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MULTIVALENT AND MEROMORPHIC FUNCTIONS 
OF BOUNDED BOUNDARY ROTATION 

RONALD J. LEACH 

1. The class Vk(p). We generalize the class Vk of analytic functions of 
bounded boundary rotation [8] by allowing critical points in the unit disc U. 

Definition. Let f(z) = aqz
q + . . . (q ^ 1) be analytic in U. Then f(z) 

belongs to the class Vk(p) if for r sufficiently close to 1, 

and 

(1.2) limsup r\Re\l + r^l^fp] 
r_»i- « /o I I / (re ) ) 

We note that (1.1) implies that / has precisely p — 1 critical points in U. 
Also, if /(*) e Vk(p), then Re {1 + zf"'(z)/f(z)} > 0 for r0 < \z\ < 1 if and 
only if k = 2. Hence Vi(p) — C(p), where C(p) is the class of ^-valent convex 
functions defined by Goodman [4]. 

If p = 1, then except for normalization, Vk(p) reduces to the class Vk. It 
is wTell-known that the class Vk(l) consists only of univalent functions if 
2 ^ k ^ 4. To determine the largest value of k such that each function in 
Vk(p) is at most ^-valent, we will need the following 

LEMMA 1.1. Letf(z) 6 Vk{p). Then 

dd S pkir. 

r-»l~ J 0 I V 
dd exists. 

Proof. Let f(z) have non-zero critical points ai, . . . ap-Q (q ^ 1), counting 
multiplicities, and let r0 = max \a/\. Then for r0 < \z\ < 1, 

is subharmonic. Consequently for p < |z| < 1, 

p | R i I + r w > } 
J o I I f (re ) ) 

dd 

is a convex function of log r and hence the limit exists. 

THEOREM 1.2. Let f(z) G Ffc(£). Then f(z) is at most max [p, {pk/2 — 1}] 
valent, where {pk/2 — 1} denotes the smallest integer greater than pk/2 — 1. 
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MULTIVALENT FUNCTIONS 187 

Proof. By Lemma 1.1, given e > 0 we may choose r0 < 1 so that if r0 < r < 1, 

d$ < 2 ri4+w}i*<»(s+-)' 
Since / (s) is analytic for |g| ^ r, it follows by a result due to Umezawa [17] 
t h a t / is at most max [p, {pk/2 — 1}] valent in \z\ ^ r. The result follows by 
letting r —» 1. 

iVtf/e. This was proved by Brannan [1] in the case p = 1. 

COROLLARY 1.3. Le/ /(s) G V(p) with k < 2 + 2/£. 77w?» / w at most 
p-valent in U. 

Our next goal is to obtain representation formulas for Vk(p). We will need 
to use the functions 

(1.3) *(*,*,) = 
(g - s,) (1 - g>) 

which have been employed by Hummel [6] and others. 

LEMMA 1.4. Letf(z) = aqz
Q + . . . (q è 1) belong to Vk(p) and have non-zero 

critical points zi, . . . zp-qi counting multiplicities. Let 

«(*)= P f f ^(M/r'/'(s)&. 
•/ o j= i 

JTzeft g(g) /zas £ — 1 critical points all at z — 0 aw<i g(g) G T/
A;(^). 

Proof. It follows from the definition of g(g) that 

g (*) / (s) pi \Z - Zj 1 - g,g/ 

Let € > 0 be given. Since for \z\ = 1 

Re{-^- - 7^%-} = 0, 
\Z — Zj 1 — ZjZ) 

there is an ro < 1 such that if ro < r < 1, then 

r|R.{i+23c6^}LS i f |R.{I 
Jo I l g (re ) ) I «/o I I 

Consequently 

hm sup I Rei H ?, \ e . J ( 
r-»i- •/ o I l g (re ) ) 

Since 6 > 0 is arbitrary and g has precisely p — 1 critical points, g (g) £Vk(p). 

