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Abstract

The four colour theorem states that the vertices of every planar graph can be coloured with at
most four colours so that no two adjacent vertices receive the same colour. This theorem is famous
for many reasons, including the fact that its original 1977 proof includes a non-trivial computer
verification. Recently, a formal proof of the theorem was obtained with the equational logic
program Coq [G. Gonthier, ‘Formal proof–the four color theorem’, Notices of Amer. Math. Soc.
55 (2008) no. 11, 1382–1393]. In this paper we describe an implementation of the computational
method introduced by C. S. Calude and co-workers [Evaluating the complexity of mathematical
problems. Part 1’, Complex Systems 18 (2009) 267–285; A new measure of the difficulty of
problems’, J. Mult. Valued Logic Soft Comput. 12 (2006) 285–307] to evaluate the complexity
of the four colour theorem. Our method uses a Diophantine equational representation of the
theorem. We show that the four colour theorem is in the complexity class CU,4. For comparison,
the Riemann hypothesis is in class CU,3 while Fermat’s last theorem is in class CU,1.

1. Introduction

The four colour theorem, first conjectured in 1853 by Francis Guthrie, states that every plane
separated into regions may be coloured using no more than four colours in such a way that no
two adjacent regions receive the same colour. Two regions are called adjacent if they share a
border segment, not just a point; regions must be contiguous, that is, the plan has no exclaves.

In graph-theoretical terms, the four colour theorem states that the vertices of every planar
graph can be coloured with at most four colours so that no two adjacent vertices receive the
same colour. In short, every planar graph is four-colourable.

The theorem was proved in 1977 [1, 2] (see also [17]) using a computer-assisted proof which
consists of the construction of a finite set of ‘configurations’, and the verification that each
of them is ‘reducible’, which implies that no configuration with this property can appear in
a minimal counterexample to the theorem. Checking the correctness of the original proof is a
very difficult task: it implies, among other things, checking the inputting of the descriptions of
1476 graphs, checking the correctness of the programs, proving the correctness of the compiler
used to compile the programs and checking the degree of reliability of the hardware used to ran
the programs. (This computer-assisted proof generated many mathematical and philosophical
discussions around the notion of acceptable mathematical proof, see for example [3, 8, 9].)
Various partial independent verifications have been obtained (it appears that there is no
verification in its entirety) culminating with the formal confirmation announced in [16] which
uses the equational logic program Coq (see [14] for a recent presentation of the formal proof).
The following part of the concluding discussion in [16] is relevant for the current status of the
proof.
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However, an argument can be made that our ‘proof’ is not a proof in the traditional
sense, because it contains steps that can never be verified by humans. In particular, we
have not proved the correctness of the compiler we compiled our programs on, nor have
we proved the infallibility of the hardware we ran our programs on. These have to be
taken on faith, and are conceivably a source of error. . . .

However, from a practical point of view, the chance of a computer error that appears
consistently in exactly the same way on all runs of our programs on all the compilers
under all the operating systems that our programs run on is infinitesimally small
compared to the chance of a human error during the same amount of case-checking.

Apart from this hypothetical possibility of a computer consistently giving an incorrect
answer, the rest of our proof can be verified in the same way as traditional mathematical
proofs. We concede, however, that verifying a computer program is much more difficult
than checking a mathematical proof of the same length†.

The four colour property is mainly of mathematical interest: K. May, quoted in [17, p. 2],
says that ‘Maps utilising only four colours are rare, and those that do usually require only
three. Books on cartography and the history of mapmaking do not mention the four-colour
property’.

We describe an implementation of the computational method, motivated by its semiotic
dimension [15], introduced in [5, 7] to evaluate the complexity of the four colour theorem. Our
method uses a Diophantine equational representation of the theorem. We show that the four
colour theorem is in the complexity class CU,4; the Riemann hypothesis and the Fermat last
theorem are in the lower complexity classes CU,3 and CU,1, respectively.

2. A Diophantine equational representation of the four colour property

We use the Diophantine representation of the four colour theorem proposed in [13], that is, a
Diophantine equation

F (n, t, a, . . .) = 0, (2.1)

such that (2.1) has no solution if and only if every planar graph can be coloured with at most
four colours so that no two adjacent vertices receive the same colour.

