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The Classification of 7- and 8-dimensional
Naturally Reductive Spaces

Reinier Storm

Abstract. A newmethod for classifying naturally reductive spaces is presented. his method relies on
a new construction and the structure theory of naturally reductive spaces recently developed by the au-
thor. hismethod is applied to obtain the classiûcation of all naturally reductive spaces in dimension 7
and 8.

1 Introduction

A locally naturally reductive space is a Riemannian manifold together with a metric
connection that has parallel skew-torsion and parallel curvature. A locally symmetric
space can thus be seen as a naturally reductive space with zero torsion. In the seminal
paper [5], Cartan classiûed all symmetric spaces.

he story for naturally reductive spaces is quite diòerent, of not available. A good
place to start is to classify them in small dimensions. his has been done in dimen-
sions 3, 4, and 5 in [13, 14, 19] and more recently in dimension 6 in [1]. hese classi-
ûcations essentially rely on being able to parametrize the possible torsion and curva-
ture tensors of the naturally reductive connections and then solving the ûrst Bianchi
identity. Such a parametrization breaks down in higher dimensions. he recent devel-
opments in [16, 17] tell us however that naturally reductive spaces are still very rigid.
his gives us the ability to present a completely newway to classify naturally reductive
spaces.

1.1 Results

he new approach presented here can be applied in any dimension, but becomes in-
creasingly more elaborate as the dimension increases. herefore, it becomes impor-
tant to ûnd ways to limit the possible cases. his will be carried out explicitly for
naturally reductive spaces of dimension 7 and 8. An important point is the division
of naturally reductive spaces into two types, as in [17]:
Type I he transvection algebra is semi-simple.
Type II he transvection algebra is not semi-simple.
Another simpliûcation of the classiûcation comes from the partial duality of natu-
rally reductive spaces deûned in [17]; see also Deûnition 2.7. Every naturally reduc-
tive space of Type I can be related to a compact one. herefore, we will only list
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he Classiûcation of 7- and 8-dimensional Naturally Reductive Spaces 1247

the compact spaces of Type I and in case a non-compact partial dual space exists we
will mention this. For the spaces of Type II, we will only list the ones for which the
semi-simple factor of the canonical base space is compact, and we will mention if a
partial dual spaces exist. It is not diõcult to explicitly obtain all partial dual spaces.
his makes the classiûcation much more transparent. he classiûcation of all 7- and
8-dimensional naturally reductive spaces is summarized in heorem 3.6 for Type I
and in heorem 4.5 for Type II.

2 Preliminaries

he essential structure of a locally homogeneous space is encoded in the inûnitesimal
model. We now brie�y discuss this below.

heorem 2.1 (Ambrose–Singer [3]) A complete simply connected Riemannian man-
ifold (M , g) is a homogeneous Riemannian manifold if and only if there exists a metric
connection ∇ with torsion T and curvature R such that

(2.1) ∇T = 0 and ∇R = 0.

A metric connection satisfying (2.1) is called an Ambrose–Singer connection. he
torsion T and curvature R of an Ambrose–Singer connection evaluated at a point
p ∈ M are linear maps

(2.2) Tp ∶ Λ2TpM Ð→ TpM and Rp ∶ Λ2TpM Ð→ so(TpM)
that satisfy, for all x , y, z ∈ TpM,

Rp(x , y) ⋅ Tp = Rp(x , y) ⋅ Rp = 0,(2.3)

Sx ,y ,zRp(x , y)z − Tp(Tp(x , y), z) = 0,(2.4)

Sx ,y ,zRp(Tp(x , y), z) = 0,(2.5)

whereSx ,y ,z denotes the cyclic sum over x , y, and z, and ⋅ denotes the natural action
of so(TpM) on tensors. heûrst equation encodes thatT andR are parallel objects for
∇, and under this condition the ûrst and second Bianchi identity become equations
(2.4) and (2.5), respectively. A pair of tensors (T , R), as in (2.2), on a vector space
m with a metric g satisfying (2.3), (2.4) and (2.5) is called an inûnitesimal model on
(m, g).
Conversely, given an inûnitesimal model (T , R) of a homogeneous space, one can

construct a homogeneous space with that inûnitesimal model. his construction is
known as the Nomizu construction; see [15]. his construction goes as follows. Let

h ∶= {h ∈ so(m) ∶ h ⋅ T = 0, h ⋅ R = 0}.
and set g ∶= h ⊕ m. On g, the following Lie bracket is deûned for all h, k ∈ h and
x , y ∈ m:
(2.6) [h + x , k + y] ∶= [h, k]so(m) − R(x , y) + h(y) − k(x) − T(x , y),
where [ ⋅ , ⋅ ]so(m) denotes the Lie bracket in so(m). he bracket from (2.6) satisûes
the Jacobi identity if and only if R and T satisfy equations (2.3), (2.4), and (2.5). We
will call g the symmetry algebra of the inûnitesimal model (T , R). LetG be the simply
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connected Lie group with Lie algebra g and let H be the connected subgroup with
Lie algebra h. he inûnitesimal model is regular if H is a closed subgroup of G. If
this is the case, then clearly the canonical connection on G/H has the inûnitesimal
model (T , R) we started with. In [18, hm. 5.2], it was proved that an inûnitesimal
model coming from an invariant connection on a globally homogeneous Riemannian
manifold, as in (2.2), is regular.

Deûnition 2.2 Let (g = h⊕m, g) be a Lie algebra together with a subalgebra h ⊂ g, a
complementm of h, and ametric g onm. Suppose ad(h)m ⊂ m and, for all x , y, z ∈ m,
that

g([x , y]m , z) = −g(y, [x , z]m) .
hen we call (g = h ⊕ m, g) a naturally reductive decomposition with h the isotropy
algebra. We will mostly refer to just g = h ⊕ m as a naturally reductive decomposi-
tion and let the metric be implicit. he inûnitesimal model of the naturally reductive
decomposition is deûned by

T(x , y) ∶= −[x , y]m , ∀x , y ∈ m,(2.7)
R(x , y) ∶= −ad([x , y]h) ∈ so(m), ∀x , y ∈ m,

where [x , y]m and [x , y]h are the m- and h-component of [x , y], respectively. We
call the decomposition an eòective naturally reductive decomposition if the restricted
adjoint map ad ∶ h → so(m) is injective. We will say that g is the transvection algebra
of the naturally reductive decomposition g = h ⊕m if the decomposition is eòective
and im(R) = ad(h) ⊂ so(m). Note that (2.3) implies that im(R) ⊂ so(m) is a sub-
algebra and that the transvection algebra is always a Lie subalgebra of the symmetry
algebra. When we simply refer to g = h⊕m as a naturally reductive transvection alge-
bra, we mean that this is a naturally reductive decomposition for which g is also the
transvection algebra.

he following theorem is a classical result by Kostant (see also [6]).

heorem 2.3 (Kostant, [11]) Let (g = h ⊕ m, g) be an eòective naturally reductive
decomposition. hen k ∶= [m,m]h ⊕m is an ideal in g and there exists a unique ad(k)-
invariant non-degenerate symmetric bilinear form g on k such that g∣m×m = g and
[m,m]h ⊥ m. Conversely, any ad(g)-invariant non-degenerate symmetric bilinear form
g on g = h ⊕ m with m = h⊥ and g∣m×m positive deûnite gives a naturally reductive
decomposition.

In [16] a new construction of naturally reductive spaces is deûned. his starts from
a naturally reductive transvection algebra and a certain subalgebra k of derivations
of the transvection algebra together with an ad(k)-invariant metric B on k and con-
structs a new naturally reductive decomposition. his new decomposition we call the
(k, B)-extension, and generally this new space is a homogeneous ûber bundle over
the original space. More explicitly, for g = h⊕m a non-zero transvection algebra the
algebra, k of derivations has to be a subalgebra of

s(g) ∶= { f ∈ Der(g) ∶ f (h) = {0}, f (m) ⊂ m, f ∣m ∈ so(m)}.
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Let so(∞) be the Lie algebra of all skew-symmetric matrices of ûnite rank. If g = {0},
then we deûne s({0}) = so(∞). For every ûnite dimensional subalgebra k ⊂ s(g)
with an ad(k)-invariant metric B on k a new naturally reductive decomposition is
obtained, which is called a (k, B)-extension of g = h⊕m; see [16].

One can imagine that simply connected spaces of Type I are relatively easy to clas-
sify in low dimensions. his is indeed the case, and similar results with diòerent pur-
poses can be found in the literature, e.g., [10]. he theory developed in [17] together
with the construction of [16] allow us to classify all remaining naturally reductive
spaces. he main reason for this is the following slightly rephrased result from [17].

heorem 2.4 ([17, hm. 4]) For every naturally reductive decomposition of Type II,
there exists a unique naturally reductive transvection algebra of the form

(2.8) g = h⊕m⊕L .a . Rn ,

where h ⊕m is a semi-simple algebra and ⊕L .a . denotes the direct sum of Lie algebras,
such that the original Type II decomposition is a (k, B)-extension of g = h⊕m⊕L .a . Rn .

Deûnition 2.5 he unique naturally reductive decomposition from heorem 2.4 in
(2.8) is called the canonical base space of the Type II space. he ideal h ⊕m is called
the semi-simple factor, and the ideal Rn is called the Euclidean factor.

he above theorem is the fundamental result on which the here-presented classi-
ûcation method is based. It also suggests some further simpliûcations for the classiû-
cation that are discussed below.

Deûnition 2.6 A Lie algebra g together with a subalgebra h ⊂ g deûne a naturally
reductive pair (g, h) if there exists an ad(g)-invariant non-degenerate symmetric bi-
linear form g for which g∣m×m is positive deûnite, wherem = h⊥ and such that g is the
transvection algebra of the corresponding naturally reductive decomposition.

Deûnition 2.7 A naturally reductive pair (g∗ , h∗) is a partial dual of a naturally
reductive pair (g, h) when g∗ is a real form of g ⊗ C diòerent from g and the com-
plexiûed Lie algebra pairs are isomorphic: (g⊗C, h⊗C) ≅ (g∗ ⊗C, h∗ ⊗C).

Remark 2.8 In [17] it is shown that every naturally reductive pair of Type I ad-
mits exactly one compact partial dual pair of Type I and for a space of Type II there
exists exactly one partial dual pair for which the semi-simple factor of the canonical
base space is compact. Moreover, a partial dual of a naturally reductive pair (g, h) of
Type I exists if and only if (gi , projgi

(h)) is a symmetric pair for some i, where
g = g1 ⊕ g2 ⊕ ⋅ ⋅ ⋅ ⊕ gn is the decomposition of g into simple ideals. We will use this
partial duality to de�ate our classiûcation list and make it more comprehensive.

In a classiûcation, it is common to only list the irreducible objects. his is also the
case for naturally reductive spaces.