THEOREM 1.5. Let f(z) = aqz
a + . . . G F*(£) a»d suppose f(z) has non-zero 

critical points z\> . . . gp_?, counting multiplicities. Then: 

re f f"(reie)\ 
\reid) ] fire") 

dd + e. 

dO ^ pkw + e. 
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188 RONALD J. LEACH 

(i) there is a function ix(t) of bounded variation on [0, 2ir] with 

f*2ir f*2ir 

I dfi(t) = 2pand I \dn(t)\ ^ pk 
«/ o J o 

and a constant A such that 

P-Q r /*27r H 

(1.4) f'(z) = Az*-1 J ! Hz, zj) exp [ - J^ log (1 - «-")<*/*(*) J : 

(ii) //^ere is a function h(z) G I7* awo7 a constant A such that 

(1.5) /'(^) = ^ - 1 î ï *(*,*,)[*'(*)]'; 

(iii) £/^re are /zew normalized univalent starlike functions s\(z) and s<z(z) and 
a constant A such that 

(i.6) / ' ( . ) - ^ n Hz,zt)\*f-\ |_, J 
Proof. An application of Plessner's Theorem [3, p. 38] to the function g(z) 

related to/(z) as in Lemma 1.4 yields (1.4), and (1.6) follows by decomposing 
ix{t) into the difference of two increasing functions. 

The following distortion theorem is an easy consequence of Theorem 1.5 
and thus we omit the proof. Hummel [6] has similar results for the class S(p). 

THEOREM 1.6. Let f(z) = aqz
q + . . . G Vk(p) have non-zero critical points 

Zi, . . . zp-Q, counting multiplicities. Let R\ = max |z;-|, R^ = min \ZJ\. Then 
withz = reid, 

/ I _ r\h>&-2) I j P-Q 

l/'OOl è ! , Im^-Wf-/-1 II (r - W)d - N0,*i < r < 1 (L ~r r) U p ; I ^=1 

l/'(*)| ^ (T+7p'^n^ir'"1 H ( N ~ ")(1 " N r ) ' ° < r < R* 
THEOREM 1.7. Let f(z) = aqz

q + . . . G ^ ( / O Aaue P — q non-zero critical 
points zi, . . . 2P_2, counting multiplicities. The f{z) is q-valently convex for \z\ < 
rq, where rq is the least positive root of 

s[(>+-i)fe)+(>~i)(**)] 
£i ( W - r ) d - Wr) U-

https://doi.org/10.4153/CJM-1975-024-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-024-9


MULTIVALENT FUNCTIONS 189 

Proof. Let /z(/) be the function in (1.4) such that 

p-q r Civ "1 

/ ' ( * ) = 2 « / _ 1 n *(*,*,) exp [ - J o log (1 - «-")<*/•(*) J • 

Then we compute 

R« I1 + 'i'Tr) - R<= 2 î j ^ f + Re f ' i J ^ , « ) . 
( / (z) ) pi f(z,zj) Jo l-ze 

Hummel [6] has obtained the bonds 

n 7\ Dp**'(*>**) > -\ZJ\ C1 - r2) 
U ' / ; K e *(*,*,) = ( | s , | - r ) ( l - \zj\r)m 

Since /*(£) has positive variation <p(l + ft/2) and negative variation 
<p(k/2 — 1) it follows that 

The result now follows by combining (1.7) and (1.8). 

The following corollary is immediate. 

COROLLARY 1.8. Let f(z) = avz
v + . . . G Vk(p). Then f(z) is p-valently 

convex for \z\ < |(ft — (ft2 — 4)1/2) and this result is sharp. 

2. Coefficient Bounds for VK(p). Goodman [4] has conjectured that if 
f(z) = 2n=i a,nz

n is at most ^-valent in U, then ior n ^ p + 1, 

(2 i) \a\< Y 2j(»+f>)! ,. , 
(2.1) \an\ ^ ^ (w2 _f)(p + j ) [ { p _ m n _p_l){ Kl -

The conjecture (2.1) has been verified for certain subclasses of ^-valent 
functions. Uf(z) belongs to the class K(p) of ^-valent close-to-convex functions 
defined by Livingston [9], then (2.1) is known for n = p + 1 with no restriction 
on ai, . . . av [9] and for n ^ p + 1, provided a± = . . . = a^_2 = 0 [11]. 

