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INTERACTION OF INTERNAL WAVES
IN A CONTINUOUS THERMOCLINE MODEL
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Abstract

Weak nonlinear interactions are studied for systems of internal waves when the Brunt-
Vaisala frequency is proportional to sech2 z, where z = 0 is the centre of the thermocline.
Explicit results expressed in terms of gamma functions have been obtained for the
interaction coefficients appearing in the amplitude evolution equations. The cases consid-
ered include resonant triads as well as second and third harmonic resonance. In the
non-resonant situation, the Stokes frequency correction due to finite-amplitude effects has
been computed and the extension to wave packets is outlined. Finally, the effect of a
mean shear on resonant interactions is discussed.

1. Introduction

Thermocline regions of the ocean and other large bodies of water are known to be
sites of considerable internal wave activity. Such waves are believed to play an
important role in the vertical transport of momentum and energy. Consequently,
there is at present much interest in semi-empirical models describing the spectral
distribution of internal wave energy in the ocean. Weak nonlinear interactions
can significantly influence the distribution of energy within the spectrum and it is
such interactions that occupy the principal part of this paper.

Resonant interactions, in particular, appear to be significant in the foregoing
context. Although there have been a number of analytical studies of resonantly
interacting internal waves, the vast majority have dealt with the case where N2,
the Brunt-Vaisala frequency, is constant (e.g. Phillips [13]). This quantity is

1 Department of Mathematics, McGill University, Montreal, P.Q. H3A 2K.6, Canada
© Copyright Australian Mathematical Society 1983

94

https://doi.org/10.1017/S0334270000003933 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003933


[21 Internal wave interactions 95

defined by

»2 = -§f. <•• •>
jo being the mean density.

The constant N2 representation is particularly inaccurate in thermocline re-
gions where N2 is often sharply peaked. A profile more appropriate to this region
which is employed in the present study, is N2 = g/?sech2 z, corresponding to the
dimensionless density profile p = exp(-/?tanh z). In the unbounded case, a
closed-form solution to the linear problem is known for this profile. There are an
infinite number of modes, the first four of which are tabulated in Section 2.

Given the existence of a closed-form solution to the linear problem it is natural
to employ it in a finite-amplitude study, where the linear solution becomes the
first term in a perturbation expansion in powers of e, a dimensionless amplitude
parameter. This is the approach due originally to Stokes and it was employed in
the context of internal waves by Thorpe [16] who determined the first effects of
nonlinearity on the wave profile. By continuing to the next term in the expansion
the first correction to the frequency due to nonlinearity can be computed and this
we have done in Section 5 of the present article.

Returning to the subject of resonant interactions, the past investigation most
related to our own was the analytical and experimental study of Davis and
Acrivos [3] on interacting waves in a pycnocline region. These authors also
employed the profile N2 = g/8sech2 z, but in order to conform with their experi-
mental configuration they treated the finite-depth case. Closed-form solutions to
the linear eigenvalue problem are then no longer available, so they used ap-
proximate solutions valid for long wavelengths. It will be seen below that some
interesting special cases are excluded as a result.

Although from a mathematical viewpoint resonant interaction theory describes
an energy sharing process, it was found in the experiments reported in [3] that
localized instabilities often resulted. Similar observations for standing waves in a
roughly constant N2 fluid were reported by McEwan [8]. Hence, the theory is
relevant to the breaking and subsequent dissipation of internal waves. For
two-dimensional, horizontally propagating waves it is well-known that the neces-
sary conditions for triad resonance among three waves with wavenumbers /cy and
frequencies Uj,j — 1,2,3, are

kx ± k2 ± k3 = 0 and w, ± «2 ± co3 = 0. (1.2)

Denoting the corresponding wave amplitudes by AJt it is found that the evolution
of the system is governed by

dA±_ . n dA1_
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96 N. T. Hung and S. A. Maslowe [3]

and
dA
- ^ = iy3AlA2, (1.3)

where T = et is a slow time scale and * denotes the complex conjugate. The
coupled equations describe a sharing and exchange of the total energy as
discussed, for example, in the survey article by Phillips [14]. To interpret these
equations in a stability context (in keeping with the experimental observation of
[3] and [8]), one takes A2 and A3 « Ax and linearizes equations (1.3) on that basis.
If y2 and y3 have the appropriate signs, then A2 and A3 can exhibit exponential
growth for intervals of time such that they remain small in comparison to Ax. For
the purposes of this investigation, however, all the Aj will be regarded as O{\) in
magnitude.

