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Abstract

For a compact subset K of the boundary of a compact Hausdorff space X, six properties that K may have
in relation to the algebra A(X) are considered. It is shown that in relation to the algebra A(Dn), where
Dn denotes the n-dimensional polydisc, the property of being totally null is weaker than the other five
properties. A general condition is given on the algebra A(X) which implies the existence of a totally null
set that is not null, and several conditions are stated for A(X), each of which is sufficient for a totally null
set to be a null set.
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1. Introduction

For a compact Hausdorff space X, let C(X) denote the space of continuous complex-
valued functions on X with the supremum norm. A function algebra A on X is a closed
subalgebra of C(X) that contains the constant functions and separates the points of X.
The set of all multiplicative linear functionals on A is called the maximal ideal space
of A and is denoted by MA. A representing measure for φ ∈ MA is a positive measure µ
on X such that φ( f ) =

∫
X

f dµ for all f ∈ A.We denote the set of representing measures
for φ by Mφ. For any φ in MA, the set Mφ is a nonempty convex weak*-compact set. A
measure that represents the evaluation functional φx at a point x in X is simply called a
representing measure for x. An annihilating measure for A is a regular complex Borel
measure µ on X that satisfies

∫
X

f dµ = 0 for all f ∈ A.
Throughout this paper, we shall be concerned with the algebra A(X) of functions

continuous on X and holomorphic on the interior of X. In [7], Rudin presents six
properties that a compact subset of the unit sphere S n in Cn can have in relation to the
ball algebra A(Bn). Below we define these properties for the algebra A(X), where X is
a compact subset of a Banach space, x0 is a fixed element in MA, and K is a compact
subset of X.

D 1.1.

(1) K is a Z-set (zero set) if K is the zero set of a function f in the algebra A(X).
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(2) K is a P-set (peak set) if there is an f in the algebra A(X) such that f (x) = 1 for
every x ∈ K and | f (y)| < 1 for every y ∈ X \ K.

(3) K is an I-set (interpolation set) if every complex-valued continuous function on
K extends to a member of A(X).

(4) K is a PI-set (peak-interpolation set) if K is a peak set and an interpolation set.
(5) K is an N-set (null set) if |ν|(K) = 0 for every measure ν that annihilates A(X).

(Here |ν| is the total variation of ν.)
(6) K is a TN-set (totally null set) if ρ(K) = 0 for every representing measure ρ for x0.

All of these properties are equivalent when X is

Bn =

{
(z1, z2, . . . , zn) ∈ Cn :

n∑
j=1

|z j|
2 ≤ 1

}
,

the unit ball in Cn, x0 is zero, and K is a compact subset of the unit sphere S n; for a
proof of this see [7, Theorem 10.1.2]. In the case where X is

Dn = {(z1, z2, . . . , zn) ∈ Cn : |z j| ≤ 1, j = 1, 2, . . . , n},

the unit polydisc in Cn, x0 is zero, and K is a compact subset of the distinguished
boundary

T n = {(z1, z2, . . . , zn) ∈ Cn : |z j| = 1, j = 1, 2, . . . , n},

then the first five properties are known to be equivalent; see [6] or [9] for a proof.
In Section 3 we give a simple counterexample that shows the property of being a

TN-set is weaker than the other five properties in the case of the n-dimensional and
infinite-dimensional polydiscs. In Section 4 we give a general condition on an algebra
such that the property of being a TN-set is weaker than the property of being an N-set.
Finally, in Section 5 we present several conditions on an algebra that are sufficient for
TN-sets to be N-sets.

2. Preliminaries

D 2.1. Let A be a function algebra on X, and let φ, ψ be elements of MA. We
say that φ and ψ are in the same Gleason part (or part) of MA if ‖φ − ψ‖A∗ < 2.

T 2.2 [1, Theorem 2.6.3]. For φ, ψ ∈ MA, write φ ∼ ψ if φ and ψ are in the
same Gleason part. Then ∼ is an equivalence relation on MA.

An important property of the parts of MA is that if φ and ψ lie in distinct parts, then
every representing measure for φ is singular to every representing measure for ψ. It
turns out that the converse is also true.

T 2.3 [4, Theorem VI.1.1]. Suppose φ and ψ belong to the same part of MA.
Then there are mutually absolutely continuous representing measures for φ and ψ.

Consequently, two elements φ and ψ of MA lie in the same part if and only if they
have mutually absolutely continuous representing measures.
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D 2.4. If a Gleason part consists of only one element of MA, then it is called
a trivial part. Otherwise, it is called a nontrivial part.

The following definition provides examples of trivial Gleason parts.

D 2.5. A peak set that consists of a single point is called a peak point.

T 2.6 [4, Theorem II.11.3]. Let A be a function algebra on a compact metric
space X. Then x ∈ X is a peak point for A if and only if the point mass at x is the only
representing measure for x. This occurs if and only if µ({x}) = 1 for every representing
measure for x.

It follows from Theorems 2.3 and 2.6 that every peak point for the algebra A is a
trivial part.