Deûnition 2.9 An inûnitesimalmodel (T , R) onm is reducible if there exists a non-
trivial orthogonal decompositionm = m1⊕m2 such that T = T1⊕T2 and R = R1 +R2,
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where Ti ∈ Λ3mi and R i ∈ L(Λ2mi , so(mi)). A naturally reductive decomposition is
reducible if and only if its inûnitesimal model its reducible.

Remark 2.10 Given a simply connected Riemannian manifold with an Ambrose–
Singer connection (M , g ,∇), its inûnitesimal model is reducible in the sense of Deû-
nition 2.9 if and only if (M , g ,∇) ≅ (M1 , g1 ,∇1) × (M2 , g2 ,∇2); i.e., the Riemannian
manifold is a product and the Ambrose–Singer connection is a product connection.

he local reducibility of a naturally reductive space or equivalently the reducibility
of its inûnitesimal model only depends on the torsion.

heorem 2.11 ([17, 20]) A naturally reductive decomposition is reducible in the sense
of Deûnition 2.9 if and only if there exists a non-trivial orthogonal decomposition
m = m1 ⊕m2 such that T = T1 ⊕ T2 with Ti ∈ Λ3mi .

he following propositions will simplify the classiûcation procedure signiûcantly;
see [17] for the proofs. he ûrst proposition gives a necessary and suõcient condition
for a (k, B)-extension to be irreducible.

Proposition 2.12 Let g = h⊕m⊕L .a .Rn be a naturally reductive transvection algebra
with h ⊕m semi-simple. Furthermore, let k ⊂ s(g) and let B be some ad(k)-invariant
inner product on k. Consider the following decomposition

(2.9) g = (h1 ⊕m1) ⊕L .a . ⋅ ⋅ ⋅ ⊕L .a . (hp ⊕mp) ⊕L .a . mp+1 ⊕L .a . ⋅ ⋅ ⋅ ⊕L .a . mp+q ,

where hi ⊕ mi is an irreducible naturally reductive decomposition with hi ⊂ h and
mi ⊂ m for i = 1, . . . , p and mp+ j ⊂ Rn is an irreducible k-module for j = 1, . . . , q.
We choose the m1 , . . . ,mp+q mutually orthogonal. Suppose that g = h ⊕m ⊕L .a . Rn is
the canonical base space of the (k, B)-extension. he (k, B)-extension is reducible if and
only if there exists a non-trivial partition

{m1 , . . . ,mp ,mp+1 , . . . ,mp+q} =W ′ ∪W ′′ , W ′ ∩W ′′ = ∅,
and an orthogonal decomposition of ideals k = k′⊕ k′′ with respect to B such that k′ acts
trivially on all elements of W ′′ and k′′ acts trivially on all elements of W ′.

We also need to recall some deûnitions from [16].

Deûnition 2.13 Let (g = h ⊕m ⊕L .a . Rn , g) be a as in (2.8). Let k ⊂ s(g) be a Lie
subalgebra and let B be an ad(k)-invariant inner product on k. Let φ ∶ k→ so(m⊕Rn)
be the natural Lie algebra representation and let ψ ∶ k → so(k ⊕ m ⊕ Rn) be the Lie
algebra representation ψ ∶= ad⊕ φ.

hen we deûne φ1 ∶ k → so(m) and φ2 ∶ k → so(Rn) to be the restricted represen-
tations of φ ∶ k→ so(m⊕Rn). Next we put

k1 ∶= ker(φ2), k3 ∶= ker(φ1), k2 ∶= (k1 ⊕ k3)⊥ ⊂ k,

where the orthogonal complement is taken with respect to B. Furthermore, we have
s(g) ≅ Z(h)⊕p⊕ so(n), where p ∶= {m ∈ m ∶ [h,m] = 0, ∀h ∈ h} and Z(h) denotes
the center of h. In this way, we identify k1 ⊕ k2 ⊂ Aut(h⊕m) with inner derivations:
b1 ⊕ b2 ⊂ Z(h) ⊕ p ⊂ h⊕m.
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All the spaces of Type II are constructed as (k, B)-extensions. Generically, a (k, B)-
extension results in a space of Type II. However, in general it does not. he following
proposition guaranties that all of the (k, B)-extensions we list are of Type II. his is to
assure that none of the spaces we list are isomorphic.

Proposition 2.14 Let f be the transvection algebra of a (k, B)-extension of a naturally
reductive transvection algebra of the form g = h⊕m⊕L .a . Rn . he canonical base space
of f is isomorphic to g = h⊕m⊕L .a . Rn if and only if the following hold:
(i) πm(Z(b1)) = {0};
(ii) ker(R∣ad(h)+ψ(k)) = {0};
where πm denotes the projection ontom and R is the curvature tensor associated with f.

For Lemma 2.14, we need to be able to compute ker(R) the following lemma sim-
pliûes this.

Lemma 2.15 Let g = h ⊕m ⊕L .a . Rn be a naturally reductive transvection algebra.
Let k ⊂ s(g) and let B be an ad(k)-invariant inner product on k. Let (T , R) be the
inûnitesimal model of the (k, B)-extension. hen

ad(hss) ⊕ ad(kss) = ad(hss ⊕ kss) ⊂ im(R) and ker(R) ⊂ ad(Z(h⊕ k)),

where gss denotes the semi-simple commutator ideal of a Lie algebra g andZ(g) denotes
the center of g. Moreover, if k1 = {0}, then ker(R) = {0}.

Finally, we need to be able to decide whether two spaces of Type II are isomorphic.
he following proposition does exactly this.

Proposition 2.16 Let gi = hi ⊕ mi = hi ⊕ m0, i ⊕L .a . Rn i be naturally reductive
transvection algebras with hi ⊕m0, i semi-simple or 0-dimensional for i = 1, 2. Suppose
gi = hi ⊕mi is the canonical base space of some (ki , B i)-extension for i = 1, 2 and that
the (k1 , B1)-extension and (k2 , B2)-extension are isomorphic. hen there is a Lie algebra
isomorphism τ ∶ g1 → g2. Furthermore, τ(h1) = h2, τ∣m1 ∶ m1 → m2 is an isometry and
τ∗ ∶ k1 → k2 is an isometry, where τ∗ ∶ Der(g1) → Der(g2) is the induced map on
derivations.

he above proposition also covers Type I spaces by considering a Type I space
as a trivial (k, B)-extension over itself. Also note that the isomorphism τ from the
above proposition is necessarily an isometry with respect to the unique invariant non-
degenerate symmetric bilinear form of heorem 2.3.

3 Classification of Type I

Now we describe how to classify all naturally reductive decompositions of Type I in
some dimension k. First, we list all semi-simple Lie algebras g of dimension less or
equal to 1

2 k(k + 1). For all of these, we look for subalgebras h ⊂ g together with
all ad(g)-invariant non-degenerate symmetric bilinear forms g on g such that the
following hold:

https://doi.org/10.4153/S0008414X19000300 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000300


1252 R. Storm

k 3 4 5 6 7 8
h so(3) n/a u(2) su(3) g2 su(3)

Dk = dim(h) 3 n/a 4 8 14 8

Table 1: Stabilizers of some irreducible 3-form of the largest dimension possible.

(1) dim(g/h) = k;
(2) g∣m×m is positive deûnite, wherem = h⊥,
(3) the torsion T from (2.7) is irreducible;
(4) [m,m]h = h.
We will refer to these as conditions (1) to (4), as we will use them regularly. Condi-
tion (3) implies that the decomposition g=h⊕mwill be irreducible; seeheorem 2.11,
Condition (4) implies that g is the transvection algebra; see [17, Lem. 8]. his produces
all irreducible naturally reductive transvection algebras g = h⊕m of Type I, and thus,
a�er ûnding all isomorphic ones, we obtain a classiûcation of all naturally reductive
transvection algebras of Type I in dimension k.

Remark 3.1 henaturally reductive structures on globally homogeneous spaces are
the ones that are regular. To obtain all regular structures, we only have to investigate
when H is closed in G, where G is the simply connected Lie group with Lie algebra g
and H is the connected subgroup with Lie subalgebra h; see [12, 18]. For all the cases
we discuss, we mention when the naturally reductive structure at hand is regular.

he above approach is very crude and becomes quite a lot of work even in dimen-
sions 7 and 8. We can make our method more eõcient by ûrst looking for an upper
bound for the dimension of h. We used above that h is always a subalgebra of so(k),
and thus dim(h) ≤ 1

2 k(k − 1). However, since h is the stabilizer of an irreducible
3-form T ∈ Λ3m, we can improve this estimate. In Table 1 we list stabilizers of irre-
ducible 3-forms in Rk for 3 ≤ k ≤ 8 that are of the largest dimension possible. he
dimension of this stabilizer is denoted by Dk . Additionally, we can also look for the
stabilizer with the second largest dimension dk . In dimension 7, we ûnd this is u(3),
which has dimension 9. In dimension 8, we ûnd it has at most dimension 5. Now
we can follow the same approach as before, but only the semi-simple Lie algebras up
to dimension k + Dk have to be listed, and we also do not have to list semi-simple
Lie algebras g with k + dk ≤ dim(g) ≤ k + Dk . his is already a big improvement
compared to the initial approach.

he next step is to ûnd all subalgebras of these semi-simple Lie algebras, such
that the conditions (1)–(4) are satisûed. We do this for every semi-simple Lie alge-
bra by listing all reductive algebras h that satisfy dim(h) = dim(g)− k and rank(h) ≤
min{rank(g), rank(so(k))}. Once we have listed all such pairs (g, h), we have to
ûnd all possible injective Lie algebra homomorphisms h→ g up to conjugation by an
automorphism of g, such that the conditions (3) and (4) are satisûed for some non-
degenerate symmetric bilinear form g. For condition (3), it is o�en easier to check
the condition in the following lemma; see [17, Lem. 5] for a proof.
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Lemma 3.2 Let g = h⊕m be a naturally reductive transvection algebra. Let g be the
unique ad(g)-invariant non-degenerate symmetric bilinear form from Kostant’s theo-
rem; see heorem 2.3. he reductive decomposition g = h ⊕m is reducible if and only
if there exist two non-trivial orthogonal ideals g1 ⊂ g and g2 ⊂ g with respect to g such
that g = g1 ⊕ g2 and h = h1 ⊕ h2 with hi ⊂ gi for i = 1, 2.

he following lemma is useful when listing all conjugacy classes of subalgebras of
so(n) and su(n) in small dimensions.

Lemma 3.3 Let g = so(n) or g = su(n). Let π ∶ g → End(Kn) be the vector repre-
sentation, with K = Rn , Cn . Let f i ∶ h → g be an injective Lie algebra homomorphism
for i = 1, 2. We denote the image of f i by hi ∶= f i(h). If the representations π ○ f1 and
π ○ f2 are equivalent, then the subalgebras h1 and h2 are conjugate by an automorphism
of g.

