamics of population mean, QTL ef-
fects and individual-specific time-dependent environ-
mental errors, we establish a multiple QTL model
for mapping dynamic trait loci and estimate QTL
parameters using the Bayesian shrinkage method.
Through computer simulations, we compare the per-
formance of Bayesian-mapping and interval-mapping
methods, as well as the flexibilities of B-splines and
Legendre polynomials in the QTL mapping of dy-
namic quantitative traits.

2. Methods

(i) Genetic model of dynamic traits

We now use a backcross design as an example to de-
scribe the genetic model for dynamic traits. Based on
Mendel’s law of inheritance, there are two possible
genotypes in a backcross population at any given
locus, denoted by Qq and qq, respectively, with equal
frequencies. Let yi(t) be the phenotypic value of indi-
vidual imeasured at time t, which can be described by
the following linear model :

yi(t)=m(t)+ g
q

j=1
xijaj(t)+bi(t)+"i, (1)

for i=1, 2, … , n, where n is the number of in-
dividuals, q is the maximum number of QTLs eval-
uated in the genome, m(t) is the population mean at
time t, xij is the genotype indicator variable (defined as
1 for one genotype and x1 for the alternative geno-
type) for the ith individual at the jth locus, aj(t)
(j=1, 2, …, q) is the genetic value of the jth QTL at
time t, bi(t) is an individual-specific time-dependent
environmental error with an i.i.d. N[0, sb

2 (t)] distri-
bution and ei is an individual-specific time-indepen-
dent environmental error with an i.i.d. N(0, se

2)
distribution. This is a mixed effects model with m(t)
and aj(t) being the fixed effects and bi(t) being the
random effect. The purpose of the QTL mapping is to
estimate aj(t), the time-dependent functional genetic
effect of locus j, for j=1, 2, …, q.

All the model parameters, except se
2, are functions

of time. The functional relationships between para-
meters and time may be described by B-splines. Define
y(t)=[y0, p(t) y1, p(t) … yr, p(t)] as a covariable
of the B-splines with k knots and p-order polynomial,
where r=kxpx2 (see Appendix A). Also define
m=[m0 m1 … mr]

T as a vector of population
means, which is time independent. The time-
dependent population mean m(t) may be described as
a linear combination of m weighted by the basis of
the B-splines, i.e. m(t)=y(t)m. Similarly, we can de-
scribe other parameters using the same B-splines,
e.g. aj(t)=y(t)aj, where aj=[aj0 aj1 … ajr]

T for
j=1, 2, …, q and bi(t)=y(t)bi, where bi=[bi0 bi1 …
bir]

T for i=1, 2, …, n. Since bi is treated as an RR
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effect, we assume that bi is i.i.d. N(0, Sb) with Sb

being the covariance matrix of RR effect for
individual-specific time-dependent environmental
errors.

With the B-spline reparameterization, model (1) is
now rewritten as a linear function of the time-
independent parameters :

yi(t)=y(t)m+ g
q

j=1
xijy(t)aj+y(t)bi+ei, (2)

The phenotypic values for each individual are
collected at m+1 fixed time points, t0, t1, …, tm,
denoted by a vector yi=[yi(t0) yi(t1) … yi(tm)]

T.
Define

y=[yT(t0) yT(t1) � � � yT(tm) ]

as an (r+1)r(m+1) matrix. In matrix notation, the
linear model for yi is

yi=yTm+ g
p

j=1
xijy

Taj+yTbi+ei, (3)

where ei=[ "it0 � � � "itm ]T is an (m+1)r1 vector for the
residual effects assumed eiyN(0, Ise

2). The expec-
tation of model (3) is

E(yi m,j aj)=Ui=yTm+ g
p

j=1
xijy

Taj

and the covariance matrix is

Var(yi m,j aj)=V=yTSby+Is2
":

(ii) Bayesian B-spline mapping

In Bayesian mapping analysis for dynamic traits,
the observed data are phenotypes y={yi} for
i=1, 2, …, n and marker information M={Mj} for
i=1, 2, …, n. Parameters h include population mean
m, QTL regression effects a={aj} for j=1, 2, …, q,
RR effect for individual-specific time-dependent en-
vironmental errors b={bi} for i=1, 2, …, n, QTL
positions l={lj} for j=1, 2, …, q, the QTL genotype
indicator variable x={xij} for i=1, 2, …, n and j=
1, 2, …, q, prior covariance matrice of QTL regression
effects A={Aj} for j=1, 2, …, q, covariance matrix of
RR effects for individual-specific time-dependent
environmental error Sb and residual variance se

2.