E 2.7. The maximal ideal space MA(D) of the disc algebra A(D) is the closed
unit disc D ⊂ C. If w is any point in the unit circle S , then the function f : D→ C
defined by f (z) = 1

2 (1 + zw̄) is in the disc algebra A(D) and peaks at w. If z and w are
points in the open unit disc Int(D), then Cauchy’s formula gives representing measures
for z and w that are mutually absolutely continuous. Consequently, the Gleason parts
of MA(D) are the trivial parts consisting of points in the unit circle and the nontrivial
part consisting of the open unit disc.

We will make use of the following lemma in Section 4.

L 2.8 [7, Rainwater’s lemma]. Let X be a compact Hausdorff space and M a
nonempty convex weak*-compact subset of the regular Borel measures on X. Suppose
ν is a measure on X and ν ⊥ ρ for every ρ ∈ M. Then ν is concentrated on an Fσ set
E of X, such that ρ(E) = 0 for every ρ ∈ M. (Recall that to say ν is concentrated on E
means |ν|(X \ E) = 0.)

3. TN is a weaker property than N for A(Dn)

For a compact set K ⊂ T n and x0 = 0 the five properties Z, P, I, PI and N are
equivalent. For a proof of this see [6, Theorem 6.1.2]. We show that TN is a weaker
property than the others.

T 3.1. For a compact set K ⊂ T n and x0 = 0 each of the five properties Z, P, I,
PI and N implies TN, but TN is not equivalent to these properties.

P. We show that P implies TN (following the proof in [6] for A(Bn)), and construct
a counterexample to show that TN does not imply Z.

To show P implies TN: if f ∈ A(Dn) peaks on K, and ρ is a representing measure
for zero, then for m = 1, 2, 3, . . . , we have f m(0) =

∫
Dn f m dρ. The integral converges

to ρ(K) as m→∞ by Lebesgue’s dominated convergence theorem, and f m(0)→ 0
since | f (0)| < 1. Thus ρ(K) = 0.
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To show TN does not imply Z: let D be the closed unit disc and T be the unit circle.
We show TN does not imply Z for the bidisc D × D; it is clear how to generalise the
proof to the n-dimensional polydisc Dn. Consider the set ({z0} × T ) ⊂ (D × D) where
z0 ∈ T .

Because z0 is in the unit circle T , z0 is a peak point for A(D). So there is a function
g ∈ A(D) with g(z0) = 1 and |g(z)| < 1 for all z ∈ D \ {z0}. Then any representing
measure ρ for x0 = 0 satisfies

ρ({z0} × T ) = lim
n→∞

∫
D×D

g(z)n dρ(z, w) = lim
n→∞

gn(0) = 0.

So {z0} × T is a TN-set.
Suppose f ∈ A(D × D) and f (z0 × T ) = 0. Then f (z0, ·) is in A(D), and f (z0, ·) = 0

on T . But then, by the maximum modulus principle, f (z0, ·) ≡ 0 on D. So {z0} × T
is not a Z-set because we cannot find a function f ∈ A(D × D) with f = 0 only on
{z0} × T . �

The proof for the finite-dimensional polydisc carries through to the infinite-
dimensional polydisc D∞ = {(z1, z2, . . . ) ∈ `∞ : |zi| ≤ 1 for i = 1, 2, . . .} with only
minor changes. (In this case, we let A(D∞) be the algebra of complex functions weak*-
continuous on D∞ whose restriction to the interior of D∞ is holomorphic.) So in the
infinite-dimensional case the five properties Z, P, I, PI and N are also equivalent, and
TN is a weaker property.

4. Condition for a TN-set that is not an N-set

We now present a condition on a function algebra A which implies the existence of
a TN-set that is not an N-set.

T 4.1. Suppose A is a function algebra on X and xo is an element of X. Let Q
be the Gleason part of xo in MA. If MA contains a nontrivial Gleason part other than
Q, then there exists a compact subset K of X that is a TN-set but not an N-set with
respect to A.

P. Suppose there is an element y ∈ X such that y belongs to a nontrivial Gleason
part other than Q. Let µy be a representing measure for y that is not the point mass
at y. Then since xo and y are in different Gleason parts, the measure µy is singular to
every representing measure for xo. By Lemma 2.8, there is an Fσ-set E of X such that
ρ(E) = 0 for all ρ ∈ Mxo , while |µy|(X \ E) = 0. Since µy is not the point mass at {y},
there exists some ε > 0 for which µy(E) > µy({y}) + ε. Choose a compact set K ⊂ E for
which µy(K) ≥ µy({y}) + ε. Then it must be that K , {y}.

Choose an f ∈ A with f (y) = 0 and f . 0 on K ∩ supp(µy), where supp(µy) denotes
the support of µy. Then fµy annihilates A and fµy(K) , 0, and, because K is a subset
of E, ρ(K) = 0 for all ρ ∈ Mxo . Thus K is a subset of X that is a TN-set but not an
N-set. �
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It is an open question whether the converse of Proposition 4.1 is true. In other
words, even if MA has no nontrivial Gleason parts besides Q, we do not know that
TN-sets are N-sets. However, there are several properties of function algebras which
do imply that a TN-set is an N-set with respect to the algebra.