Note that the above lemma implies the naturally reductive pairs deûned by (g, h1)
and (g, h2) are isomorphic if and only if the representations representations of h1 and
h2 are equivalent. he last step is to ûnd all ad(g)-invariant non-degenerate symmet-
ric bilinear forms on g such that condition 2 is satisûed.

Let us brie�y illustrate how one can obtain Table 1 by explaining it in dimension 8.
he largest dimensional stabilizer will be a proper subalgebra of so(8) of dimension
greater than or equal to 8, since the adjoint representation of su(3) stabilizes the irre-
ducible 3-form deûned by T(x , y, z) ∶= Bsu(3)([x , y], z), where Bsu(3) is the Killing
form of su(3). Any stabilizer is a reductive Lie algebra and its commutator ideal is
equal to one of the following semi-simple Lie subalgebras of so(8):

su(2), su(2)2 , su(3), su(2)3 , sp(2),
so(4) ⊕ so(4), sp(2) ⊕ sp(1), g2 , su(4), so(7).

he only Lie algebras h with semi-simple part su(2) and rank(h) ≤ rank(so(8)) = 4
are h = su(2)⊕Ri for i = 1, 2, 3. hese are of dimension less than or equal to 6. Hence
to ûnd the stabilizer with the largest dimension, we can forget about these cases. For
the other Lie algebras we can list all faithful 8-dimensional real representations and
check if there exists an irreducible invariant 3-form. hen one needs to check if the
action can be extended to a larger Lie algebra and see if the 3-form is still stabilized
by this larger Lie algebra.

he following lemma will exclude many Lie subalgebras h ⊂ so(k) from having an
invariant irreducible 3-form.

Lemma 3.4 Suppose that so(l) ⊂ h ⊂ so(k), where the inclusion so(l) ⊂ so(k) is
the standard block embedding and l ≥ 3. hen there is no h-invariant irreducible 3-form
T ∈ Λ3Rk .

Proof We show that there is no irreducible 3-form invariant under so(l), and this
implies that there is no invariant irreducible 3-form under the h-action. As an so(l)-
module Rk splits into two orthogonal submodules, Rk = Rl ⊕ Rk−l . his implies
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that
T ∈ Λ3Rl ⊕ Λ2Rl ⊗Rk−l ⊕Rl ⊗ Λ2Rk−l ⊕ Λ3Rk−l ,

and all direct sums are preserved by so(l). Let T2 denote the component of T in
Λ2Rl ⊗Rk−l . We can identify T2 with an so(l)-equivariant map T2 ∶ Λ2Rl → Rk−l .
Since so(l) acts trivially on Rk−l and has no ûxed 2-forms, because Λ2Rl ≅ so(l) is
the adjoint representation. We conclude by Schur’s lemma that T2 = 0. By a similar
argument the component of T in Rl ⊗ Λ2Rk−l vanishes. We conclude T ∈ Λ3Rl ⊕
Λ3Rk−l , and thus T is reducible. ∎

Note that su(2)2 is a subalgebra of each of the following Lie algebras

su(2)3 , sp(2), so(4) ⊕ so(4), sp(2) ⊕ sp(1), g2 , su(4), so(7).

herefore, if there is no representation of su(2)2 that stabilizes an irreducible 3-form,
then there is also no representation of any of these Lie algebras that stabilizes and ir-
reducible 3-form. In the following, we will denote a highest weight representations of
a semi-simple Lie algebra g with highest weight n1λ1 + ⋅ ⋅ ⋅ + npλp as R(n1 , . . . , np),
where λ1 , . . . , λp are the fundamental weights of g in the Bourbaki labeling. he real
irreducible representations correspond to a subset of the complex irreducible repre-
sentations; see, for example, [4]. All complexiûcations of 8-dimension faithful real
representations of su(2)2 are

2R(1, 0) ⊕ 2R(0, 1), 2R(1, 0) ⊕ R(0, 2) ⊕ R(0, 0), R(1, 1) ⊕ 4R(0, 0),
R(1, 1) ⊕ 2R(0, 1), R(1, 1) ⊕ R(0, 2) ⊕ R(0, 0), R(1, 1) ⊕ R(1, 1),
R(4, 0) ⊕ R(0, 2), R(2, 0) ⊕ R(0, 2) ⊕ 2R(0, 0).

For example, the real representation underlying 2R(1, 0) ⊕ 2R(0, 1) is R4 ⊕ R4

such that the ûrst su(2)-summand only acts on the ûrst R4-summand, where R4

denotes the representation C2 by restricting scalars to R and similarly for the second
summand. For the representations 2R(1, 0) ⊕ R(0, 2) ⊕ R(0, 0), R(1, 1) ⊕ R(0, 2) ⊕
R(0, 0), R(2, 0)⊕R(0, 2)⊕2R(0, 0), R(1, 1)⊕4R(0, 0), and R(4, 0)⊕R(0, 2), we can
apply Lemma 3.4 to see that there is no invariant irreducible 3-form. For the other
three representations it follows that there are no irreducible invariant 3-forms by a
similar argument as that in Lemma 3.4.

We conclude that the stabilizer of some irreducible 3-form of the largest dimension
possible has su(3) as its commutator ideal. he representation R(1, 1) is the complex-
iûed adjoint representation of su(3), and it is of real type. Hence, the endomorphism
ring is trivial, and su(3) is the stabilizer of an irreducible 3-form with the largest di-
mension. We also see from the table that the stabilizer of an irreducible 3-form of
the second largest dimension has su(2) as its semi-simple part. Let us consider the
algebra su(2)⊕R3 ≅ u(2)⊕R2. here is only one faithful Lie algebra representation
of this algebra on R8, namely: R8 = R4 ⊕R2 ⊕R2, where R4 ≅ C2 is the vector rep-
resentation of u(2) and eachR2-summand is an irreducibleR-representation. Again
by a similar argument as in Lemma 3.4, we conclude there is no irreducible invariant
3-form for this representation. hus, the biggest dimension of a stabilizer of an irre-
ducible 3-form of dimension less than 8 has dimension less than or equal to 5. So for
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h RC inv. irred. 3-form

su(3) 2R(1, 0) ⊕ R(0, 0) 3

su(2)3 R(1, 1, 0) ⊕ R(0, 0, 2) 7

so(5) R(1, 0) ⊕ 2R(0, 0) 7

su(3) ⊕ su(2) ∅ n/a
su(2)4 ∅ n/a

so(5) ⊕ su(2) ∅ n/a
g2 R(1, 0) 3

su(3) ⊕ su(2)2 ∅ n/a

Table 2: 7-dimensional representations with irreducible 3-forms.

the case k = 8, we only have to list all semi-simple Lie algebras g with dim(g) ≤ 13
and add those of dimension 16.
For k = 7 there is a stabilizer of an irreducible 3-form with a relatively large di-

mension, namely G2. here is only one naturally reductive decomposition that has
g2 as isotropy algebra, the decomposition of Spin(7)/G2. In Table 2 we list all semi-
simple Lie algebras with their dimension between 8 and 14 together with all of their
7-dimensional faithful representations. In the third column we indicated if the rep-
resentation admits an invariant irreducible 3-form. Lemma 3.4 implies that there
does not exists an invariant irreducible 3-form for the representations of su(2)3 and
so(5). he endomorphism ring of the su(3)-representation 2R(1, 0) ⊕ R(0, 0) is
1-dimensional. Consequently, the stabilizer of an irreducible 3-form in dimension 7
with the second largest dimension is u(3). For a particular choice of basis in R7 the
u(3)-invariant torsion forms are spanned by e7 ∧ (e12 + e34 + 2e56), where e i j de-
notes e i ∧ e j . hus, for k = 7 we only have to list all semi-simple Lie algebras g with
dim(g) ≤ 16 and add to this the pair (so(7), g2).

3.1 Classification of Type I in Dimension 7

Nowwe follow the classiûcation approach described above in dimension 7. In the sec-
ond columnof Table 3, all compact semi-simple Lie algebras g of dimension 7 ≤ k ≤ 16
are listed and to this the case (g, h) = (so(7), g2) is added. In the third column, all Lie
algebras h of dimension dim(g)− 7 and with rank(h) ≤ min{rank(g), rank(so(7))}
are listed. he following result will exclude many cases from satisfying condition 3.

Lemma 3.5 Let g = g1 ⊕ g2 ⊕ ⋅ ⋅ ⋅ ⊕ gk , with gi simple for i = 1, . . . , k. Let h ⊂ g be
a subalgebra with a naturally reductive decomposition g = h ⊕m, where m = h⊥ with
respect to some ad(g)-invariant non-degenerate symmetric bilinear form. If g = h⊕m
is irreducible, then

rank g ≥ rank h + k − 1.
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dim(g) g h

8 su(3) R
9 su(2)3 R2

10 so(5) su(2)
11 su(3) ⊕ su(2) su(2) ⊕R
12 su(2)4 su(2) ⊕R2

13 so(5) ⊕ su(2) su(2) ⊕ su(2)
14 su(3) ⊕ su(2)2 su(2)2 ⊕R
14 g2 ∅
15 su(2)5 su(3)
15 su(4) su(3)
16 so(5) ⊕ su(2)2 su(3) ⊕R, su(2)3

16 su(3) ⊕ su(3) su(3) ⊕R, su(2)3

21 so(7) g2

Table 3: Candidates for 7-dimensional Type I naturally reductive pairs.

Proof For k = 1 the statement is true. Suppose that it is true for a certain k ∈ N.
Let g = g1 ⊕ ⋅ ⋅ ⋅ ⊕ gk ⊕ gk+1 and let us denote g′ = g1 ⊕ ⋅ ⋅ ⋅ ⊕ gk . Let π1 ∶ g → g′

and π2 ∶ g → gk+1 be the projections. Let h1 ∶= ker(π2), h3 ∶= ker(π1) and h2 ⊂ h a
complementary ideal of h1⊕h3, which exists because h is a reductive Lie algebra. Note
that rank h2 ≥ 1, because otherwise the decomposition is reducible by Lemma 3.2.
By our induction hypothesis, we have

rank g′ ≥ rank h1 ⊕ h2 + k − 1.

Furthermore, we have rank gk+1 ≥ rank h2 + rank h3. Combining these yields

rank g ≥ rank h1 + rank h2 + k− 1+ rank h2 + rank h3 ≥ rank h+ k. ∎

Now that we have all candidates for the pairs (g, h), it remains to ûnd all possible
conjugacy classes of injective Lie algebra homomorphisms h→ g such that conditions
(3) and (4) from the beginning of this section are satisûed. he pairs (g, h), which are
excluded by Lemma 3.5, are

(su(2)4 , su(2) ⊕R2), (su(3) ⊕ su(2)2 , su(2)2 ⊕R), (su(2)5 , su(3))
(so(5) ⊕ su(2)2 , su(3) ⊕R), (so(5) ⊕ su(2)2 , su(2)3).