(a) Likelihoods

Given unknown parameters, the observed data are
conditionally independent (Sen & Churchill, 2001;
Wang et al., 2005) so that

p(y,Mjh)=p(yjM, h)p(Mjh),

where we have the likelihood based on the model (3)

p(yjM, h)=
Yn
i=1

p(yijM, h)

/ jVjxn(m+1)2
exp g

n

i=1
(yixUi)

T
Vx1(yixUi)

� �
(4)

and

p(M hj )=p(M x, lj )=
Yq
i=1

p(Mi, xi lj )

p(xi lj )
,

which is derived from a Markov model under the as-
sumption of no segregation interference (Wang et al.,
2005).

(b) Prior specification

In the Bayesian shrinkage analysis for QTL mapping,
the number of QTLs, q, is treated as a constant (see
Wang et al. 2005 and Yang et al. 2007 for justifi-
cation). The prior distribution for m is uniform. The
prior distribution for each of the genetic effects is
multivariate normal, i.e. p(aj|Aj)=N(0, Aj) for all
j=1, 2, …, q, where Aj has its own prior, p(Aj)=
IW(b0, CA), an inverse Wishart distribution with b0

and CA being hyperparameters. The prior distribution
for Sb is also inverse Wishart, i.e. SbyIW(d0, Cb),
where d0 and Cb are hyperparameters. The prior for se

2

is inverted chi-square distribution IC(ve, (veSe)
x1)

with ve and Se being hyperparameters, and p(lj)=1/lj
for j=1, 2, …, q, where lj is the distance between the
two neighbouring QTLs (Sillanpää & Arjas, 1998,
1999; Wang et al., 2005). The joint prior distribution
of all the parameters is

p(h)=p(m)p(Sb)p(s
2
")
Yq
j=1

p(ajjAj)p(Aj): (5)

Combining the conditional density of the data with
the prior distribution of parameters, we obtain the
joint distribution of the data and parameters, which is
proportional to the joint posterior distribution of the
parameters,

p(hjy,M) / p(y,Mjh)p(h): (6)

(c) Markov chain Monte Carlo (MCMC) sampling
for QTL parameters

This joint posterior distribution is the target distri-
bution from which parameters are sampled. Due to
analytically intractable joint posterior distribution,
the MCMC methods such as Gibbs sampler (Gelman
et al., 1995) and Metropolis–Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970) are used to
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sample each parameter conditional on all other
parameters. Except for QTL genotypes without
the closed form of conditional posterior distri-
bution, other unknown parameters can be drawn
by Gibbs samplers from their conditional posterior
distributions (see Appendix B for details of deri-
vation).

Considering that the genotype of QTL closely de-
pends on the QTL position, we adopt Metropolis–
Hastings algorithm to sample jointly the QTL
position and relative genotype for one locus at a time.
Each locus is drawn from a variable interval whose
boundaries are the positions of adjoining QTLs
(Wang et al., 2005; Zhang & Xu, 2005).

Genotypes of missing markers were generated
randomly in each iteration on the basis of the prob-
ability inferred jointly from the nearest non-missing
flanking markers and the phenotypes (Wang et al.,
2005). The probability of missing marker genotype
estimated by the flanking markers is treated as the
prior probability. After incorporating the marker
(QTL) effects through the phenotype, the probability
becomes the posterior probability, which is used to
generate the missing marker genotype.

In summary, the MCMC algorithm is described in
the following steps:

(1) Initialize all variables with values sampled from
their prior distributions.

(2) Update the population means with a sample
from a multivariate normal with mean (B.1)
and covariance matrix (B.2) in Appendix B.

(3) Update the genetic effects for each QTL
with sample from a multivariate normal with
mean (B.3) and covariance matrix (B.4) in
Appendix B.

(4) Update the covariance matrix for each QTL
with a sample from the inverse Wishart (B.5) of
Appendix B.

(5) Update the RR effects for individual-
specific time-dependent environmental errors
with a sample from a multivariate normal with
mean (B.6) and covariance matrix (B.7) in
Appendix B.