We recall that if g(z) = z + Z~=2 &•*" £ 7», then \b2\ ^ ft/2, \bz\ S (ft2 + 
2)/6 [8] and |64| ^ (ft3 + 8*)/4! [15], with equality if 

^i[(^r->] 
We will first consider functions f(z) 6 F*(/>) with all critical points at the 

origin. 
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190 RONALD J. LEACH 

THEOREM 2.1. Letf(z) = a^v + . . . € Vk(p). Then 

(p + l)\ap+1\ ^p2k\aP\ 

(p + 2)\aP+2\^ (i-f + p)p\ap\ 

(P + 3)|ap+3 | g & (*>V + &p + 2)10,1. 

.4// of these results are sharp, with equality for F'(z) = p ap[gf(z)]p
1 where 

*«-fer-']-
Proof. Let g (s) = s + XI? bnz

n be the function in Vk related t o / by Theorem 
1.5. We compute 

^ = / - 1 + 2/tf** + [3^3 + 2p(p - 1)6 2
2] /+ 1 

+ \w>i + P<P- D»*. + M-M-V &2
3] ^ +... 

Comparing coefficients we have 

(p + 1) ap+i = 2p2b2ap 

(p + 2) ap+2 = [3^&3 + 2p{p - l)b2
2] ap, 

(p + 3) ap+z = [4^4 + 6£(£ - 1)&2&3 + (4/3)£(£ - l ) (p - 2)62
3]ap 

and the result follows from the estimates for |&2|, \bz\, and \b±\ after a short 
calculation. 

We remark that if k = 2, we get the known results of Goodman [4] for 
^-valent convex functions; namely, 

(p + 1 )K + 1 | ^ 2p*\ap\ 

(p + 2)\ap+i\ g (2p + l)p*\ap\ 

(p + 3 )K + 3 | ^ f(2/) + l)(p + l)p\ap\. 

We omit the proof of the next lemma whose proof is similar to [7, Theorem 
3.2] and [8, p. 7-10]. 

LEMMA 2.2. Let g(z) = z + b2z
2 + . . . G Vk(p). Then for any integer 

P è 1, \Spb3 - 2p(p - l)b2
2\ ^ p2k2/2 - p, with equality for 

* < * > = i :(^r-i]. 
THEOREM 2.3. Le*/(z) = a„_12

p-1 + . . . € 7*0). r*ew 

(p + 1)K+1 | ^ ^*lo, | + (p - l ) ^ ^ 2 ^ - /» + 1). 
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Proof. If dp-i = 0, this reduces to Theorem 2.1 and our result is sharp in 
this case. We then assume that <v_i ^ 0 and hence that f(z) has a non-zero 
critical point z0, since each function in Vk(p) has precisely p — 1 critical 
points. Thus there is a function g(z) = Yln=i bnz

n £ Vk(l) such that 

/ '(*) - pavz*~* (* - *0)(1 ~ 2o z) [g'(*)]*. 

We may assume without loss of generality that b\ = 1. Let [g' (z)]p — 
S = o cmzm. Then we have c0 = 1, C\ = 2pb2, c2 = Spbs + (l)4:b2

2. Now 

OO CO 

X) ncinZ71'1 = ^ [—£oCOT + (1 + |^o|2)^+i — z0cm+2]zm+p 

+ [(1 + |zo|2) - ^ j r 1 - Zo*p-2 

and thus comparing coefficients 

(p — l)ap-i = —Zo 

pap = (1 + |s0|
2) — zoCi 

(p + l)ap+1 = —So + (1 + \ZQ\2)CI — z0c2. 