For the pair (su(3) ⊕ su(3), su(2)3) there does not exist an injective Lie algebra ho-
momorphism from h to g. It is easily seen that no injective Lie algebra homomor-
phism su(3) ⊕ R → su(3) ⊕ su(3) satisûes condition (3) or (4). he remaining
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pairs are

(su(3),R), (su(2)3 ,R2), (so(5), su(2)), (su(3) ⊕ su(2), su(2) ⊕R),
(so(5) ⊕ su(2), su(2) ⊕ su(2)), (su(4), su(3)), (so(7), g2).

For these remaining cases, we now describe explicitly all subalgebras h together with
all the possible non-degenerate symmetric bilinear forms.

Case (g, h) = (su(3),R). Every subalgebra R ⊂ su(3) is conjugate to one spanned
by

r(a, b) ∶=
⎛
⎜
⎝

ia 0 0
0 ib 0
0 0 −i(a + b)

⎞
⎟
⎠
,

with a, b ∈ R and not both equal to zero. By Lemma 3.3, two pairs (a, b) and (c, d)
will give an isomorphic inûnitesimal model exactly when their subalgebras are conju-
gate by an element A ∈ Aut(su(3)). If A is an inner automorphism, then A(r(a, b))
has the same eigenvalues as r(a, b). herefore, A(r(a, b)) = Â(r(a, b)) for some
signed permutation matrix in Â ∈ SU(3). An outer automorphism τ ∶ su(3) → su(3)
is given by taking the negative transpose in su(3). We have τ(r(a, b)) = r(−a,−b).
he outer automorphism group of su(3) is Z2. We can now see that all pairs (x , y)
for which span{r(x , y)} is conjugate to span{r(a, b)} by an automorphism of su(3)
are

±(a, b), ±(a,−a − b), ±(b, a), ±(b,−a − b), ±(−a − b, a), ±(−a − b, b).
By using these automorphisms, we can always arrange that a ≥ b > 0. hus the
isomorphism classes are precisely described by a

b ≥ 1. he connected subgroup with
this Lie algebra is closed if and only if ab = q ∈ Q. he homogeneous spaces are
SU(3)/S1

q , where S1
q is the image of

S1 Ð→ SU(3); θ z→
⎛
⎜
⎝

e iqθ 0 0
0 e iθ 0
0 0 e−iθ(1+q)

⎞
⎟
⎠
.

he ad(g)-invariant non-degenerate symmetric bilinear form g on g is induced from
the Killing form of su(3); hence, for every case there is a 1-parameter family of natu-
rally reductive metrics.

Case (g, h) = (su(2)3 ,R2). Let x1 , x2 , x3 be the following basis of su(2):

(3.1) x1 ∶= ( i 0
0 −i) , x2 ∶= (0 −1

1 0 ) , x3 ∶= (0 i
i 0) .

he ad(g)-invariant non-degenerate symmetric bilinear form on su(2)3 is necessar-
ily positive deûnite and given by g = −1

8λ21
Bsu(2)⊕ −1

8λ22
Bsu(2)⊕ −1

8λ23
Bsu(2). Without loss

of generality, we assume that 0 < λ1 ≤ λ2 ≤ λ3. If the naturally reductive decomposi-
tion is irreducible, then h is conjugate by an automorphism of su(2)3 to a subalgebra
spanned by

h1 ∶= (a1x1 , a2x1 , 0) and h2 ∶= (0, b1x1 , b2x1),
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with a1 , a2 , b1 , b2 > 0. If λ1 = λ2 < λ3, then h is conjugate to one with a1 ≤ a2.
Similarly, if λ1 < λ2 = λ3, then we can arrange that b1 ≤ b2. Lastly, if λ1 = λ2 = λ3, then
we can arrange that a1 ≤ a2 and b1 ≤ b2. Under these conditions, every irreducible
naturally reductive space is represented exactly once. he connected subgroup H of
SU(2)3 with Lie(H) = h is a closed subgroup precisely when a2

a1
= q1 ∈ Q and b2

b1
=

q2 ∈ Q. IfH is closed, then it is isomorphic to S1×S1. We obtain a 3-parameter family
of naturally reductive structures on SU(2)3/(S1

q1 × S1
q2), where the parameters are

λ1 , λ2 , λ3 > 0 and Lie(S1
q1 × S1

q2) = h. Note that (su(2),R) is a symmetric pair with
(sl(2,R),R) its dual symmetric pair. We obtain the partial dual spaces by replacing
one or two of the su(2)-factors by sl(2,R). If we replace the ûrst factor, then g∣m×m
is positive deûnite if and only if −a

2
1

λ21
+ a22

λ22
< 0 and when we replace the last factor then

g∣m×m is positive deûnite if and only if b
2
1

λ22
− b23

λ23
< 0. If we replace the middle factor,

then the condition becomes

− λ1
2

λ2
1
a2
1 b

2
1 −

λ2
2

λ2
3
b2
2a

2
2 +

λ4
2

λ2
1 λ2

3
a2
1 b

2
2 < 0.

We get similar conditions if two out of the three factors are non-compact.

Case (g, h) = (so(5), su(2)). For this pair, there are three nonequivalent faithful
5-dimensional real representations of su(2). hey correspond to the representations
R(2) ⊕ 2R(0), 2R(1) ⊕ R(0), R(4), where each summand corresponds to a real ir-
reducible representation. his gives us the following simply connected spaces:

SO(5)/SO(3)ir , SO(5)/SO(3)st , Sp(2)/Sp(1)st ,

where SO(3)ir denotes the subgroup given by the 5-dimensional irreducible repre-
sentation of SO(3); SO(3)st is the standard SO(3) subgroup of SO(5), and Sp(1)st ⊂
Sp(2) is the standard Sp(1) subgroup. he ûrst space corresponds to the representa-
tion R(4), the second space to R(2) ⊕ 2R(0) and the last space to 2R(1) ⊕ R(0). In
particular all the possible inûnitesimal models for the pair (so(5), su(2)) are regu-
lar. he metric is induced from the Killing form on so(5), and thus for each case, we
get a 1-parameter family of naturally reductive metrics. We can easily see that these
three naturally reductive spaces are not isomorphic, because they have pairwise dif-
ferent isotropy representations, and the isotropy representations are the same as the
holonomy representations of the canonical connections.

Case (g, h) = (su(3) ⊕ su(2), su(2) ⊕R). Let f ∶ h → g be an injective Lie algebra
homomorphism. If f (su(2)) ⊂ su(2), then f (R) ⊂ su(3), since f (su(2)) and f (R)
commute. Now conditions (3) and (4) from the beginning of this section are not satis-
ûed. here are, up to conjugation, only two injective Lie algebra homomorphism from
su(2) to su(3) associated with the irreducible representations on C2 and C3. he ir-
reducible representation onC3 deûnes the irreducible symmetric pair (su(3), so(3)).
his implies that f (R) ⊂ su(2) and thus results in a reducible space; see Lemma 3.2.
In other words, condition (3) is not satisûed. Hence, the inclusion of su(2) in su(3)
can only be the standard inclusion. We obtain the following subalgebras:

su(2)st ⊕Ra ,b ⊂ su(3) ⊕ su(2) and su(2)∆ ⊕R ⊂ su(3) ⊕ su(2).
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In the ûrst inclusion, su(2)st = ist(su(2)) with ist ∶ su(2) → su(3) the standard in-
clusion, and Ra ,b is the subalgebra spanned by

⎛
⎜
⎝

⎛
⎜
⎝

ia 0 0
0 ia 0
0 0 −2ia

⎞
⎟
⎠
, (ib 0

0 −ib)
⎞
⎟
⎠
.

By Lemma 3.2, this naturally reductive decomposition is irreducible if and only if a
and b are non-zero. In this case, the connected subgroup of SU(3) × SU(2) with Lie
algebra su(2)st ⊕ Ra ,b is closed exactly when a

b = q ∈ Q. Hence, the inûnitesimal
model is regular if and only if ab ∈ Q. his subalgebra is conjugate by an automor-
phism of su(3) ⊕ su(2) to one with a, b > 0. he ad(g)-invariant non-degenerate
symmetric bilinear form is given by g = −λ1

12 Bsu(3) ⊕
−λ2
8 Bsu(2). For this case, g has

to be positive deûnite, i.e., λ1 , λ2 > 0. We obtain a 2-parameter family of naturally
reductive structures on (SU(3) × SU(2))/(SU(2)st × S1

q), where Lie(S1
q) = Ra ,b .

he subalgebra su(2)∆ ⊕ R is deûned by su(2)∆ ∶= (ist ⊕ id)(su(2)) and R is
spanned by

⎛
⎜
⎝

⎛
⎜
⎝

i 0 0
0 i 0
0 0 −2i

⎞
⎟
⎠
, (0 0
0 0)

⎞
⎟
⎠
.

he corresponding naturally reductive decomposition is irreducible and regular. he
ad(g)-invariant non-degenerate symmetric bilinear form is the same as in the pre-
vious case. In this case, the space can be normal homogeneous or not. he normal
homogeneous metrics correspond to λ1 , λ2 > 0. For the non-normal homogeneous
case, we have λ1 > 0, λ2 < 0 and λ1 + λ2 < 0. We obtain a 2-parameter family of natu-
rally reductive structures on (SU(3) × SU(2))/(SU(2)∆ × S1). his space, together
with one of the normal homogeneous metrics, has positive sectional curvature and is
known as a Wilking’s space, see [21].

Note that for both cases (su(3), f (su(2) ⊕ R)) is a symmetric pair. herefore,
by Remark 2.8, we see that both spaces have non-compact partial duals. For a non-
compact partial dual the ad(g∗)-invariant non-degenerate symmetric bilinear form
is given by g∗ = λ1

12Bsu(2,1) ⊕
−λ2
8 Bsu(2). For the ûrst space, g∗∣h×h is negative deûnite

precisely when −3a2λ1 + b2λ2 < 0. For the second space, g∗∣h×h is negative deûnite
if and only if λ1 , λ2 > 0 and −λ1 + λ2 < 0. For the ûrst space, (su(2), projsu(2)(h))
is also a symmetric pair. If we replace this pair with its symmetric dual, we obtain a
naturally reductive structure on

(SU(3) × SL(2,R))/(SU(2) × S1
q).

he ad(g∗)-invariant non-degenerate symmetric bilinear form is g∗ = −λ1
12 Bsu(3) ⊕

λ2
8 Bsl(2,R). We have that g

∗∣m×m is positive deûnite if and only if λ1 , λ2 > 0 and 3a2λ1−
b2λ2 < 0. Suppose we replace both factors by their non-compact dual. he invariant
symmetric bilinear form is λ1

12Bsu(2,1) ⊕
λ2
8 Bsl(2,R) with λ1 , λ2 > 0. his has signature

(6, 5), and thus g∣m×m is never positive deûnite, which is not allowed.