(6) Update the covariance matrix of RR effects
for individual-specific time-dependent environ-
mental errors with a sample from the inverse
Wishart (B.8) of Appendix B.

(7) Update the residual variance with a sample
from a scaled inverse chi-square (B.9) of
Appendix B.

(8) Update the QTL position for each marker
interval.

(9) Update the genotypes for each QTL.
(10) Impute the genotypes of missing markers.
(11) Repeat steps (2)–(10) until the Markov chain

reaches a desirable length.

(d) Post-Bayesian analysis

In conventional Bayesian mapping, the marginal
posterior distribution of the QTL position can be
shown by plotting the number of hits by the QTL in a
short interval against the genome location (Sillanpää
& Arjas, 1998, 1999; Yi & Xu, 2000a, b ; Wang et al.,
2005). The curve is called QTL intensity profile. If an
interval contains a QTL, we expect that the QTL in-
tensity profile within the interval shows a peak.
Otherwise, the intensity profile appears flat (uniform).
The intensity profile only provides us a signal of
‘peak’ at possible QTL, but it is unable to answer
whether the effects of the QTL with higher intensity
are statistically significant or not. To address this
problem, we used a Wald test to determine statistical
significance from a frequentist perspective (see Yang
et al. 2007 for theoretical justification). Let us denote
the QTL intensity profile by f(l), which is a function
of the genome location, and the test statistic of the
overall QTL effect by T2(l), which is

T2(l)= aT(l)Sx1
a (l)a(l), f(l)>f0,

0, f(l)ff0,

�
(7)

where T2(l) is the Wald test statistic, a(l) is the vector
for posterior means of the QTL regression effects,
Sa(l) is the estimated posterior sample covariance
matrix for the QTL regression effects and the f0 is the
flat intensity in the interval without the peak. Under
the null hypothesis, i.e. there is no QTL at position l,
T2(l) will have an asymptotic chi-square distribution
with r degrees of freedom. Therefore, a critical value
of chi-square distribution may be used to declare
statistical significance at position l. Generally, there
are higher intensity and larger genetic effect at the
position where QTL exists. Using the statistic T2(l)
profile to indicate the locations of the QTL, most of
the intervals will have T2(l) of zeros due to the lower
intensities and thus only the intervals with possible
significant QTL effects and higher intensities will
show clear peaks.

3. Simulation

To evaluate the efficiency of Bayesian B-spline map-
ping for dynamic traits and the flexibility of B-spline
in this framework, we conduct three simulations : (1)
comparing the statistical power of QTL detection be-
tween the proposed method and the interval-mapping
method (Yang et al., 2006) ; (2) fitting the simulated
data generated by B-spline using the Legendre poly-
nomial-based approach and (3) fitting the simulated
data generated by the Legendre polynomials using B-
spline based Bayesian mapping approach for dynamic
traits.

For the first two scenarios, we simulate a backcross
population including 150 segregating individuals. The
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61 co-dominant markers are evenly spaced on the
chromosome fragment of 600 cM long. We put ten
QTLs governing the trajectory of a dynamic trait
along the genome. Assume that changes in phenotype
of the trait and QTL additive effects over time follow
B-splines with four knots and polynomial segments of
order 2. The array of measurement time points for
each individual was designated as 10, 20, 30, 40, 50,
60, 70, 80, 90 and 100, from which four knot points
were chosen at 10, 40, 70 and 100. The regression
coefficients for overall mean were set to

m= 8�13 25�14 12�27 0�83 24�71ð ÞT:

The covariance matrix of RR effects for individual-
specific time-dependent environmental errors was

Sb=

1�04 0�171 x0�315 0�100 0�280
0�171 1�586 x0�035 0�041 0�410

x0�315 x0�035 1�736 0�287 0�050
0�100 0�041 0�287 0�772 0�320
0�280 0�410 0�050 0�320 1�250

2
66664

3
77775,

and the variance for random experimental error was
se
2=2.0. The locations of the ten simulated QTLs and

their regression genetic effects are shown in Table 1.
The cumulative proportion of phenotypic variance
from measurement time point 10–100 contributed by
an individual QTL ranged from 0.026 to 0.157, as
calculated in Yang et al. (2006), the total genetic
variance contributed by all ten QTLs was 0.903. The
trajectories for each QTL are shown in Fig. 1. They
are categorized into three groups according to the
shape of curves.