5. Sufficient conditions for TN-sets to be N-sets

We state several properties that an algebra can have, each of which is a sufficient
condition for a TN-set to be an N-set.

For the remainder of the section we let X be a dual Banach space and U be an open
subset of X with weak*-compact closure. Let C(Ū) be the algebra of functions that are
weak*-continuous on the closure Ū of U, and let A = A(Ū) be the algebra of functions
that are weak*-continuous on Ū and holomorphic in U. Let M(∂U) be the space of
finite regular complex Borel measures on the boundary ∂U of U. Fix a point x0 in U.
We say a subset K of Ū is a TN-set if K is totally null for any representing measure
for x0.

D 5.1. A bounded sequence fn in A is a Montel sequence if fn(z)→ 0 for
every z ∈ U. A measure µ ∈ M(∂U) is called a Henkin measure if

∫
fn dµ→ 0 for

every Montel sequence fn in A.

E 5.2. If z is a point in U, then every representing measure for z is a Henkin
measure. Also, every annihilating measure is a Henkin measure.

In 1968 Henkin proved the following for the unit ball Bn in Cn.

T 5.3 [5, Theorem 4]. If λ is a Henkin measure on the sphere S n, and µ is
absolutely continuous with respect to λ, then µ is a Henkin measure.

D 5.4. We say that Henkin’s theorem holds for A if every measure absolutely
continuous with respect to a Henkin measure is also a Henkin measure.

In 1972 Cole and Range [3] considered the case where U is a relatively compact
domain in a complex manifold, and U has a smooth strictly pseudoconvex boundary.
They showed that when Henkin’s theorem holds for the algebra A, then every Henkin
measure is absolutely continuous with respect to some representing measure in M(∂U)
for a point z in U.

D 5.5. We say the Cole–Range theorem holds for A if every Henkin measure
is absolutely continuous with respect to a representing measure for x0.

If the Cole–Range theorem holds for the algebra A, then clearly TN-sets for A are
N-sets for A, because every annihilating measure is a Henkin measure.

D 5.6. A (0, 1)-form f on U is ∂̄-closed if ∂̄ f = 0, and f is ∂̄-exact if there
exists a g ∈C(Ū) with ∂̄g = f . (Recall that ∂̄ f = ∂ f /∂z̄.) The ∂̄-equation is solvable
on U if the closed forms are exact. More precisely, the ∂̄-equation is solvable on U
if, for any (0, 1)-form f with ∂̄ f = 0, there is a function g ∈C(Ū) that satisfies ∂̄g = f .
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Let L(0,1)(U) denote the ∂̄-closed (0, 1)-forms on U. We say the ∂̄-equation is solvable
on U with a gain in smoothness if there is a linear operator S : L(0,1)(U)→C(Ū) so
that:

(i) if g = S ( f ), then ∂̄g = f on U; and
(ii) if { fn} converges weak* to 0 in L(0,1)(U), then {S ( fn)} converges uniformly to 0

in C(Ū).

Cole and Range [3] showed that if U is a set for which the ∂̄-equation is solvable
with a gain in smoothness, then the Cole–Range theorem holds for A(Ū). An example
of a set for which the ∂̄-equation is solvable with a gain in smoothness is the open
unit ball Bn in Cn. In 1982, Cole and Gamelin [2] introduced a generalisation of this
property, which they called tightness.

D 5.7 [2]. The algebra A is a tight algebra on Ū if the Hankel-type operator
S g : A→C(Ū)/A defined by

S g( f ) = f g + A

is weakly compact for every g ∈C(Ū).

As observed by Cole and Gamelin in [2], the following are all tight algebras:

(i) A(Ū) where U is any bounded open subset of the complex plane;
(ii) R(K) where K is any compact subset of the complex plane, and, more generally,

T -invariant algebras on K (see [2, Section 17] for the definition of T -invariance);
(iii) A(Ū) where U is any domain in Cn on which the ∂̄-equation is solvable with a

gain in smoothness; and
(iv) A(Ū) where U is a strictly pseudoconvex domain in Cn with smooth boundary.

D 5.8 [2]. The algebra A is a strongly tight algebra on Ū if the Hankel-type
operator S g is norm compact for every g ∈C(Ū).

If A is a strongly tight algebra, then clearly A is a tight algebra. In 1995 Saccone [8]
showed that if A is a tight algebra, then Henkin’s theorem holds for A. Thus each of
the following conditions implies the next.

(1) A is a strongly tight algebra.
(2) A is a tight algebra.
(3) Henkin’s theorem holds for A.
(4) The Cole–Range theorem holds for A.
(5) TN-sets for A are N-sets for A.

One consequence of these implications is that any algebra that satisfies the
hypothesis of Theorem 4.1 fails to have each of these properties. In particular,
the finite-dimensional and infinite-dimensional polydisc algebras fail to have these
properties. We can also conclude that the ∂̄-equation is not solvable with a gain in
smoothness (as described in Definition 5.6) on the finite-dimensional or the infinite-
dimensional open polydisc.
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