A particularly interesting interaction involving only two waves can occur if a
pair of modes have the same phase speed, but their wavenumbers differ by a
factor of two. This phenomenon, known as "second harmonic resonance", has
been analyzed previously in connection with capillary-gravity waves by Simmons
[15] and McGoldrick [11]. In Section 4, its occurrence in the internal wave context
is illustrated with the present thermocline model. The reader familiar with this
topic will recognize that second harmonic resonance can be viewed as a special
case of triad resonance in which two of the waves coincide; we will, in fact, take
advantage of that viewpoint in order to condense the mathematical presentation.
At the same time, however, it should be pointed out that this case offers
significant advantages in making comparisons with experiment due to the gain in
simplicity of having only to deal with two wave components. This was noted by
McGoldrick [10] in his surface wave experiments and it is equally true in the
numerical work reported in Section 4, where the finite-amplitude results are
compared with solutions of the full nonlinear governing equations.

Before proceeding to the analysis, we cite briefly the somewhat related work on
vertical propagation of internal waves through a thermocline region. The latter
problem has been treated by Mied and Dugan [12] using a modification of the
density profile employed here, namely, N2 = iV0

2(l 4- fisech2 az). By having a
constant, but nonzero, stratification outside of the pycnocline region a solution
oscillatory in the z-direction can be obtained and interpreted as a vertically
propagating wave. These authors were able to choose values for the constants B
and a that enabled a good fit to be achieved with observational data. It is also
possible to treat this sort of problem in the framework of resonant interaction
theory. Cases in which the interaction coefficients, y in (1.3), vanish are equiva-
lent to what Phillips [13] has termed a "window". It will be seen below that such
cases arise frequently with the density profile employed here, which is effectively
a horizontal wave-guide model.
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[4] Internal wave interactions 97

2. Basic equations

We consider the propagation of two-dimensional waves in a stratified fluid with
a length scale / characterizing the thickness of the stratified region. Outside of this
wave-guide region the fluid is taken to have a constant density. Making a
Boussinesq-like approximation the dimensionless equations of motion governing
the density and vorticity are

P, + £(p,tf) = 0 (2.1)

and

ty,+ {$(*+>+)} ~gPx = 0, (2-2)
where \ is the Jacobian with respect to x and z and A is the Laplacian operator.
The stream function \p is related to the velocity components by u = i//z and
v = -\}/x. Time has been scaled with 7V0, a characteristic value of the Brunt-Vaisala
frequency, whereas the velocity components are nondimensionalized with respect
to Nol.

A perturbation approach will be employed in which $ and p are expanded in
powers of e, a dimensionless amplitude parameter. The wave amplitudes are
assumed to vary on a slow time scale T = et, this scaling being appropriate to
resonantly interacting monochromatic waves. The modifications required to deal
with wave packets will be outlined subsequently.

We introduce scaled perturbation quantities by writing ^ = e\p(x, z, f, T), p =
ep(x, z, t, T) and transform time derivatives according to

A A + A
8r "" 9/ e 9 r '

It is then found that \p and p satisfy

P , -p '& + e(p*4-&ft ) = 0, (2.3)
and

*+„ + * 2 i L + 4 2 H r + {$•(/>, + )}x + {U*+, * * ) } , ] = 0. (2-4)
To recover the already known results of linear theory, we set e = 0 and write

j = Ql(z)E and j> = Px(z)E, (2.5)

where

E = exp{i(kx - ut)}. (2.6)

After substituting into (2.3), (2.4) and separating variables, it is found that i>, can
be eliminated from the system and <&, satisfies the ODE

( $, = 0, (2.7)
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0where the phase speed c = u/k. For the unbounded flow considered here, $
as z -» ± oo.

This eigenvalue problem was first solved in 1948 by P. Groen who transformed
(2.7) into the hypergeometric equation (alternatively, the change of variable
T = tanh z leads to the associated Legendre equation); a more accessible refer-
ence, however, is the paper of Thorpe [16]. A complete set of modes exists and for
future reference the first four of these are given in Table 1.

TABLE 1. The first four internal wave modes.

Mode
Number

1

2

3

4

S*(l -

SkT(\

• .