Based on the simulated parameters above, a vector
of the phenotypic values for individual was randomly
generated by yi=yT m+g10

j=1aj+bi

� �
+ei, where bi

and ei were the vectors of random numbers sampled
from N(0, Sb) and N(0, Ise

2), respectively. The simu-
lated data were analysed using both the Bayesian B-
spline-mapping method and the interval-mapping

method based on maximum likelihood (Yang et al.,
2006).

In the MCMC-implemented Bayesian analysis with
the moving interval approach, we include only 20
QTLs in the working model. By fitting the phenotypic
B-spline of each individual, the initial value of the
overall mean (m) is determined as population mean for
regression coefficients, the covariance matrix of RR
effects for individual-specific time-dependent en-
vironmental error (Sb) is initialized with population
covariance matrix for regression coefficients, and re-
sidual variance (se

2) starts with population mean for
residual error variances of phenotypic B-splines. The

Table 1. QTL regression effects for B-splines used in
simulation

QTL no.

True parameter

Position a1 a2 a3 a4 a5

1 23 2.28 0.65 1.52 0.20 2.50
2 56 2.30 x0.39 1.31 0.85 4.20
3 148 3.55 0.36 x1.02 x1.77 2.40
4 153 2.05 2.00 1.24 x0.68 2.80
5 267 x1.05 x0.96 1.54 x0.84 2.52
6 332 3.44 x1.24 x1.23 2.00 3.10
7 338 2.12 1.68 1.25 2.12 x2.00
8 476 x2.06 x0.31 3.93 x2.83 x3.13
9 522 2.75 2.25 2.50 1.50 1.25
10 574 1.60 1.60 1.80 2.30 3.00
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Fig. 1. Changes in genetic effects for ten simulated QTLs
with time.
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Fig. 2. The QTL intensity profile (above) and T2 test
statistic profile (below) over the entire genome obtained
with Bayesian B-spline mapping. The true positions of the
simulated QTL are represented by black needles. In T2 test
statistic plot, the horizontal line indicates the empirical
critical value of 11.05 when the type I error rate was 5%.
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Fig. 3. The likelihood ratio statistic profiles estimated
with interval-mapping analysis for the entire genome. The
horizontal line indicates the empirical critical value of
25.01 when the type I error rate was 5%, which is
estimated from 500 permutation tests.

regression coefficients for genetic effects of all QTLs
(a) are initialized as zero. Both the hyperparameters
b0 and d0 are taken to be 5 and the prior covariance CA

and Cb were assigned to be the identity matrix I and
0.5I, respectively. The initial value of lj takes the
middle point of the interval where the jth QTL resides.
The initial value of genotype indicator xij is sampled
from the probability of xij conditional on the flanking
markers. The Gibbs sampler was run for 30 000 cycles

after discarding the first 6000 cycles as the burn-in
period. The chain was thinned to reduce serial corre-
lation by saving one observation in every 30 cycles
and thus the posterior sample contained 1000 samples
for post-MCMC analysis. The simulation experiment
was replicated five times. Herein, we only report the
result of one replicate because there is very little
variation in the mapping result among the replicates.

Figure 2 shows the profiles for QTL intensity and
T2 statistic estimated with Bayesian analysis along
with the true locations of simulated QTL, where the
critical value of T2 is 11.05, that is, the critical value of

chi-square distribution with 5 degree of freedom at
the significance level of 5%. It can be seen that either
the QTL intensity or test statistic profile in Bayesian
analysis was able to detect nine simulated QTLs
clearly. In contrast, interval-mapping analysis only
detected seven simulated QTLs (see Fig. 3). Although
the two analyses have no power to separate closely
linked QTL within the same interval of markers, such
as the QTL3 and QTL4, the Bayesian analysis easily
detected the linked closely QTL that located in dif-
ferent marker intervals, such as QTL6 and QTL7.