Actually, it is better to use a pre-Diophantine representation given by the following
conditions. Without restricting the generality we consider all maps Tn consisting of the
points (x, y) such that J(x, y) 6Q= (n2 + 3n)/2, where J is Cantor’s bijection J(x, y) =
((x+ y)2 + 3x+ y)/2. Given a four-colouring of Tn, t0, t1, . . . , tQ there exist (and can be
effectively computed) s, t such that, for all 0 6 i6Q,

ti = rem(t, 1 + s(i+ 1)),

where the integer remainder function is denoted by rem. In other words, the sequence
t0, t1, . . . , tQ can be coded by s and t.

Every sequence u0, u1, . . . , uQ with ui < 4 can be represented by some u6R= (1 + 4(Q+
2)!)Q+1 such that

ui = rem(u, 1 + 4(Q+ 2)!(i+ 1)).

Finally, there is a map (say Tn) which cannot be coloured with four colours if and only if
the following condition is satisfied:

(∃n, t, s)(∀u6R)(∃x, y)(x+ y 6 n)[A(x, y) ∨B(x, y)],

†Our emphasis.
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where

A(x, y) = uJ(x,y) > 4,
B(x, y) = [(tJ(x,y) = tJ(x+1,y) ∧ uJ(x,y) 6= uJ(x+1,y))

∨ (tJ(x,y) 6= tJ(x+1,y) ∧ uJ(x,y) = uJ(x+1,y))
∨ (tJ(x,y) = tJ(x,y+1) ∧ uJ(x,y) 6= uJ(x,y+1))
∨ (tJ(x,y) 6= tJ(x,y+1) ∧ uJ(x,y) = uJ(x,y+1))].

A simple inspection shows that the above condition is computable, so the four colour theorem
is of the form ∀nP (n), where P is a computable predicate, that is, a Π1-problem.

3. The method

We use a fixed ‘universal formalism’ for programs, more precisely, a universal self-delimiting
Turing machine U [4]; the machine U will be fully described in the next section. The machine U
has to be minimal in the sense that none of its instructions can be simulated by a program
for U written with the remaining instructions.

To every Π1-problem π = ∀σP (σ) we associate the algorithm ΠP = inf{n : P (n) = false}
which systematically searches for a counterexample for π. There are many programs (for
U) which implement ΠP ; without loss of generality, any such program will be denoted also
by ΠP . Note that π is true if and only if U(ΠP ) never halts.

The complexity (with respect to U) of a Π1-problem π is defined by the length of the smallest-
length program (for U) ΠP , defined as above, where minimisation is calculated for all possible
representations of π as π = ∀nP (n):

CU (π) = min{|ΠP | : π = ∀nP (n)}.

For CU it is irrelevant whether π is known to be true or false. In particular, the program
containing the single instruction halt is not a ΠP program, for any P .

Because the complexity CU is incomputable, we can work only with upper bounds for CU . As
the exact value of CU is not important, following [6] we classify Π1-problems into the following
classes:

CU,n = {π : π is a Π1-problem, CU (π) 6 n kbit}

(a kilobit (kbit or kb) is equal to 210 bits).
As the four colour theorem is a Π1-problem, we choose a specific representation 4CT =

∀σP (σ), and based on it we write the program Π4CT, optimise it in length, and finally use the
size of the program |Π4CT| as an upper bound on CU (4CT). We found that the four colour
theorem is in the class CU,4.

4. A universal prefix-free binary Turing machine

We briefly describe the syntax and the semantics of a register machine language which
implements a (natural) minimal universal prefix-free binary Turing machine U ; it is a
refinement, constructed in [6], of the languages in [7, 10, 12].

Any register program (machine) uses a finite number of registers, each of which may contain
an arbitrarily large non-negative integer.

By default, all registers, named with a string of lower or upper case letters, are initialised
to 0. Instructions are labeled by default with 0, 1, 2, . . . .

The register machine instructions are listed below. Note that in all cases R2 and R3 denote
either a register or a non-negative integer, while R1 must be a register. When referring to R
we use, depending upon the context, either the name of register R or the non-negative integer
stored in R.
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=R1, R2, R3
If the contents of R1 and R2 are equal, then the execution continues at the R3th instruction
of the program. If the contents of R1 and R2 are not equal, then execution continues with the
next instruction in sequence. If the content of R3 is outside the scope of the program, then we
have an illegal branch error.

&R1, R2
The contents of register R1 is replaced by R2.

+R1, R2
The contents of register R1 is replaced by the sum of the contents of R1 and R2.

!R1
One bit is read into the register R1, so the contents of R1 becomes either 0 or 1. Any attempt
to read past the last data-bit results in a run-time error.

%
This is the last instruction for each register machine program before the input data. It halts
the execution in two possible states: either it successfully halts or it halts with an under-read
error.