S"

SkT

k + 3/2 -
Ar+1 J '

* + V2 „,
k+\ J )

Dispersion
Relation

2_ gP
k(\+k)

SP
- ( l + * ) ( 2

gP
" (2 + *)(3

«8
- (3 + *)(4

+ *)

+ *)

+ *)

Symmetry
of*.

Even

Odd

Even

Odd

The notation 5 = sech z and T = tanh z has been used in expressing the results in
Table 1 and will be employed in the analysis to follow.

3. Triad interactions

To derive the evolution equations (1.3), we expand ^ and p in the following
perturbation series

ep ~ £2p<2>

and substitute these series into (2.3) and (2.4). The lowest-order terms satisfy the
equations of linear theory and are expressed as a superposition of normal modes
in the form

*(1)= 2 {AJ(T)*1J(Z)EJ+*}
7 = 1

and

7=1

where E} = e\p{i(kjX — u>jt)} and * denotes complex conjugate. Without loss of
generality, we consider the case where the k} and wy are all positive so that the
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waves propagate to the right and the resonance conditions satisfied are

kt + k2 — k2 and w, + « 2 = B3. (3.1)

Substituting now into (2.3) and (2.4) leads at O(e2) to equations for p(2) and »J/(2)

and (2.4) yields

, P 0 ) ) } x

After examining the right hand side of (3.2), it becomes clear that in order to
separate variables, i//(2) must have the form

+ * + nonresonant terms, (3.3)

and the amplitudes A} satisfy (1.3).
By employing the resonance conditions (3.1) and the separation of variables

(3.3), it is found after a moderate amount of algebra that (3.2) yields the following
equations for the quantities $2y

:

+ (c, - c3)[kjCic3 + «,(c, + c3)](k,*u*\3 + k3*l34>

(3.4)

where; = 1 or 2 and i =j - (-\)J; $23 satisfies

£<D23 = 273

+ (gj852Afc|){2co2(c,

+ (c2 - c,)[cxc2k, + «3(c,

(3.5)

The 7y are determined by multiplying both sides of equations (3.4) and (3.5) by
their appropriate adjoint functions and integrating from z = -oo toz = oo. This
procedure is facilitated in the present case by the fact that the operator £ is
self-adjoint; hence, 3>l3, for example, is the required adjoint in imposing the
orthogonality condition upon equation (3.5). Because of the symmetry of the <E>,7,
we can determine by inspection whether or not a particular y = 0. There are two
cases in which resonance (7,^=0) takes place; these are when (i) all three
eigenfunctions are odd, or (ii) two eigenfunctions are even, while the third is odd.
In all other cases, the yy are zero.
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When there is a resonance, the interaction coefficient y,, for example, is given
by

( }

where the quantity in curly brackets is given in equation (3.4). Also, T = tanh z,
as before, and the range of integration has been halved by taking advantage of the
evenness of the integrands. The definite integrals, such as those appearing in
equation (3.6), can all be expressed in terms of beta functions.

To illustrate, we consider the interaction of two mode one waves with a mode
two wave; i.e., the relevant eigenfunctions are the following:

* , , = 5 * 1 , * , 2 = S*T and O13 = Sk\

An integral typical of the sort that must be evaluated is

/ = / - l r$ 1 1 * 1 2 * 1 3 r f r= (]T2Sk<+k*+k>dT.
Jo Jo

Noting that S = (1 - T2)l/2 and letting 6 = T2, we obtain

The ft functions can readily be evaluated using the identity P{m, n) =
T(m)T(n)/T(m + n). A further simplification is gained if kx + k2 + k3 is an
even integer. Most of the integrals can then be evaluated explicitly. In the case for
which results will now be presented, A:, + k2 + k3 = 2 and / = 2/15.

The numerical values of the interaction coefficients have been computed for the
following triad:

A:, =0.1217 k2 = 0.8783 k3 = 1.0
u, = 0.3294 w2 = 0.3777 w3 = 0.7071.

Corresponding to these modes it was found that Yi = 0.1561, y2 = -1.5685 and
Y3 = 0.0319.

The foregoing results can readily be generalized to include interacting wave
packets by introducing a slow spatial variable X = ex which the amplitudes
depend upon, in addition to T. It is well-known that equations (1.3) then take the
form

" 3 7 + aJ JX = iyJA'A»" > = 1 ' 2 ' 3 ' (3-7)

where u'(k) is the group velocity. Equations (3.7) arise in plasma physics, as well
as in a number of other applications, and the system can be solved, in principle,
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by the inverse scattering method. The reader is referred to the paper of Case and
Chiu [2], where special soliton solutions are presented and previous results are
reviewed.