Hence 

(p + l)ap+1 = —z0 + ci[(l + \z0\
2) — z0d] + Zod2 — z0c2 

= Cip av + ( — Zo)[z0/zo + c2 — Ci2]. 
Consequently 

(p + l)|a,+1| ^ \d\p\ap\ + (p - 1)K_!|[1 + \c2 - Cl
2|] 

= 2p2\b2\ap\ + (p - l)|a„_i|[l + |3̂ &3 - 2£(£ + 1)62*|] 

and the result follows by Lemma 2.2, since \b2\ ^ k/2. 

We note that if k = 2 + 2/p, Theorem 2.3 yields the result 

(p + l)\ap+1\ ^ 2p(p + l) |a, | + (p- l)|a,_i|[2(£ + l ) 2 - p + 1] 

which is certainly not sharp since (2.1) is known to be sharp for />-valently 
close-to-convex functions with n = p + 1. In order to obtain a sharp coefficient 
bound we restrict our attention to function f{z) — ap-\z

v~l + . . . G Vk(p) 
with real coefficients. The following lemma will be needed. 

LEMMA 2.4. Let g(z) = z + b2z
2 + . . . Ç Vk have real coefficients. Then if 

p ^ 2, |1 + 3£fr3 - 2p(p + 1)62
2| ^ p2k2/2 - p - 1, and / t e r««ft w ^ar/?. 

Proof. By Lemma 2.2, |3£fc3 - 2p(p + l)b2
2\ ^ £2&2/2 - p, with equality 

for 

for which 3£&3 - 2£(£ + 1)62
2 = p - p2k2/2. Hence 

1 + Sph -2p(p + l)b2
2 ^ 1 + p - p2k2/2. 
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192 RONALD J. LEACH 

It remains to show that 

1 + 3pb* - 2p(p + l)b2
2 ^ p2k2/2 - p - 1 . 

Suppose then that Spbz - 2p(p + l)b2
2 > p2k2/2 - p - 2. Since g 6 Vk, 

there is a function n{t) of bounded variation on [0, 2TT] with 

/*2TT r*2r 

dp(f) = 2 and \dn(t)\ g 
J 0 J 0 

such that 

g'(z) = [fj\og(l-ze-u)dti(t)j. 

A brief calculation shows that 

Sph - 2p(p + 1)62
2 = | [ J * éT2lttM(*) - £l( J ] " ^ " % ( 0 ) j 

We have that 

• »2T 

/ 
*/ 0 

e ld{j.{t) = 2b2 is real, 
o 

and hence 

* 2 T 2 . /»2TT 

J o 2 p~2<2Jo '~ ^ ( / ) = 

or, 

(2.2) p2k2/2 - p(l + k/2) - 2 < 0. 

The left hand side of (2.2) is an increasing function of pt (p è 2) for any fixed 
value of k ^ 2. 

When p = 2, we have 

2k2 - 2(1 + k/2) - 2 ^ 0 , 

which is impossible for any k > 2. Thus 

1 + 3ph - 2£(p + l)b2
2 ^ p2k2/2 - p - 1 

and the result follows. 

THEOREM 2.5. Le/ / (s) = ap-iz
p~l + . . . G Vk(p)(p > 2) Aaz/e raz/ a?e$-

cients. Then 

(p + l)\aP+1\ ^ p2k\ap\ + (p- l)\ap^\(p2k2/2 - p - 1) 

awd Z/itfre is a function in Vk(p) for which equality holds. 

Proof. Uf(z) has real coefficients, then/(s) maps î /onto a domain symmetric 
with respect to the real axis. Since f(z) has precisely p — 1 critical points, / 
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MULTIVALENT FUNCTIONS 193 

has precisely one non-zero critical point z0 which must be real since complex 
roots of the equation/'(z) = 0 occur in conjugate pairs. Using the notation of 
Theorem 2.3 

(2.3) (p + l)ap+i = papd+ (p - l)ap-i[z0/z0 + c2 - Ci2] 

= 2pb2 ap+ (p - l)op_i[l + Spbz -2p(p + l)b2
2]. 