Case (g, h) = (so(5) ⊕ su(2), su(2) ⊕ su(2)). In order for condition (3) to be sat-
isûed, we see that both su(2) factors of h need to have a non-zero image in so(5).
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here is only one 5-dimensional orthogonal faithful representation of su(2)⊕su(2) ≅
so(4), and this corresponds to the standard inclusion of so(4) in so(5). We will de-
note the image of the su(2)-summand, which has non-zero image in both so(5) and
su(2) by su(2)∆ . he associated inûnitesimal model is always regular, and this gives
us the following naturally reductive space:

(Spin(5) × SU(2))/(SU(2)∆ × SU(2)) .

On this homogeneous space, we have a 2-parameter family of ad(g)-invariant non-
degenerate symmetric bilinear forms: g ∶= −λ1

6 Bso(5) ⊕
−λ2
8 Bsu(2). he normal ho-

mogeneous spaces correspond to the parameter λ1 , λ2 > 0. he non-normal homo-
geneous spaces correspond to λ1 > 0, λ2 < 0, and 2λ1 + λ2 < 0. he inequality ensures
that g∣su(2)∆ is negative deûnite, and thus g∣m×m is positive deûnite, where m is the
orthogonal complement of su(2)∆ ⊕ su(2) in spin(5)⊕ su(2)with respect to g. his
space is known as the squashed 7-sphere. his is one of the homogeneous spaces for
which there exists a proper nearly parallel G2-structure; see [7].

Note that (so(5), f (su(2)⊕ su(2)) is a symmetric pair. From Remark 2.8, we see
that there exists a non-compact partial dual. For the non-compact partial dual the
ad(g∗)-invariant non-degenerate symmetric bilinear form is given by g∗ = λ1

6 Bso(4,1)
⊕ −λ2

8 Bsu(2). he parameters λ1 and λ2 have to satisfy λ1 , λ2 > 0 and −2λ1 + λ2 < 0
for the metric g∣∗m×m to be positive deûnite.

Case (g, h) = (su(4), su(3)). here are twonon-equivalent faithful representations
of su(3) onC4. hey correspond to the reducible representationsC3 ⊕C = R(1, 0)⊕
R(0, 0) and C3 ⊕C = R(0, 1) ⊕ R(0, 0). he two subalgebras deûned by these repre-
sentations are conjugate by an outer automorphism of su(4). herefore, there is only
one injective Lie algebra homomorphism su(3) → su(4) up to conjugation, and this
is the standard inclusion. his yields the 7-dimensional Berger sphere as a naturally
reductive space

SU(4)/SU(3).

he associated inûnitesimal model is always regular, and we get a 1-parameter family
of metrics.

Case (g, h)= (so(7), g2). here is, up to conjugation, only one subalgebra g2 ⊂ so(7),
and the corresponding inûnitesimalmodel is regular. here is only a 1-parameter fam-
ily of metrics and the corresponding naturally reductive space SO(7)/G2 is isometric
to S7 with a round metric.

3.2 Classification of Type I in dimension 8

In the second column of Table 4, we list all candidates of compact semi-simple Lie
algebras g of dimension 8 ≤ k ≤ 16. We have already shown that g can only have
dimension less than or equal to 13 or the dimension of g is 16. In the third column
of Table 4, we list all Lie algebras of dimension dim(g) − 8 that satisfy rank(h) ≤
min(rank(g), rank(so(8)) ≤ 4.
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dim(g) g h

8 su(3) {0}
9 su(2)3 R
10 so(5) R2

11 su(3) ⊕ su(2) su(2), R3

12 su(2)4 su(2) ⊕R,R4

13 so(5) ⊕ su(2) su(2) ⊕R2

16 so(5) ⊕ su(2)2 su(3), su(2)2 ⊕R2

16 su(3)2 su(3), su(2)2 ⊕R2

Table 4: Candidates for 8-dimensional Type I naturally reductive pairs.

he pairs (g, h) that are excluded by Lemma 3.5 are

(su(3) ⊕ su(2),R3), (su(2)4 , su(2) ⊕R), (su(2)4 ,R4),
(so(5) ⊕ su(2), su(2) ⊕R2), (so(5) ⊕ su(2)2 , su(2)2 ⊕R2),

(su(3)2 , su(2)2 ⊕R2).

For the pair (so(5) ⊕ su(2)2 , su(3)) there does not exist an injective Lie algebra ho-
momorphism from su(3) to so(5) ⊕ su(2)2. he remaining cases are

(su(3), {0}) , (su(2)3 ,R) , (so(5),R2) ,
(su(3) ⊕ su(2), su(2)) , (su(3)2 , su(3)) .

We will discuss them case by case below.

Case (g, h) = (su(3), {0}). hepair (su(3), {0}) is always regular. he simply con-
nected naturally reductive space for this case is SU(3)with some bi-invariant metric.
In other words, we have a 1-parameter family of naturally reductive structures.

Case (g, h) = (su(2)3 ,R). Let x1 , x2 , x3 be as in (3.1). he ad(g)-invariant non-
degenerate symmetric bilinear form is necessarily positive deûnite and is given by
g = −1

8λ21
Bsu(2)⊕ −1

8λ22
Bsu(2)⊕ −1

8λ23
Bsu(2), so we can assume that 0 < λ1 ≤ λ2 ≤ λ3. Every

subalgebra R ⊂ su(2)3 is conjugate to one given by

Ra1 ,a2 ,a3 = span{(a1x1 , a2x1 , a3x1)},
with a1 , a2 , a3 ≥ 0. If λ1 = λ2 < λ3, then we can conjugate h such that a1 ≤ a2. Sim-
ilarly, if λ1 < λ2 = λ3, then we can arrange that a2 ≤ a3. Lastly if λ1 = λ2 = λ3,
then we can arrange that a1 ≤ a2 ≤ a3. Under these conditions none of these are
conjugate to each other. From Lemma 3.2 we see that the naturally reductive de-
composition is irreducible if and only if all a1 , a2 , a3 are non-zero. Clearly, the con-
nected subgroup of SU(2)3 with this Lie algebra is a closed subgroup if and only if
a2
a1
= q1 ∈ Q and a3

a1
= q2 ∈ Q. If it is closed, thenwe obtain a 3-parameter family of nat-

urally reductive structures on SU(2)3/S1
q1 ,q2 , where S1

q1 ,q2 is the connected subgroup
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with Lie(S1
q1 ,q2) = h. Note that (su(2),R) is a symmetric pair with (sl(2,R),R) its

dual symmetric pair. We obtain the partial dual spaces by replacing one su(2)-factor
by sl(2,R). If we replaced the j-th su(2)-summand by sl(2,R), then the restriction
g∗∣h×h is negative deûnite if and only if∑3

i=1(−1)δ i j( a i
λ i
)2 < 0.

Case (g, h) = (so(5),R2). he subalgebraR2 ⊂ so(5) has to be the maximal torus.
In particular, these spaces are always regular. he simply connected naturally reduc-
tive space for this case is SO(5)/(SO(2) × SO(2)), where SO(2) × SO(2) is embed-
ded block diagonally. he metric is induced from any negative multiple of the Killing
form of so(5). In other words, we have a 1-parameter family of naturally reductive
structures.

Case (g, h) = (su(3) ⊕ su(2), su(2)). Up to conjugation, there are two injective Lie
algebra homomorphisms su(2) → su(3)⊕su(2) such that conditions (3) and (4) from
the beginning of this section are satisûed. For the inclusion in the second factor, there
is only the identity. For the inclusion in su(3) there are two choices, namely, the stan-
dard inclusion, denoted by ist and the other given by the 3-dimensional irreducible
representation of su(2), denoted by iir. For both inclusions, the inûnitesimal model
is regular. he simply connected homogeneous spaces are

(SU(3) × SU(2))/(ist × id)(SU(2)) and (SU(3) × SU(2))/(iir × id)(SU(2)) ,
where we denote the corresponding group homomorphism of ist and iir also by ist
and iir, respectively. here is a 2-parameter family of ad(g)-invariant non-degenerate
symmetric bilinear forms: g = −λ1

12 Bsu(3) ⊕
−λ2
8 Bsu(2). he normal homogeneous

spaces correspond to λ1 , λ2 > 0. For the non-normal homogeneous spaces, we have
λ1 > 0 and λ2 < 0. Furthermore, we require that the condition λ1 + λ2 < 0 holds for
the ûrst space and 4λ1 + λ2 < 0 for the second space.
For the space (SU(3) × SU(2))/(iir × id)(SU(2)) there is a non-compact partial

dual space
(SL(3,R) × SU(2))/(iir × id)(SU(2)) .

he ad(g∗)-invariant non-degenerate symmetric bilinear forms are

g∗ = λ1

12
Bsl(3,R) ⊕

−λ2

8
Bsu(2) .

In order to obtain a positive deûnite metric on our space, require that λ1 , λ2 > 0 and
−4λ1 + λ2 < 0.

Case (g, h) = (su(3)2 , su(3)). here are two possible conjugacy classes of the sub-
algebra su(3), namely su(3) × {0} and the diagonal su(3)∆ . he ûrst case clearly
does not satisfy condition (4). herefore, the subalgebra h has to be the diagonal sub-
algebra. he ad(g)-invariant metrics are given by g = −λ1Bsu(3) ⊕ −λ2Bsu(3), with
λ1 ≠ 0 and λ2 ≠ 0. By permuting the two su(3)-factors, we can assume that λ1 ≥ λ2.
he normal homogeneous spaces correspond to λ1 , λ2 > 0. Note that for λ1 = λ2 and
λ1 > 0 we obtain a symmetric space. For the non-normal homogeneous spaces, we
require that the signature of g is (8, 8) and that g∣h×h is negative deûnite. his is the
case if and only if λ1 + λ2 < 0 and λ1 > 0 > λ2. All the naturally reductive structures
are regular and irreducible. For every case, the homogeneous space is isometric to
SU(3) with some bi-invariant metric.
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he pair (g, h) is a symmetric pair. he ad(g∗)-invariant non-degenerate symmet-
ric bilinear forms for the dual pair (sl(3,C), su(3)) are all a multiple of the Killing
form of sl(3,C), and thus all induce a symmetric structure. Consequently, there are
no non-symmetric partial dual naturally reductive structures.

his concludes the classiûcation of all 7- and 8-dimensional naturally reductive
spaces of Type I. We summarize the discussion from Subsection 3.1 and Section 3.2 as
the following result.

heorem 3.6 All 7- and 8-dimensional compact simply connected naturally reduc-
tive spaces of Type I are presented in Table 5 and Table 6, respectively. Furthermore,
the dimension of the parameter space of naturally reductive structures is indicated and
whether non-compact partial dual spaces exist or not.