A register machine program consists of a finite list of labeled instructions from the above
list, with the restriction that the halt instruction appears only once, as the last instruction
of the list. The input data (a binary string) follows immediately after the halt instruction.
A program not reading the whole data or attempting to read past the last data-bit results in a
run-time error. Some programs (such as the ones presented in this paper) have no input data;
these programs cannot halt with an under-read error.

The instruction =R,R,n is used for the unconditional jump to the nth instruction of the
program. For Boolean data types we use integers 0 = false and 1 = true.

For longer programs it is convenient to distinguish between the main program and some sets
of instructions called ‘routines’ which perform specific tasks for another routine or the main
program. The call and call-back of a routine are executed with unconditional jumps.

5. Binary coding of programs

To compute an upper bound on CU (4CT) we need to compute the size in bits of the program
Π4CT, so we need to uniquely code in binary the programs for U . To this aim we use a prefix-free
coding as follows.

The binary coding of special characters (instructions and comma) is shown in Table 1 (ε is
the empty string).

For registers we use the prefix-free code code1 = {0|x|1x | x ∈ {0, 1}∗}. The codes of the first
32 registers are shown in Table 2. The register names are chosen to optimise the length of the
program, that is, the most frequent registers have the smallest code1 length.

For non-negative integers we use the prefix-free code code2 = {1|x|0x | x ∈ {0, 1}∗}. The codes
of the first 16 non-negative integers are shown in Table 3 (as xε= εx= x, for every string
x ∈ {0, 1}∗, in what follows we omit ε).

Table 1. The binary coding of special characters.

Special characters Code Special characters Code

, ε + 111
& 01 ! 110
= 00 % 100
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The instructions are coded by self-delimiting binary strings as follows.
(1) &R1,R2 is coded in two different ways depending on R2:

01code1(R1)codei(R2),

where i= 1 if R2 is a register and i= 2 if R2 is an integer.
(2) +R1,R2 is coded in two different ways depending on R2:

111code1(R1)codei(R2),

where i= 1 if R2 is a register and i= 2 if R2 is an integer.
(3) =R1,R2,R3 is coded in four different ways depending on the data types of R2 and R3:

00code1(R1)codei(R2)codej(R3),

where i= 1 if R2 is a register and i= 2 if R2 is an integer, j = 1 if R3 is a register and j = 2
if R3 is an integer.

(4) !R1 is coded by

110code1(R1).

(5) % is coded by

100.

Table 2. The codes of the first 32 registers.

Register Code1 Register Code1 Register Code1 Register Code1

R1 010 R9 0001010 R17 000010010 R25 000011010
R2 011 R10 0001011 R18 000010011 R26 000011011
R3 00100 R11 0001100 R19 000010100 R27 000011100
R4 00101 R12 0001101 R20 000010101 R28 000011101
R5 00110 R13 0001110 R21 000010110 R29 000011110
R6 00111 R14 0001111 R22 000010111 R30 000011111
R7 0001000 R15 000010000 R23 000011000 R31 00000100000
R8 0001001 R16 000010001 R24 000011001 R32 00000100001

Table 3. The codes of the first 16 non-negative integers.

Integer Code2 Integer Code2 Integer Code2 Integer Code2

0 100 4 11010 8 1110010 12 1110110
1 101 5 11011 9 1110011 13 1110111
2 11000 6 1110000 10 1110100 14 111100000
3 11001 7 1110001 11 1110101 15 111100001

Table 4. The register machine routine to compute in d the integer remainder of a divided by b, for
integers a > b > 0.

Instruction number Instruction Code Length

0 &h,e 01 0001001 00110 14
1 &e,b 01 00110 011 10
2 &d,0 01 00101 100 10
3 =e,a,8 00 00110 010 1110010 17
4 +e,1 111 00110 101 11
5 +d,1 111 00101 101 11
6 =d,b,2 00 00101 011 11000 15
7 =a,a,3 00 010 010 11001 13
8 &e,h 01 00110 0001001 14
9 =a,a,c 00 010 010 00100 13
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All codings for instruction names and special symbol comma, registers and non-negative
integers are self-delimiting; the prefix-free codes used for registers and non-negative integers
are disjoint. The code of any instruction is the concatenation of the codes of the instruction
name and the codes (in order) of its components; hence the set of codes of instructions is
prefix-free. The code of a program is the concatenation of the codes of its instructions, so the
set of codes of all programs is prefix-free too.