The estimated QTL locations and effects obtained
from Bayesian analysis are summarized in Table 2
along with the true parameters. Clearly, Bayesian
analysis is capable of accurately estimating the QTL
locations and effects. The posterior means (standard
deviations) for population mean and covariance ma-
trix of RR effects for individual-specific time-depen-
dent environmental errors are estimated as

m̂= 8�08(0�17) 24�87(0�20) 12�56(0�18) 0�93(0�19) 24�69(0�15)½ �T

and

Ŝb=

0�789(0�368) x0�245(0�282) x0�135(0�265) x0�224(0�251) 0�096(0�220)
x0�245(0�282) 0�769(0�391) 0�317(0�248) 0�250(0�240) 0�272(0�215)
x0�135(0�265) 0�317(0�248) 1�065(0�423) 0�404(0�220) 0�472(0�235)
x0�224(0�251) 0�250(0�240) 0�404(0�220) 0�616(0�291) 0�179(0�206)
0�096(0�220) 0�272(0�215) 0�472(0�235) 0�179(0�206) 0�657(0�257)

2
66664

3
77775,

respectively. The posterior mean (standard deviation)
of residual variance is ŝ2

"=1.985 (0.098). Although
there are relatively large estimated errors for the co-
variance matrix of RR effects for individual-specific
time-dependent environmental errors, nine detected
QTLs collectively contribute 0.891 of the total ac-
cumulative phenotypic variance calculated by
V̂=yTŜby+Iŝ2

", which is very close to the true value
used in the simulation. In contrast, the interval-map-
ping analysis overestimated the effects of detected
QTLs (see Table 3) and is unable to estimate the total
accumulative proportion of phenotypic variance
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contributed by the detected QTL, since in this frame-
work there are no unique and accurate estimates of Sb

and se
2.

For the simulated dataset, we replace the B-spline
with Legendre polynomials of orders 4, 5 and 6, re-
spectively, to identify ten simulated QTLs. Legendre
polynomials of order 4 and the B-spline mentioned
above have the same number of regression coeffi-
cients. Meanwhile, we expect that polynomials of or-
ders 5 and 6 yield higher goodness of fit to the
simulated dataset than that of order 4. Fitting results
indicate that although QTL intensity profiles for the
three polynomials (not shown) all arise clear signal at
each simulated locus, significant loci identified with
these three polynomials are less than those with
Bayesian B-spline mapping. As expected, polynomials
of higher order may find more QTLs than those of
low orders (Figure 4).

Next, we generate the simulated data with Legendre
polynomials and take a look at the detecting result
with Bayesian B-spline mapping. For the same design
of experiment implemented above, we describe
changes in population mean, QTL genetic effects and
individual-specific time-dependent environmental
errors with Legendre polynomial of order 3. The
regression effects for ten simulated QTLs are listed
in Table 4. The population mean is m=
[45 44 x1 x7]T, the covariance matrix of RR
effects for individual-specific time-dependent en-
vironmental errors is

Sb=

1�042 0�171 x0�035 0�100
0�171 0�086 0�041 0�032

x0�035 0�041 0�087 0�052
0�100 0�032 0�052 0�076

2
664

3
775,

and the residual variance is se
2=2.0. Note that mea-

suring time points are assigned as 5, 8, 13, 21, 26, 32
and 39.

Yang & Xu (2007) have analysed the simulated
data with Bayesian shrinkage estimation based on
Legendre polynomials and identified nine of these
simulated QTLs. For the same simulated dataset,
Bayesian B-spline mapping also has the ability to
obtain the same mapping result as Legendre poly-
nomial analysis for the simulated data (results not
shown). Herein, the knot points are chosen as 5, 20
and 39 in the used B-spline.

Table 2. The estimated posterior means (posterior standard deviations) for QTL positions and regression effects
for B-spines obtained with Bayesian B-spline mapping

QTL no.

Estimates

Position a1 a2 A3 a4 a5

1 24 2.19 (0.34) 0.40 (0.43) 1.53 (0.40) 0.68 (0.43) 2.45 (0.32)
2 56 2.74 (0.43) x1.07 (0.50) 1.50 (0.44) 1.31 (0.48) 3.97 (0.39)
3 – – – – – –
4 150 2.00 (0.63) 2.46 (0.72) 1.17 (0.62) x1.36 (0.74) 2.93 (0.57)
5 266 x0.77 (0.37) x0.33 (0.46) 0.97 (0.43) x0.83 (0.48) 2.51 (0.39)
6 332 3.55 (0.67) x2.01 (0.59) x0.05 (0.48) 2.14 (0.58) 3.33 (0.62)
7 340 1.92 (0.61) 1.76 (0.69) 0.71 (0.45) 2.10 (0.66) x2.07 (0.60)
8 474 x2.15 (0.36) x0.75 (0.43) 4.25 (0.38) x3.25 (0.41) x2.73 (0.32)
9 518 2.39 (0.51) 2.40 (0.63) 1.92 (0.49) 1.23 (0.52) 0.91 (0.52)
10 572 1.17 (0.46) 1.34 (0.55) 2.59 (0.51) 2.90 (0.51) 3.08 (0.42)