4 Classification of Type II

By heorem 2.4 we can construct every inûnitesimal model of a naturally reductive
decomposition of Type II as a (k, B)-extension of a naturally reductive decomposition
of the form

g = h⊕m⊕L .a . Rn ,

where h⊕m is semi-simple and g is the transvection algebra of this naturally reduc-
tive decomposition. In this section we will construct all 7 and 8 dimensional irre-
ducible (k, B)-extensions of all naturally reductive decomposition of the above form
with h⊕m compact. We use the partial duality to obtain all other spaces; see Re-
mark 2.8. For every case we will mention if there exist partial dual spaces.

We start by ûnding all possible candidates for the canonical base spaces of irre-
ducible Type II spaces. From this list, we construct all possible irreducible (k, B)-
extensions. To guarantee that there are no duplicates in our list, we use Lemma 2.14
and Proposition 2.16. Note that to classify the naturally reductive spaces of Type II
in some dimension k, we need the classiûcation of all naturally reductive spaces of
Type I up to dimension k − 1.

Remark 4.1 Wewant all of our (k, B)-extensions to be irreducible. If there exists an
irreducible (k, B)-extension of a naturally reductive transvection algebra as in (2.9),
then Lemma 2.12 in particular implies s(hi ⊕ mi) ≠ {0} for every i = 1, . . . , p. In
particular, this excludes the possibility that hi ⊕ mi is an irreducible symmetric de-
composition that is not hermitian symmetric.

If k is abelian and k = k1, then by Lemma 2.14(i), we require that πm(Z(b1)) = {0}.
We need this condition in order for the canonical base space to be the base space we
start with. Note that πm(k1) = {0} if and only if k1 ⊂ Z(h). hus, for the (k, B)-
extension to be irreducible and satisfy Lemma 2.14(i) we require that Z(hi) ≠ {0} for
every i = 1, . . . , p.

4.1 Classification of Type II in Dimension 7

First, we argue that all possible canonical base spaces of irreducible naturally reduc-
tive decompositions of Type II with a compact semi-simple factor are given in (4.1).
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his is done by systematically excluding all other possibilities.

(4.1)

R6 , R4 , S2 ×R4 ,
CP2 ×R2 , S2 × S2 ×R2 , Sp(2)/(SU(2) × S1),
SO(5)/(SO(3) × SO(2)), SU(3)/(S1 × S1), SU(4)/S(U(1) ×U(3)),
CP2 × S2 , S2 × S2 × S2 .

Remark 4.2 Even though we write all above base spaces as globally homogeneous
spaces, we actually treat the family of naturally reductive decompositions to which
they belong, which can also contain non-regular decomposition, i.e., strictly locally
homogeneous spaces. he parameter values for which the locally naturally reductive
structures are regular have to be considered case by case.

he Euclidean factor cannot be R5, because then the Lie algebra k ⊂ so(5) is two-
dimensional and its linear action on R5 has a vector on which it acts trivially. From
Lemma 2.12, we see that such any (k, B)-extension results in a reducible naturally
reductive space.

Suppose that the Euclidean factor is R3, the Lie algebra k ⊂ so(3) has to be equal
to so(3) in order not to have a vector on which it acts trivially. his means that the
semi-simple factor of the base space has to be 1-dimensional, which is not possible.

Suppose that the Euclidean factor is R2. If the dimension of the semi-simple fac-
tor is two, then dim(s(g)) ≤ 2 and thus we cannot construct an irreducible (k, B)-
extension of dimension 7. If the dimension of the semi-simple factor is three, then
dim(k) = 2, and thus k is abelian. he semi-simple factor is either SU(2) or the sym-
metric space (SU(2)× SU(2))/SU(2)∆ . he last case is excluded by Remark 4.1. For
SU(2), the algebra k1 is 1-dimensional, and thus we see that Lemma 2.14(i) cannot
be satisûed. If the dimension of the semi-simple factor is four, then the semi-simple
factor has to be a hermitian symmetric space by [13]. here are only two compact
homogeneous spaces that allow a hermitian symmetric structure; these are S2 × S2

and CP2.
For all other 7-dimensional naturally reductive spaces of Type II, the base space

has only a semi-simple factor. It is easy to check that every 7-dimensional (k, B)-
extension of any naturally reductive space of Type I of dimension less than or equal
to 4 is reducible. his leaves us with the 5- and 6-dimensional cases. he only
compact spaces of Type I in dimension 5 with dim(s(g)) ≥ 2 are S2 × SU(2) and
(SU(2) × SU(2))/S1. However, we see for any 2-dimensional k ⊂ s(g) that condi-
tion (i) of Lemma 2.14 is not satisûed in both cases and thus they are excluded. he
nearly Kähler spaces G2/SU(3) and (SU(2) × SU(2) × SU(2))/SU(2)∆ can be ex-
cluded, because for both s(g) = {0} holds. Similarly ((SU(2) × SU(2))/SU(2)∆) ×
((SU(2) × SU(2))/SU(2)∆) satisfy s(g) = {0}. he spaces SU(2) × ((SU(2) ×
SU(2))/SU(2)∆ , and SU(2) × SU(2) can be excluded, because they do not satisfy
Lemma 2.14(i) for any k ⊂ s(g). All other 6-dimensional naturally reductive spaces of
Type I are possible.
A classiûcation of naturally reductive decompositions of Type II in dimension 7 is

readily obtained in the following steps. From the list of possible canonical base spaces
in (4.1) we have to make all irreducible (k, B)-extensions such that Lemma 2.14(i)
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and (ii) are satisûed. Lemma 2.12 tells us exactly when the constructed spaces are ir-
reducible. We also have to ûlter out all isomorphic spaces. Proposition 2.16 makes
this quite easy in all the occurring cases. How to obtain a globally homogeneous nat-
urally reductive space from these data is described in [16]. To make the classiûcation
complete we just need to check for every case if partial dual naturally reductive spaces
exist. We will not discuss every case, because some cases are very similar. We attempt
to cover all the diòerent ‘types’ of (k, B)-extensions in the selected cases below. he
ûnal result is formulated in heorem 4.5.

Remark 4.3 From Lemma 2.15, we know that k1 = {0} implies ker(R∣ad(h)+ψ(k)) =
{0}. hus, in particular, Lemma 2.14(i) and (ii) are automatically satisûed. herefore,
we will only check the conditions of Lemma 2.14 when k1 ≠ {0}.

Before we start, let us introduce some notation.

Notation 4.4 Below e i j ∈ so(n) is the matrix whose only non-zero entries are its
i j-th and ji-th entry, which are −1 and 1, respectively. Let BΛ2 be the metric on so(n)
be deûned by BΛ2(x , y) ∶= − 1

2 tr(xy). In the following, we use the contraction with
the metric on m to make the identiûcation Λ2m ≅ so(m); i.e., e i j is identiûed with
e i∧e j . he curvature tensor then becomes a symmetricmap R ∶ so(m) → so(m)with
respect to BΛ2 .

he representation φ ∶ k→ so(m⊕Rn), fromDeûnition 2.13, uniquely determines
the algebra k ⊂ s(g), and below we will always describe k through φ(k).

The canonical base space is R6. Consider the canonical base space R6. he Lie al-
gebra k is 1-dimensional. Let k be a unit vector in k. hen there is an orthonormal
basis e1 , . . . , e6 of R6 and constants c1 , c2 , c3 ∈ R such that

φ(k) = c1e12 + c2e34 + c3e56 ∈ so(6).

It is clear from Lemma 2.12 that the spaces are irreducible precisely when c1 , c2 , c3 ∈
R/{0}. herefore, from now on, we suppose that c1 , c2 , c3 ∈ R/{0}. he (k, B)-
extensions describe naturally reductive structures on the 7-dimensional Heisenberg
group, as explained in [16]. We get a 3-parameter family of naturally reductive struc-
tures on the 7-dimensional Heisenberg group. We can ensure that 0 < c1 ≤ c2 ≤ c3 by
choosing a diòerent basis ofR6. Whenwe do this, all the described naturally reductive
structures are non-isomorphic.

The canonical base space is R4. he Lie algebra k has to be su(2), and the repre-
sentation φ ∶ su(2) → so(4) has to be the irreducible 4-dimensional representation
in order for the (k, B)-extension to be irreducible. he (k, B)-extension will yield a
naturally reductive structure on the quaternionic Heisenberg group. he choice of
an invariant metric B on k gives us a 1-parameter family of naturally reductive struc-
tures. his family of naturally reductive structures is quite interesting and is investi-
gated in [2]. In [9], it was proved that the Heisenberg groups and the quaternionic-
Heisenberg groups are the only groups of type H for which the natural le� invariant
metric is naturally reductive.
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The canonical base space is S2 ×R4. Let h, e1 , e2 be an orthonormal basis of su(2)
with respect to −1

8λ21
Bsu(2). he transvection algebra of the base space is given by

g = su(2) ⊕L .a . R4 = h⊕m⊕L .a . R4 ,

where h ∶= span{h} and m ∶= span{e1 , e2}. he ad(g)-invariant non-degenerate
symmetric bilinear form on g is given by g = −1

8λ21
Bsu(2) ⊕ Beucl. We have s(g) =

span{h}⊕ so(4). Let k ∈ k be a unit vector. hen there is an orthonormal basis ofR4

such that
φ(k) = c1ad(h)∣m + c2e34 + c3e56 ,

with c1 , c2 , c3 ∈ R. All these spaces are irreducible precisely when c1 , c2 , c3 ∈ R/{0}
by Lemma 2.12. herefore, from now on, we suppose that c1 , c2 , c3 ∈ R/{0}. We have
k = k2 and from [16, Sec. 2.3] we know that the (k, B)-extension deûnes a naturally re-
ductive structure on S2×H5, whereH5 denotes the 5-dimensional Heisenberg group.
On this homogeneous space, we obtain a 4-parameter family of naturally reductive
structures, with c1 , c2 , c3 and λ1 > 0 as parameters. By an automorphism of g, we
can arrange that c2 ≥ c3 > 0 and c1 > 0. When we do this, none of these naturally
reductive structures are isomorphic. Note that we can replace the semi-simple factor
S2 = SU(2)/S1 by its non-compact dual symmetric space, SL(2,R)/S1.

The canonical base space is CP2×S2. Let h1 , h2 , h3 , h4 , e1 , e2 , e3 , e4 be an orthonor-
mal basis of su(3) with respect to −1/12λ2

1Bsu(3) such that h1 , h2 , h3 , h4 span the Lie
algebra of the isotropy group S(U(2) × U(1)) ⊂ SU(3) with h4 spanning the cen-
ter. Let h5 , e5 , e6 be an orthonormal basis of su(2) with respect to −1/8λ2

2Bsu(2).
he transvection algebra of the base space is given by g = su(3) ⊕ su(2) = h ⊕ m,
where h ∶= span{h1 , . . . , h5} and m ∶= span{e1 , . . . , e6}. he ad(g)-invariant non-
degenerate symmetric bilinear form is g = −1

12λ21
Bsu(3)⊕ −1

8λ22
Bsu(2). he algebra k⊂ s(g)

= span{h4 , h5} is 1-dimensional. Let k ∈ k be a unit vector. hen φ(k) = c1ad(h4)∣m+
c2ad(h5)∣m. he curvature of the (k, B)-extension is given by

R = −
5

∑
i=1
ad(h i)∣m ⊙ ad(h i)∣m + φ(k) ⊙ φ(k).