Since z0 and the an are real, the cn and hence the bn are real. By Lemma 2.4, 
since the bn are real, 

|1 + 3pbz - 2p(p + l)b2
2\ ^ p2k2/2 - p - 1. 

Since g(z) Ç Vk, \b2\ ^ k/2 and the result follows. 

To see that this result is sharp we consider 

/'GO =z"-Hz-zo)(i-zoz)[g'(z)y! 

where 

f «=i ( j^)-"-1]a n [ ,o< a <M-(^^ig 
For this function it follows from (2.3) that 

(p + l)ap+1 = £2& ap + (-*o)[l +P ~ P2k2/2] 

and hence since av > 0 and <v_i < 0, 

fo + l) |a*.i | = p2k\ap\ + (p - l)\ap^\(p2k2/2 - p - 1). 

We note that if & = 2 + 2/£, Theorem 2.5 reduces to a special case of the 
Goodman conjecture, which is known to be sharp, if correct. 

3. Asymptotic coefficient estimates for Vk(p). 

THEOREM 3.1. Letfiz) G Vk(p). Then 

a = lim (1 - rt{k+2) M(r,f') 
r-»l 

exists. If a > 0, there is a unique 0O so that 

a = lim(l-r)hpik+2)\f'(reid°)\. 
r-»l 

Proof. The result is known if p = 1 [12] and hence we may suppose p ^ 2. 
I f / ha s non-zero critical points ai, . . . ap-q, then by Theorem 1.5 there are two 
univalent starlike functions Si(z) and s2(z) such that 

Since z/s2{z) and ^(s, a^) are bounded near |z| = 1, it follows from [14] that 
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a = 0 unless Si(z) = s / ( l — eie°z)2. T h u s we may suppose t h a t 

limsup (1 - r)hiw) M(rJ') > 0 

and t h a t Si(z) is of the form z / ( l — eie°z)2. We m a y assume wi thout loss of 
general i ty t h a t 0O = 0. 

Choose a sequence rn—>l and a point zre on |s| = rn wi th 

l im(l - r B ) i î ) t t + 2 ) | / ' fe ) |>0. 

W e will show t h a t the points zn eventual ly lie interior to a fixed stoltz angle with 
ver tex a t z = 1. Suppose not . T h e n given M > 0, there is a subsequence zs 

such t h a t |1 - Zj\ > M {I - r , ) . If we set L = max \R(ei9)\, where 2?(z) = 
zp-lYl\f/(z1 a,j), then for j sufficiently large we have 

2L 2h(k~ !*(**)! 
1 1P(*-2) 

* 2 ( * J ) | 

= jVf^+ 2 ) ( l - r , ) * * < * + 2 ) | / ' ( s , ) | 

^(^) 

£p(fc-2) 

which is impossible since M" > 0 was arbitrary and 

l i m ( l - r ^ t t + 2 ) | / ' ( ^ ) | > 0 . 

Since 52(z) is starlike in [7, limr_>i r/s2(r) exists ([14] and the fact that 

rfr dog |/(«"|) = R e ^ > 0 ) 

and we have 

lim —T—r = lim —y-r . 

I t follows t h a t for any sequence zn such t h a t 

lim (1 - rn)
ijKk+2) \f'(zn)\> 0, 

W->oo 

l im|2?(r„) | 
^fo) 

= l im| i?«) | 
ip(fc-2) 

è lim ( 4 ^ ) 

S2(r„)l 
|pU+2) 

= lim (1 - rn) 
§P(*+2) 

l*0OI 

/'0OI-

Zn 

U2(0 

ya-2) 
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Since | / ' ( r ) | ^ M(r,f)f we have 

Hm (1 - rn)^
k+2) \f'(rn)\ = lim (1 - rn)^

k+2) M(rn,f) 
n->oo ra->oo 

and the result follows. 