– indicates that the position or regression effect cannot be estimated by the Bayesian B-spline mapping.
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Fig. 4. The T2 statistic profiles for the entire genome
obtained with Bayesian mapping based on Legendre
polynomials of 4 (a), 5 (b) and 6 (c) order. The true
positions of the simulated QTL are represented by black
needles. The horizontal lines indicate the empirical critical
values when the type I error rate was 5%, which are 11.07
for (a), 12.59 for (b) and 14.07 for (c), respectively.
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4. Example

The data published by Ma et al. (2002) are used to
demonstrate the application of the proposed method
to real data from dynamic traits. The analysed trait is
the growth of the stem diameter of Populus trees
measured annually in 11 years. The mapping popu-
lation consists of 78 progeny of pseudo-backcross
derived from the triple hybridization of Populus. A
genetic linkage map has been constructed using
90 markers distributed on 23 linkage groups. Since the
growth of the stem diameter follows the S-shaped
curve, Ma et al. (2002) fit change of QTL genotypic
value by Logistic curve within the interval-mapping
framework. Subsequently, Yang et al. (2006, 2009)
replaced Logistic curve with Legendre polynomials
and B-splines, respectively, and obtained good
results.

In the Bayesian mapping procedure used here, the
maximum number of QTLs is set to 100. Initial values
of all unknown parameters and all the hyperpara-
meters are determined according to the method used
in the simulation. The algorithm used in this analysis

is the same as that used in the analysis of simulated
data. The B-spline with three knots and polynomial
segments of order 2 is used to model the dynamic of
population mean and genetic effect for each QTL in
model (1). When the knots are chosen as 1, 6 and 11
years, the proposed method detects seven QTLs on
linkage group D3-1, D4, D9, D10, D15 and D17 that
control the growth trajectory of stem diameter of
Populus. Parameter estimates of detectable QTLs are
listed in Table 5. As a comparison, we also choose
polynomials of orders 3, 4 and 5 and find only the
polynomials of order 4 identifies the same QTLs as
what we have from the B-spline approach (results not
shown), demonstrating the capability of B-spline to
replace polynomial in Bayesian mapping for dynamic
quantitative traits. Moreover, in the B-spline, if in-
ternal knot points are taken as 5 and 7 years, re-
spectively, mapping results are almost the same for
either the Bayesian-mapping method or the interval-
mapping method. This implies that the efficiency of
the proposed method strongly depends on the choice
of internal knots. For the real dataset, interval map-
ping based on model (1) with a single QTL only lo-
cates two QTLs on linkage group D10 and D17.
However, functional mapping developed by Ma et al.
(2002) only find QTLs on linkage group D10. Yang et
al. (2009) also detect seven QTLs with B-spline-based
interval mapping, but only two QTLs on linkage
group D4 and D10 are consistent with our findings in
this paper. This difference may be due to different
mapping methods and the covariance structure
specification for residuals.

5. Discussion

We successfully extended the Bayesian shrinkage
method to mapping multiple QTLs for dynamic traits,
and demonstrated by the simulated data analysis that

Table 3. The estimated posterior means (standard deviations) of QTL regression effects for B-spline obtained
with interval mapping

QTL No.