From Lemma 2.15, we have ker(R∣ad(h⊕k)) = ker(R∣ad(Z(h⊕k)) = ker(R∣ad(Z(h)). We
need to check when R∣ad(Z(h)) has trivial kernel. Note that the center of h is given by
span{h4 , h5}. Letω1 ,ω2 ∈ so(m)be such thatBΛ2(ω1 , h j)= δ4 j andBΛ2(ω2 , h j)= δ5 j
for j = 1, . . . , 5. hen

R(ω1) = (−1 + c21 )ad(h4)∣m + c1c2ad(h5)∣m ,
R(ω2) = c1c2ad(h4)∣m + (−1 + c22)ad(h5)∣m .

We see that R∣ad(Z(h)) has rank 2 precisely when c21 + c22 ≠ 1. In other words, the base
space is equal to the canonical base space if and only if c21 + c22 ≠ 1. By Lemma 2.12,
the (k, B)-extension is reducible precisely when either c1 = 0 or c2 = 0. Suppose
that the (k, B)-extension is irreducible. With an automorphism of g we can always
arrange that c1 > 0 and c2 > 0. Under this condition, none of the described (k, B)-
extensions are isomorphic. he (k, B)-extension is regular if and only if the con-
nected subgroup H0 with Lie subalgebra h0 = k⊥ ⊂ h is closed in SU(3) × SU(2);
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see [16]. We have h0 = span{c2h4 − c1h5}. We see that H0 is closed precisely when
q = c2λ1/

√
3c1λ2 ∈ Q. he (k, B)-extension describes a naturally reductive structure

on (SU(3)× SU(2))/(SU(2)× S1
q), where SU(2) is the standard subgroup of SU(3)

and S1
q is the subgroup with Lie subalgebra h0. To obtain all of these naturally reduc-

tive structures on the ûxed homogeneous space (SU(3) × SU(2))/(SU(2) × S1
q),

we start by deûning h0 ∶= Lie(S1
q) and k ∶= h⊥0 ⊂ h with respect to g. We have

a 1-parameter family of ad(k)-invariant metrics on k. Together with the parame-
ters λ1 , λ2, this gives us a 3-parameter family of naturally reductive structures on
(SU(3) × SU(2))/(SU(2) × S1

q). Note that we can replace SU(3)/S(U(2) × U(1))
by its non-compact dual SU(2, 1)/S(U(2) ×U(1)), and we can also replace S2 by its
non-compact dual.

4.2 Classification of Type II in Dimension 8

First we argue that all possible canonical base spaces of irreducible naturally reductive
decompositions of Type II with a compact semi-simple factor are given in (4.2). his
is done by systematically excluding all other possibilities. A point space is denoted
by {∗}.

(4.2)

R6 , R5 ,
R4 , S2 ×R4

SU(2) ×R4 , CP2 ×R2 ,
S2 × S2 ×R2 , (SU(2) × SU(2))/S1

q ×R2 ,
SU(3)/SU(2)st ×R2 , SU(2) × S2 ×R2 ,
SU(3)/S1

q , (SU(3) × SU(2))/(SU(2)st × S1
q),

(SU(3) × SU(2))/(SU(2)∆ × S1), SU(2)3/(S1
q1 × S1

q2),
S2 × (SU(2) × SU(2))/S1

q , SU(3)/(S1 × S1),
S2 × S2 × S2 , S2 ×CP2

{∗}.

Just as for the 7-dimensional case, Remark 4.2 also applies here.
he Euclidean factor cannot be R7, because then dim(k) = 1 and the linear action

of k on R7 has a vector on which it acts trivially, and by Lemma 2.12, any such (k, B)-
extension is reducible.

If the Euclidean factor isR6, then the semi-simple factor needs to have dimension
zero and dim(k) = 2.

If the Euclidean factor is R5 and the semi-simple factor is 2-dimensional, then
dim(k) = 1. Just as forR7, we see that the linear action of k onR5 has a vector onwhich
it acts trivially and by Lemma 2.12, any such (k, B)-extension is reducible. hus, also
for R5, the semi-simple factor has to be zero dimensional.

Suppose that the Euclidean factor is R4. he semi-simple factor can be 0-, 2-, or
3-dimensional. If it is 2-dimensional, then it is S2. If it is 3-dimensional, then it either
is the symmetric space (SU(2) × SU(2))/SU(2) or the Lie group SU(2). he ûrst
case is excluded by Remark 4.1.

If the Euclidean factor is R3, then k has to contain so(3) in order for the linear
representation of k on R3 not to have a vector on which it acts trivially. We see that

https://doi.org/10.4153/S0008414X19000300 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000300


1268 R. Storm

if the semi-simple factor is 0-dimensional, then we cannot construct an irreducible
8-dimensional (k, B)-extension. he only other possibility is that the semi-simple
factor is 2-dimensional. In this case, we immediately see by Lemma 2.12 that any such
(so(3), B)-extension is reducible.

Suppose that the Euclidean factor isR2. he semi-simple factor can either be 3-, 4-,
or 5-dimensional, because if the semi-simple factor is 2-dimensional, then dim(s(g))
≤ 2 and thuswe cannotmake an irreducible 8-dimensional (k, B)-extension from this.
Suppose that the semi-simple factor is 5-dimensional. We see that there are three
possibilities: (SU(2) × SU(2))/S1

q , SU(3)/SU(2), and SU(2) × S2. Suppose that the
semi-simple factor is 4-dimensional. If it is irreducible, then it can only be CP2. If
it is reducible, then it can only be S2 × S2. Suppose that the semi-simple factor is
3-dimensional. From Remark 4.1, we see that the semi-simple factor has to be equal
to SU(2) and s(g) = su(2) ⊕ so(2). he Lie algebra k ⊂ s(g) = su(2) ⊕ so(2) is a
3-dimensional subalgebra. Hence k = su(2) ⊂ s(g), and thus k acts trivially on R2.
herefore, by Lemma 2.12, any such (k, B)-extension is reducible.

Only base spaces with no Euclidean part remain. Now we discuss the case for
which the base space has an irreducible 3-dimensional factor. here are only two
compact irreducible 3-dimensional naturally reductive spaces of Type I: SU(2) and
the symmetric space (SU(2) × SU(2))/SU(2). he symmetric space is excluded by
Remark 4.1. If we have SU(2) as a 3-dimensional factor, then k has to be at least
3-dimensional; see Lemma 2.14(i). he only possibility for a base space is SU(2)× S2,
but just as for the case SU(2) ×R2, any 8-dimensional (k, B)-extension of this space
is reducible. We conclude that if there is no Euclidean factor, then the semi-simple
factor can not contain a 3-dimensional factor.

If the base space is 7-dimensional, then dim(k) = 1, and thus k is abelian. By Re-
mark 4.1 we require that Z(hi) ≠ {0} for every i = 1, . . . , p. We noted above that
there cannot be a 3-dimensional factor; hence, the 7-dimensional space either is ir-
reducible or it is a product of a 5-dimensional irreducible space and a 2-dimensional
space. Consequently, all possible spaces are

SU(3)/S1
q , (SU(3) × SU(2))/(SU(2) × S1

q),
(SU(3) × SU(2))/(SU(2)∆ × S1), SU(2)3/(S1

q1 × S1
q2),

(SU(2) × SU(2))/S1
q × S2 .

For a 6-dimensional base space, k is abelian, and thus by Remark 4.1, we need that
Z(hi) ≠ {0} for every i = 1, . . . , p. here are no 3-dimensional factors by the above
argument. We can easily see that all possibilities are SU(3)/(S1 × S1), CP2 × S2, and
S2 × S2 × S2.

We check that every 5-dimensional irreducible naturally reductive space of
Type I satisûes dim(s(g)) ≤ 2 and thus we cannotmake an 8-dimensional irreducible
(k, B)-extension from this. Every reducible 5-dimensional space of Type I contains a
3-dimensional factor and thus can be excluded by the above discussion. Similarly for
every 4-dimensional space of Type I we have dim(s(g)) ≤ 2, and thus we cannot
make an irreducible 8-dimensional (k, B)-extension of this.

he Lie algebra su(3) has dimension 8 and is a compact simple Lie algebra. here-
fore, a point space is also a possible base space.
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We proceed as in the 7-dimensional case. Also we do not discuss every case sepa-
rately, because of the large similarities between them.

The canonical base space is R5. he Lie algebra k has to be 3-dimensional and in
order to have a 5-dimensional representation without vectors on which k acts trivially.
he only possibility is k = su(2), and the representation of k is the 5-dimensional
irreducible representation of su(2). Let k1 , k2 , k3 be an orthonormal basis of su(2)
with respect to B = − 1

2λ2 Bsu(2). We choose a basis such that

φ(k1) = λ(
√

3e13 − e24 − e35), φ(k2) = λ(−
√

3e12 + e34 − e25),
φ(k3) = λ(e23 + 2e45).

he (k, B)-extension deûnes a naturally reductive structure on an 8-dimensional
2-step nilpotent Lie group, as described in [16, Sec. 2.2]. On this homogeneous
space, we obtain a 1-parameter family of naturally reductive structures, with λ > 0 as
parameter.

The canonical base space is (SU(2)× SU(2))/S1
α ×R2. heLie algebra k is 1-dimen-

sional. Let k ∈ k be a unit vector. To keep the notation concise, we consider su(2) ≅
sp(1) ⊂ gl(1,H). We denote by i , j, k the imaginary quaternions, i.e., i2 = j2 = k2 =
i jk = −1. he non-degenerate symmetric bilinear form on sp(1) ⊕ sp(1) is given by
− 1
8λ21
Bsp(1) ⊕ − 1

8λ22
Bsp(1), where Bsp(1) denotes the Killing form of sp(1). Let

e1 ∶= (λ1 j, 0), e3 ∶= (0, λ2 j), e5 ∶= (α2λ2
1 + λ2

2)−1/2 (λ2
1 αi ,−λ2

2 i) ,

e2 ∶= (λ1k, 0), e4 ∶= (0, λ2k), h ∶= λ1λ2√
α2λ2

1 + λ2
2

(i , αi),

where e1 , . . . , e5 is an orthonormal basis of m ∶= h⊥ with respect to the metric above
and α ∈ R/{0}. Let {e6 , e7} be an orthonormal basis of R2. For k ∈ k a unit vector,
we have

φ(k) = c1ad(h)∣m + c2ad(e5)∣m + c3e67 ,
where e6 , e7 is an orthonormal basis ofR2. he (k, B)-extension is reducible precisely
when c3 = 0 or c1 = c2 = 0. If c1 ≠ 0, then the (k, B)-extension deûnes a naturally
reductive structure on

(SU(2) × SU(2) ×H3)/Rα ,
where the image of Lie(Rα) in su(2) ⊕ su(2) is spanned by h and in Lie(H3) by the
center; see [16, Sec. 2.3] for more details. Using an automorphism of gwe can arrange
that c1 , c2 , c3 ≥ 0. Under these extra assumptions all the naturally reductive structures
are non-isomorphic. his (k, B)-extension is regular for all values of α even though
the base space is only regular when α ∈ Q. For every α ∈ R/{0}, we obtain in this way
a 5-parameter family of naturally reductive structures with λ1 , λ2 > 0 and c1 , c2 , c3 as
parameters.