We note that 

n *(*,«,) . 
THEOREM 3.2. Letf(z) = TA anz

n € F*(/>). Then 

Sw^^ = r ( ^ + 2))' 
where a is the constant of Theorem 3.1. 

Proof. The proof in the case a > 0 follows by using the major-minor arc 
technique of Hayman [5, Theorem 5.7] as modified by Noonan [12]. 

Let us now consider the case a = 0. Given e > 0, we may choose r0 < 1 so 
that if ro < r < 1, / has no critical points and 

a ^ 22 max 
Ul=i 

fM f (re ) 
d0 < (pk + e)7r. 

We may assume p ^ 2 since the result is known for £ = 1. An argument 
similar to that in [2] shows that 

(3.1) f r \ f'(re")\d6 < 23/2 [2(pk + a) + l ] r f ( r , / ) . 

Since M(r,f) = o(l - r)-*^+2», 

(3.2) Af(r,/) = o(l - r)-***+»+». 

The result follows by using (3.1), (3.2) and the inequality 

^ J r=l-l/n 

4. The class Ffc*(/?). We say that a function f(z) meromorphic in U belongs 
to the class Vk*(p) if :f'(z) has a finite number of zeros and poles in £/, there 
is a p < 1 so that if p < r < 1, 

(4.1) 

and 

/>{ i+^spU--*, 

(4.2) lim sup P | R e { l + ^ Ç t e ^ [ 
r^i- Jo I I J (re ) ) 

dd ^ £&TT. 
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Since/ is meromorphic, each pole of/' must be of at least second order. We 
note that by the argument of Lemma 1.1, 

lim I Rejl + re"f"(re") 
f\rea) 

dd exists, 

and that V<i*(p) = C(p), the class of ^-valent meromorphic convex functions. 
Pfaltzgraff and Pinchuk [13] defined the class Ak of meromorphic functions 

of bounded boundary rotation as the class of all functions 

/ ' (*) ?eXP[-/o log (1 - ze-il)dix{t) ] • 
where 

/

•2TT / * 2 T T /»2TT 

dn(t) = 2, I |d/4(/)| ^Jfeand I e~ud^t) = Q. 
0 «^ 0 ^ 0 

(The last condition ensures t h a t / ' does not have a simple pole at 0.) Since a 
function in Ak has no non-zero critical points, in general Ak is a proper subclass 
of Vk*(p). 

We note that (4.1) implies that for p < r < 1, the argument of the vector 
tangent to / ( | z | = r) decreases by 2pir as 6 increases from 0 to 2ir (z = reie) 
and hence the curve f(\z\ = r) has at least p loops. 

THEOREM 4.1. Letf(z) G Vk*(p). Then: 

P + 1 ^ N(oo,f) S (pk + 2p + 4)/4 

and 

0 £ N(0,f) g £(* - 2)/4. 

Proof. We will show the inequalities hold in \z\ < r, where r is chosen so that 
(4.1) holds. From (4.1) and the argument principle we obtain 

N(fi,f) -JV(oo,/) = -(p + l) 

and hence/ ' (z) has at least p + l poles. Following Umezawa [16], we note that 
N(w,f) is constant until w arrives at a value assumed by/ ' (z ) on |s| = r and 
the jump of N(w,f) at such a value must be an integer. Now 

Jo I I / (z) ; I Jo I / ( 
(*) - 2% 

f (z) )\-= J„ I " " / » 
and hence if e > 0 is given we may choose p < 1 so that if p < |z| < 1, 

2/"(2) I 
(4.3) 2ir+ (pk + e) /

• 2 T 

0 
Re 

/ (*) « è [^(0,/')+iV(oo,/')]2x. 
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Since N(0,f) - N(co,f) = -p + 1, (4.3) yields 

N(0,f')^Pik-2) + ~ 

and the result follows. 

The next Lemma, due to Umezawa [17] will be used in estimating the valency 
of functions in Vk*(p). 