Estimates

Position a1 a2 A3 a4 a5

1 – – – – – –
2 57 3.98(0.82) 0.26(0.36) 3.66(0.67) 0.74(0.56) 6.10(0.82)
3 149 5.52(0.66) 2.08(0.39) 1.28(0.62) x2.82(0.49) 5.58(0.79)
4 – – – – – –
5 267 1.10(0.82) x0.46(0.34) 2.32(0.61) x0.16(0.51) 3.46(0.86)
6 – – – – – –
7 339 4.58(0.82) 0.10(0.42) 1.02(0.64) 3.14(0.53) 0.86(0.86)
8 475 0.90(0.69) 1.20 (0.46) 6.02(0.71) x1.78(0.48) x0.24(0.76)
9 521 2.42(0.65) 3.08(0.39) 5.32(0.74) 0.90(0.57) 1.58(0.78)
10 569 2.84(0.76) 2.42(0.39) 3.88(0.67) 3.00(0.42) 3.56(0.82)

– indicates that the position or regression effect cannot be estimated by the interval mapping.

Table 4. QTL regression effects for Legendre
polynomials used in the simulation experiment

QTL a0 a1 a2 a3

1 0.00 1.65 2.52 1.20
2 2.34 2.08 1.37 1.18
3 2.55 1.36 x2.02 x1.27
4 1.05 x2.57 1.24 x1.10
5 1.12 1.68 1.25 0.00
6 2.94 0.00 x1.68 1.72
7 1.82 x0.80 x1.20 x0.80
8 1.28 x0.50 x1.17 1.32
9 2.00 x1.25 0.00 x1.18
10 1.75 1.30 x1.45 1.17
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Bayesian mapping is able to effectively and accurately
detect QTL governing dynamic traits. The Bayesian-
mapping analysis of dynamic traits was based on RR
model, in which B-spline was chosen to simul-
taneously describe the dynamics of population means,
genetic effects of multiple QTL and other environ-
mental factors over time. This overcomes the dis-
advantages of Logistic curve used in traditional
functional mapping, due to its non-additivity. Our
model can be considered as a general framework for
mapping QTL, for instance, which could be reduced
to repeatability model for multiple traits when the
order of B-spline was set to 0, and could be reduced to
a single-trait model when all the covariates of mea-
suring time were 1.

As illustrated in simulations and real data
analysis, B-spline can capture complicated patterns
but it is highly sensitive to the choice of knots.
Therefore, the choice of knots should be the key el-
ements of model specification in Bayesian B-spline
mapping. Theoretically, too many knots lead to the
over-fitting of the data, while too few knots lead to
under-fitting. Some authors have proposed automatic
schemes for optimizing the number and the positions
of the knots (Friedman & Silverman, 1989;
Kooperberg & Stone, 1991, 1992). In particular, the
choice of knots can be easily dealt with by using pe-
nalized or Bayesian estimation methods (e.g. Whaba,
1990; Rupert et al., 2003). Due to many different
B-splines nested for each QTL and individual-specific
environmental effects, however, Bayesian shrinkage
analysis with the choice of a large number of knots
will become computationally expensive and thus dif-
ficult to map dynamic trait loci. If only those posi-
tions with significant genetic effects are drawn with
Bayesian model choice (Yi et al., 2005; Min & Czado,
2011), the computational time can be greatly reduced.
Here, we use the same B-spline to fit the changes in
population means, genetic effects of multiple QTLs
and other environmental factors over time, according
to the averages fit of phenotypic values at different
measurement points. Apparently, this choice for B-
spline may not be optimal.

Since regression coefficients of B-spline determine
the shape of dynamic trajectory, Bayesian B-spline

mapping proposed here infers the QTL controlling
the dynamic trajectory of dynamic quantitative traits
by the Wald test statistic derived from posterior
samples for QTL regression effects. By substituting
each group of posterior sampling values for QTL re-
gression effects into B-spline, we can obtain posterior
sample for QTL effects at any dynamic point or
within changing process of interest and by which
infer the QTLs controlling any dynamic point or
changing process of dynamic traits. According to
the relationship between QTL regression effects and
the parameters in biological meaningful model such
as logistic curve, as derived in Yang & Xu (2007), we
can also infer those QTLs controlling the biological
meaningful characters. Therefore, it is easy to answer
the criticism on the polynomial approach when
applied to any curve is the interpretability of the
polynomial regression coefficients in mapping QTL
for dynamic traits.
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Appendix A. The B-spline

Given k knots with t0ft1f…ftkx1, B-spline of de-
gree p is a parametric curve composed of a linear
combination of basis B-splines yi,p(t) :

B(t)= g
kxpx2

i=0
biyi, p(t),

where bi are called control points or de Boor points.
The kxpx1 basis B-splines of degree p can be de-

fined, for p=0, 1, …, kx2, using the Cox–de Boor
recursion formula. Basis functions of degree p=0
have values of unity for all points in a given interval,
and zero otherwise. For the jth interval given by knots
tj and tj+1 with tj<tj+1,

yj, 0(t)=
1, if tj<t<tj+1

0, otherwise,

�
for j=0, 1, . . . , kx2:

Table 5. Parameter estimates of QTLs obtained from Bayesian B-spline mapping for stem diameters in Populus

QTL
no.