If c1 = 0, then the naturally reductive structure is only regular when α = q ∈ Q. In
this case, the (k, B)-extension deûnes a naturally reductive structure on

(SU(2) × SU(2))/S1
q ×H3 .
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On this homogeneous space we obtain a 4-parameter family of naturally reductive
structures, with λ1 , λ2 > 0 and c2 , c3 as parameters.
For both spaces, we can replace one S2 factor by its symmetric dual SL(2,R)/S1.

The canonical base space is SU(3)/(S1 × S1). We pick the following orthonormal
basis with respect to g = −1

12λ2 Bsu(3) of h ∶= Lie(S1 × S1):

h1 ∶=
⎛
⎜
⎝

iλ 0 0
0 −iλ 0
0 0 0

⎞
⎟
⎠

and h2 ∶=
⎛
⎜⎜
⎝

−i λ
√

3
0 0

0 −i λ
√

3
0

0 0 2i λ
√

3

⎞
⎟⎟
⎠
.

In this case, we have φ(k) = ad(h)∣m. he only freedom is in the choice of a metric B
on k. For x1 , x2 , x3 ∈ R, we deûne a quadratic form on Z(u(3)) by

⎛
⎜
⎝

ia 0 0
0 ib 0
0 0 ic

⎞
⎟
⎠
z→ x1a2 + x2b2 + x3c2

λ2 .

Restricting this to h gives us the following symmetric bilinear form in the basis
(h1 , h2):

Bx1 ,x2 ,x3 ∶=
⎛
⎝

x1 + x2
1
√

3
(−x1 + x2)

1
√

3
(−x1 + x2) 1

3 (x1 + x2 + 4x3)
⎞
⎠
.

his is positive deûnite if and only if its trace and determinant are positive; i.e.,
3
4
tr(Bx1 ,x2 ,x3) = x1 + x2 + x3 > 0,

3
4
det(Bx1 ,x2 ,x3) = x1x2 + x2x3 + x1x3 > 0.

his parametrizes exactly all metric tensors on h. From Proposition 2.16, we know
that two of thesemetrics induce an isomorphic naturally reductive structure precisely
when they are conjugate by an automorphism of su(3), which preserves h, i.e., an
element of the normalizer Nsu(3)(h) of h in su(3). Two metrics are conjugate by
an element of Nsu(3)(h) if and only if they are conjugate by an element of the Weyl
group of su(3). he Weyl group of su(3) is isomorphic to S3, and the action of the
Weyl group on h is given by permuting the diagonal entries. herefore, the induced
Weyl group action on the metrics Bx1 ,x2 ,x3 simply permutes the indices. We see that
under the conditions x3 ≥ x2 ≥ x1 every S3-orbit of these metrics is parametrized
exactly ones. We still need to know when Lemma 2.14(ii) is satisûed. he curvature
of the (k, B)-extension is given by

R = −ad(h1)∣m ⊙ ad(h1)∣m − ad(h2)∣m ⊙ ad(h2)∣m

+
2

∑
i , j=1

(B−1)i jad(h i)∣m ⊙ ad(h j)∣m .

In the basis (h1 , h2), this becomes

R = 6λ2 (−1 0
0 −1) + 6λ2 det(B)−1 (

1
3 (x1 + x2 + 4x3) 1

√

3
(x1 − x2)

1
√

3
(x1 − x2) x1 + x2

) .
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his has full rank if and only if x1x2 + x2x3 + x1x3 − x1 − x2 − x3 + 3
4 ≠ 0. Under

this condition the canonical base space is equal to SU(3)/(S1 × S1) by Lemma 2.14.
he (k, B)-extension is always regular and irreducible. Under the above conditions,
we obtain a 4-parameter family of naturally reductive structures on SU(3), with λ > 0
and x1 , x2 , x3 as parameters. None of these structures are isomorphic under the con-
dition x3 ≥ x2 ≥ x1.

The canonical base space is {∗}. We write g = {0} for the 0-dimensional Lie alge-
bra. Let k = su(3) and let B = −1

λ2 Bsu(3). Let x1 , . . . , x8 be an orthonormal basis of
su(3) with respect to B. he torsion and curvature are given by

T(x , y, z) = 2B([x , y], z) and R =
8

∑
i=1
ad(x i) ⊙ ad(x i).

he inûnitesimal model is always irreducible and regular and deûnes a 1-parameter
family of naturally reductive structures on R8 with λ > 0 as parameter; see [16].

We summarize the classiûcation of all 7- and 8-dimensional naturally reductive
spaces of Type II in the following theorem.

heorem 4.5 All 7- and 8-dimensional simply connected naturally reductive spaces
of Type II for which the semi-simple factor of the canonical base space is compact are
presented inTables 7 and 8, respectively. Furthermore, for every space, the canonical base
space is listed, the dimension of the parameter space of naturally reductive structures of
Type II and whether partial dual spaces exist or not.

Notation 4.6 In Tables 7 and 8, Hn denotes the n-dimensional Heisenberg group
and QH7 denotes the 7-dimensional quaternionic Heisenberg group. he subscripts
q i ∈ Q and α ∈ R denote parameters that determine the subgroup; see Section 3 for
the details. Lastly, for φ ∶ k → so(n), a Lie algebra representation Nil(φ) denotes a
naturally reductive structure on the 2-step nilpotent Lie group as described in [8] and
[16, Sec. 2.2].

A Tables

Tables 5 and 6 are referred to in heorem 3.6, and they contain all compact simply
connected naturally reductive spaces of Type I in dimensions 7 and 8. In the ûrst col-
umn Lie(G) is the transvection algebra of the naturally reductive space. he second
column indicates if there exist non-compact partial dual spaces. he third column
indicates the number of parameters of naturally reductive structures of Type I there
exist on the space.

Tables 7 and 8 are referred to in heorem 4.5. hey contain all simply connected
naturally reductive spaces of Type II for which the semi-simple factor of the canonical
base space is compact. he second column gives the canonical base space and the
third column indicates if partial dual spaces exist. In the fourth column, the number
of parameters of naturally reductive structures of Type II are given.
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G/H dual # param.

SU(3)/S1
q 7 1

SU(2)3/(S1
q1 × S1

q2) 3 3
SO(5)/SO(3)ir 7 1
SO(5)/SO(3)st 7 1
Sp(2)/Sp(1)st 7 1

(SU(3) × SU(2))/(SU(2) × S1
q) 3 2

(SU(3) × SU(2))/(SU(2)∆ × S1) 3 2
(Spin(5) × SU(2))/(SU(2)∆ × SU(2)) 3 2

SU(4)/SU(3) 7 1
Spin(7)/G2 7 1

Table 5: 7-dimensional naturally reductive spaces of Type I.

G/H dual # param.

SU(3) 7 1
SU(2)3/S1

q1 ,q2 3 3
SO(5)/(SO(2) × SO(2)) 7 1

(SU(3) × SU(2))/SU(2)st× id 7 2
(SU(3) × SU(2))/SU(2)ir× id 3 2
(SU(3) × SU(3))/SU(3)∆ 3 2

Table 6: 8-dimensional naturally reductive spaces of Type I.

G/H canonical base space dual # param.

H7 R6 7 3
QH7 R4 7 1

S2 ×H5 S2 ×R4 3 4
S2 × S2 ×H3 S2 × S2 ×R2 3 5
CP2 ×H3 CP2 ×R2 3 3

Sp(2)/Sp(1)st Sp(2)/(SU(2) × S1) 7 2
SU(3)/S1

q SU(3)/(S1 × S1) 7 2
SO(5)/SO(3)st SO(5)/(SO(3) × SO(2)) 3 2
SU(4)/SU(3) SU(4)/S(U(1) ×U(3)) 3 2

(SU(3) × SU(2))/(SU(2) × S1
q) CP2 × S2 3 3

SU(2)3/(S1
q1 × S1

q2) S2 × S2 × S2 3 4

Table 7: 7-dimensional naturally reductive spaces of Type II.
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G/H canonical base space dual # param.

Nil(R2 → so(6)) R6 7 5
Nil(φir ∶ so(3) → so(5)) R5 7 1

Nil(u(2) → so(4)) R4 7 2
(SU(2) × Nil(R2 → so(4)))/R S2 ×R4 3 6

SU(2) ×H5 S2 ×R4 3 5
SU(2) ×H5 SU(2) ×R4 7 4

SU(3)/SU(2)st ×H3 CP2 ×R2 3 4
(SU(2) × SU(2) ×H3)/Rα S2 × S2 ×R2 3 6
(SU(2) × SU(2))/S1

q ×H3 S2 × S2 ×R2 3 5
(SU(2) × SU(2) ×H3)/Rα (SU(2) × SU(2))/S1

α ×R2 3 5
(SU(2) × SU(2))/S1

q ×H3 (SU(2) × SU(2))/S1
q ×R2 3 4

SU(3)/SU(2)st ×H3 SU(3)/SU(2)st ×R2 7 3
SU(2) × S2 ×H3 SU(2) × S2 ×R2 3 5

SU(3) SU(3)/S1
q 7 3

SU(2)3/S1
q3 SU(2)3/(S1

q1 × S1
q2) 3 4

SU(2)3/S1
q1 ,q2 (SU(2) × SU(2))/S1

q × S2 3 4
(SU(3) × SU(2))/SU(2)st× id (SU(3) × SU(2))/(SU(2)∆ × S1) 3 3
(SU(3) × SU(2))/SU(2)st (SU(3) × SU(2))/(SU(2)st × S1

q) 3 3
SU(3) SU(3)/(S1 × S1) 7 4

SU(3)/SU(2)st × SU(2) CP2 × S2 3 5
SU(2)3/S1

q1 ,q2 S2 × S2 × S2 3 6
R8 {∗} 7 1

Table 8: 8-dimensional naturally reductive spaces of Type II.
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