The smallest program which halts is 100 and the smallest program which never halts is
00 010 010 100 100.

For example, the register machine routine in Table 4 computes in d the integer remainder
of a divided by b, for integers a> b> 0 (if b= 0 then d= 0). Here we use R1 = a, R2 = b,
R3 = c, R4 = d, R5 = e, R8 = h.

The routine can be uniquely encoded by concatenating the binary strings coding the
instructions of the routine:

0100010010011001001100110100101100000011001011100101110011010111
1001011010000101011110000001001011001010011000010010001001000100

which is a string of length 128 bits.

6. The program Π4CT

In this section we present the program Π4CT which is based on the computable predicate P
described in Section 2. In order to help the understanding, the following formulas are used in
the program:

– UFC(a) = rem(u, 1 + 4(Q+ 2)!(a+ 1));
– TFC(a) = rem(t, 1 + s(a+ 1));

– CMP(a, b) =

1, if a < b,
0, a= b,
2, a > b;

– MUL(a,b) = ab;
– FAC(a) = 1 · 2 · 3 · · · a;
– REM(a,b) = rem(a, b);
– JFC(a,b) = J(a, b).

0 =a,a,116 //the main program starts at instruction 116
1 &A,a //===UFC(a)
2 &B,b //copy a,b,c locally
3 &C,c
4 &a,q
5 +a,2 //a =Q+2
6 &c,8
7 =a,a,76
8 &a,d //d = (Q+2)!
9 +a,a

10 +a,a //a = 4(Q+2)!
11 &c,15
12 &b,A
13 +b,1 //b = a+1
14 =a,a,50
15 &b,d
16 +b,1 //b = 1+4(Q+2)!(a+1)

https://doi.org/10.1112/S1461157009000461 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157009000461