Linkage
group Marker interval Position Regression genetic effect (standard error)

1 D3-1 CT/CAG-350RyCT/CAG-505 89.5 x0.075(0.032) 0.201(0.205) x0.106(0.032) 0.023(0.103)
2 D4 AQ2-1220yTT/CGA-395 243.5 0.053(0.033) x0.233(0.124) 0.157(0.108) 0.116(0.144)
3 D9 Q9-1700RyCG/CCT-655 89.3 x0.014(0.039) x0.334(0.289) 0.088(0.035) 0.228(0.162)
4 D10 TC/CAA-540yTC/CTG-750 60.4 0.089(0.034) x0.221(0.242) 0.061(0.035) 0.217(0.128)
5 D15 TT/CGT_640yAA/CGT_690 79.7 0.068(0.041) x0.375(0.167) 0.255(0.041) 0.190(0.159)
6 D15 AV14_1500RyTC/CAC_420 133.6 x0.088(0.040) 0.247(0.181) x0.070(0.037) x0.012(0.142)
7 D17 CA/CCG-820RyTC/CAG-350R 64.6 x0.018(0.018) 0.360(0.242) x0.138(0.018) x0.073(0.154)
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Higher-degree basis functions yi, p(t) for p>0, are
then determined recursively from the values of the
lower degree basis functions and the width of the ad-
joining intervals between knots. The general re-
lationship is

yj, p(t)=
txtj

tj+pxtj
yj, px1(t)+

tj+p+1xt

tj+p+1xtj+1
yj+1, px1(t),

for j=0, 1, . . . , kxpx2:

Obviously, there are a limited number of non-zero
basis functions of lower order for each p.

Appendix B. Conditional posterior densities used for

Gibbs samplers

The conditional posterior distribution for each un-
known parameter can be derived from the joint pos-
terior distribution density by fixing other parameters.

The conditional posterior distribution of m is mul-
tivariate normal with mean

E(mj . . . )=(nyVx1yT)x1yVx1

r g
n

i=1
yix g

q

j=1
xijy

Taj

 !
(B1)

and covariance matrix

Var(mj . . . )=(nyVx1yT)x1, (B2)

where the m|… notation is a short expression for
conditional variable m given all the data and other
variables. Note that all variables appearing on the
right-hand side of eqn (B1) are actual values sampled
in a previous iteration.

The conditional posterior distribution of the jth
QTL effects is multivariate normal with mean

E(ajj . . . )= g
n

i=1
Ajy(V+x2

ijy
TAjy)

x1xij

r yixyTmx g
q

jklj

xijky
Tajk

 !
, (B3)

and covariance matrix

Var(ajj . . . )=Ajx g
n

i=1
x2
ijAjy(V+x2

ijy
TAjy)

x1yTAj:

(B4)

The conditional posterior distribution of Aj is inverse
Wishart with degrees of freedom b0+1 and covari-
ance matrix (ajaj

T+CA
x1)x1, i.e.

Aj � IW b0+1, (aja
T
j +C�1

A )x1
h i

: (B5)

The conditional posterior distribution of the individ-
ual-specific bi is a multivariate normal distribution

with mean

E(bij . . . )=SbyV
x1(yixUi) (B6)

and covariance matrix

Var(bij . . . )=SbxSbyV
x1yTSb: (B7)

The conditional posterior distribution of Sb is inverse
Wishart, i.e.

Sb � IW d0+n, g
n

i=1
bib

T
i +Cx1

b

� �x1� �
(B8)

The conditional posterior distribution for residual
variance se

2 is a scaled inverse chi-square with
parameters n(m+1)+ve and heSe+ gn

i=1e
T
i ei

� 	x1
,

where he=ve+n(m+1) and

ei=yixUixyTbi: (B9)
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