LEMMA 4.2. Let f{z) be meromorphic for \z\ < R,f'(z) j* 0 on \z\ = R. If 

/>{ 1 + f ^ \ | dd < 2AM - N(co,f ) + 1], 

where [ ] denotes the greatest integer function, then f is at most M valent and at 
least max [27V(oo,/) - M, 1] valent for \zl g J?. 

COROLLARY 4.3. Let f(z) Ç F*(£) have q poles in U. Then f(z) is at least 
max [q + 1 — £&/2, 1] valent and at most pk/2 + q — 1 valent in U. 

We note that if k < 2 + 2/£, then for f sufficiently near 1, 

2T J O I I / (re ) ) I 

and hence f(z) belongs to the class K*(p) of meromorphic close-to-convex 
functions of order p defined by Livingston [10]. 

The following result is similar to Theorem 1.5 and its proof will be omitted. 

THEOREM 4.4. Let f{z) £ Vk*(p) and suppose f (z) has zeros at ai . . . an and 
poles at jSi, . . . Pn+p+i, counting multiplicities. Then there are two univalent 
starlike functions S\(z) and s^iz) such that 

/'(2) = ?4î[n KZ,B,)\ n V K W L ^ J 
p(k-2) 

[¥ï 
ipa+2) 

We note that Theorem 4.4 gives distortion theorems analogous to Theorems 
1.6 and 1.7, but we do not state them here. 

THEOREM 4.5. Let f(z) £ Vk*(p). Then a = l i m ^ (1 - r)**<*-2> M(r,f) 
exists. For k > 2, if a > 0, there is a unique 0O such that 

a = lira (1 - r)^k~2)\f '(rei6°)\. 
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Proof. The proof is similar to Theorem 3.1, using Theorem 4.4 instead of 
Theorem 1.5. 

We now turn to the problem of estimating the coefficients of a function 
/(*) 6 Vk*(p). 

THEOREM 4.6. Let f{z) = Y,n=-Q anz
n, with k > 2 + 2/p. Then if a denotes 

the constant of Theorem 4.5, 

T M _ a 

nni jP(*-2)-2 — Y\\p{k - 2)] 

Proof. The proof in the case a > 0 follows by using the major-minor arc 
technique of Hayman [5, Theorem 5.7] as modified by Noonan [12]. Suppose 
a = 0. Given e > 0 we may choose r0 < 1 so that if r0 < r < 1, (4.1) holds and 

I R e y +—TV i'\ i 
Jo I I f (re ) ) 

dd < (pk + €)TT. 

Using an argument similar to that of Brannan and Kirwan [2], there is a 
constant C = C(p,k) such that 

r | / ' ( r c r t ) | d (9<C-J l f ( r , / ) . 
«/ 0 

Now 

|/(r*")|g I frf'(pet9)et9dp + I/(**") | 

£ f M(P,f')dP+\f(r0e
te)\ 

= o(l - f)-***-»+1, 

since l f (>, / ' ) = o(l - r)-***-*). Therefore 

ril(r,f) = r r\f(reie)\dd 
J o 

= o(l- rT^-*)+l 

and the result follows from the standard inequality 

We mention that Livingston [10] has shown that if f{z) = Y^=-v an%n 

belongs to the class K*(p) and has all its poles at s = 0, then \an\ = 0(l/n). 
Consequently if f(z) 6 Vk*(p) with 2 < k < 2 + 2/£, we have |an| = 0 ( 1 / » ) . 
Since when k = 2, FA*(£) is precisely the class of p-valent meromorphically 
convex functions and hence \an\ = 0( l /w 2 ) . To obtain an estimate on the 
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growth of \an\ when k = 2 + 2/p we note tha t / (z ) G F**(/>) implies/(z) Ç 
F**(p) for all k' > k. Theorem 4.6 then yields that if k = 2 + 2/p, \an\ = 
0(nr1+t) for every e > 0. 
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