420 C. S. CALUDE AND E. CALUDE

17 &a,u
18 &c,20
19 =a,a,60
20 =d,1,27 //u < 1+4(Q+2)!(a+1)
21 &c,23 //u >= 1+4(Q+2)!(a+1)
22 =a,a,91 //d = REM(u,1+4(Q+2)!(a+1))
23 &a,A
24 &b,B
25 &c,C
26 =a,a,c
27 &d,a
28 =a,a,23
29 &aa,a //===TFC(a)
30 &bb,b
31 &cc,c
32 +a,1 //a = a+1
33 &b,s //b = s
34 &c,36
35 =a,a,50 //d =(a+1)s
36 &b,d
37 +b,1 //b = 1+(a+1)s
38 &a,t //a = t
39 &c,41
40 =a,a,60 //d = CMP(t,1+(a+1)s)
41 =d,1,48 //t < 1+(a+1)s
42 &c,44 //t >= 1+s(a+1)
43 =a,a,91 //d = REM(t,1+s(a+1))
44 &a,aa
45 &b,bb
46 &c,cc
47 =a,a,c
48 &d,a //d = t
49 =a,a,44
50 &ee,e //===MUL(a,b)
51 &d,0
52 =b,0,58 //d = 0
53 &e,1
54 +d,a
55 =e,b,58 //d = ab
56 +e,1
57 =a,a, 54
58 &e,ee
59 =a,a,c
60 &ee,e //===CMP(a,b)
61 &ff,f
62 &e,a
63 &f,b
64 +e,1
65 +f,1
66 &d,0
67 =e,f,73 //a = b
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68 &d,1
69 =e,b,73 //a < b
70 &d,2
71 =f,a,73 //a > b
72 =a,a,64
73 &f,ff
74 &e,ee
75 =a,a,c
76 &aa,a //FAC(a)
77 &bb,b
78 &cc,c
79 &b,0
80 &d,1
81 =b,aa,87 //d=a!
82 +b,1 //b < a
83 &a,d
84 &c,86
85 =a,a,50 //d = (b-1)!b
86 =a,a,81
87 &a,aa
88 &b,bb
89 &c,cc
90 =a,a,c
91 &ee,e //REM(a,b)
92 &e,b
93 &d,0
94 =e,a,99 //d = REM(a,b)
95 +e,1
96 +d,1
97 =d,b,93
98 =a,a,94
99 &e,ee
100 =a,a,c
101 &ee,e //===JFC(a,b)
102 &ff,f
103 &e,a
104 +e,b
105 &d,0 //case a = b = 0
106 =e,0,112
107 &f,1
108 &d,f
109 =e,f,112 //d = JFC(a,b)
110 +f,1
111 =a,a,108
112 +d,a //add extra a
113 &e,ee
114 &f,ff
115 =a,a,c
116 &m,1 //===main program
117 &n,0 //n = N
118 &a,n //a = N
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119 &b,0 //b = 0
120 &c,122
121 =a,a,101 //d = JFC(N,0)
122 &q,d //q = JFC(N,0)
123 &a,q
124 +a,2 //a = q+2
125 &c,127
126 =a,a,76 //d = (q+2)!
127 &a,d //a = (q+2)!
128 +a,a
129 +a,a
130 +a,1 //a = 1+ 4(q+2)!
131 &e,q
132 +e,1
133 &f,1
134 &r,a
135 =f,e,142 //r =(1+4(q+2)!)^(q+1)
136 &c,139 //f < e
137 &b,r //b = r
138 =a,a,50
139 &r,d //r = a^(f+1)
140 +f,1
141 =a,a,135
142 &t,0
143 &s,0
144 &u,0
145 +r,1 //r = R+1
146 =u,r,220 //u > R
147 &x,0 //u <= R
148 &y,0
149 &e,x
150 +e,y //e = x+y
151 &r,n
152 +r,1 //R = N+1
153 =e,r,207 //x+y > N
154 &a,x //x+y <= N, compute A(x,y) and B(x,y)
155 &b,y
156 &c,158
157 =a,a,101
158 &f,d //f = JFC(x,y)
159 &e,x
160 +e,y
161 +e,1
162 +e,f //e = JFC(x,y+1)
163 &g,e
164 +g,1 //g = JFC(x+1,y)
165 &a,f //a = JFC(x,y)
166 &c,168
167 =a,a,1
168 &h,d //h = u(JFC(x,y))
169 &c,171
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170 =a,a,29 //d = t(JFC(x,y))
171 &k,d //k = t(JFC(x,y))
172 &a,h //a = u(JFC(x,y))
173 &b,4
174 &c,176
175 =a,a,60 //d = CMP(u(JFC(x,y)),4)
176 =d,1,179 //A(x,y) = false
177 +u,1 //A(x,y) = true
178 =a,a,146
179 &c,182
180 &a,g //a = JFC(x+1,y)
181 =a,a,1
182 &i,d //i = u(JFC(x+1,y))
183 &c,185
184 =a,a,29
185 &j,d //j = t(JFC(x+1,y))
186 &c,189
187 &a,e //a = JFC(x,y+1)
188 =a,a,1
189 &f,d //f = u(JFC(x,y+1))
190 &c,192
191 =a,a,29
192 &g,d //g = t(JFC(x,y+1))
193 =k,j,199
194 =h,i,177 //B(x,y) = true
195 =k,g,198
196 =h,f,177 //B(x,y) = true
197 =a,a,200 //B(x,y) = false
198 =h,f,200 //B(x,y) = false
199 =h,i,195
200 +y,1
201 &e,x
202 +e,y //e = x+y
203 =e,r,205 //x+y > N
204 =a,a,155 //x+y <= N
205 +x,1
206 =a,a,148
207 +s,1
208 &e,m
209 +e,1
210 =s,e,212 //s > m
211 =a,a,144 //s <= m
212 +t,1
213 =t,e,215 //t > m
214 =a,a,143 //t <= m
215 +n,1
216 =n,e,218 //N > m
217 =a,a,118 //N <= m
218 +m,1
219 =a,a,117
220 % //stop, 4CTH is false
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We use the following conversion table for registers.

R1 = a R2 = e R3 = c R4 = d R5 = b R6 = f R7 = r
R8 = ee R9 = h R10 = x R11 = y R12 = g R13 = n R14 = aa
R15 = q R16 = s R17 = t R18 = u R19 = bb R20 = cc R21 = ff
R22 = i R23 = k R24 = m R25 = A R26 = j R27 = B R28 = C

Consequently, the upper bound given by the size of the program Π4CT for U is 3489 bits, so
the four colour theorem belongs to the class CU,4.

7. Final comments

We have shown that the four colour theorem is in CU,4. It is possible to decrease the size of
the program Π4CT by optimising the code or by using a different computable predicate. We
conjecture that the four colour theorem is not in CU,2.

The following mathematical statements are in lower complexity classes: Legendre’s
conjecture, Fermat’s last theorem and Goldbach’s conjecture are in CU,1 and the Riemann
hypothesis is in CU,3 [6, 11].

Acknowledgements. We thank Michael Dinneen and Nadia Kasto for critical comments and
extensive discussions which improved this paper.
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