4. Harmonic resonances

The phenomenon of harmonic resonance can occur when there are two waves
having the same phase speed, but their wavenumbers differ by some integer n. A
substantial simplification of the results above is gained in the case of second
harmonic resonance, i.e. n — 2. Equations (3.4) and (3.5) were, in fact, written in
a form that clearly exhibits this simplification—when c, = c2 = c3 most of the
nonhomogeneous terms vanish. The somewhat more difficult case n = 3 will be
examined subsequent to that of n = 2 which we now consider.

The stream function for this case is expressed as a sum of two modes by writing

im = AX{T)$U{Z)E + A2(T)^X2{Z)E2 + *,

where T = et, as before. The amplitude evolution equations are given by

—r1 - iY,A,A*, and -^1 = iT2A\. (4.1)

An energy integral can be derived from (4.1) which takes the form

= E, (4.2)

where £ is a constant. It is to be expected that F, and F2 have the same sign so
that the total energy is conserved and the interaction is in the nature of an energy
exchange.

Relatively simple expressions for F, and F2 will now be obtained directly from
the triad results. First, we note from symmetry considerations that F, and F2 are
nonzero only when $,, and $12 are both odd functions. Therefore, the reduction
from the triad case consists of evaluating initially a triad interaction in which
kx = k2, w, = w2 and all three eigenfunctions are odd.

We identify Ax in the triad case with A} in (4.1) and make the subscript
transformations 2 -> 1 and 3 -» 2 in (3.4) and (3.5). By carefully considering the
derivation of the triad results it is concluded that Yi -» F, and y3 -» 2F2, i.e. the
interactions contributing to F2 have been counted twice in (3.5). Hence, we arrive
at the following expressions for the interaction coefficients:

r , = _2fc, }0 J * " * « " and r2 = V ° " " • (4-3)
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102 N. T. Hung and S. A. Maslowe [91

To illustrate the application of these results, consider an interaction involving
modes 2 and 4. The resonance conditions are satisfied when c2 = gP/30 in which
case

<Dn = S2T(\ - 3T2), fc, = 2 (mode 4)

and
h- -m A (rv\r\Ac* i\

Substituting into (4.3) leads to the following results: T, = -0.2896 and T2 =
-0.2168.

It was noted earlier that the relative simplicity of the two-wave interaction
makes it an attractive example to employ in connection with numerical studies.
For small amplitudes and moderate time intervals the theory provides a check on
the numerical code. Conversely, once the accuracy of the computer program has

0.8 -

0.7 -

06 -

0.5 -

0.4 -

0.3 -

0.2

0.1 -

0.0

i 
1

1

' • - /

Theory
32' Computation
64' Computation

~-~v»^___^a2(x 102l

l i i . l l i 1 i

0.0 2.0 6 0 8.0 10.0

11x10') seconds

12.0 14.0 160

Figure 1. Amplitude variation as a function of time for a resonant pair of modes with the initial
maximum isopycnal slope of the short wave equal to 0.21.
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[10] Internal wave interactions 103

been established, it can be used to assess the limitations of the theory. An
investigation of this nature has been made by Lucas, Metcalfe and Maslowe [7]
who employed a pseudospectral code with 64 Fourier modes in each direction to
solve eqs. (2.3) and (2.4). The initial conditions were chosen to permit an exact
solution of the amplitude (4.1) in terms of Jacobian elliptic functions.

From the results in Figure 1 for a case in which the amplitudes are relatively
small, it is seen that impressive agreement is possible for long periods of time
when using 64 modes. With 32 modes, the agreement is satisfactory, but after
5000 seconds there is some departure of the numerical solution from the correct
values due to the buildup of phase errors. In Figure 2, the initial amplitude of the
shorter wave has been doubled and we see that the theory begins to break down
as the real amplitude a, becomes substantial after about 1600 seconds. A further
doubling of a2(0) produced a continuation of this trend with the numerical
solution departing from the theoretical curve after 400 seconds. However, in the
latter case (which is not shown here) both the a, and the a2 curves diverge from
their theoretical trajectories.
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•
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Figure 2. Amplitude variation as a function of time for a resonant pair of modes with the initial
maximum isopycnal slope of the short wave equal to 0.42.
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104 N. T. Hung and S. A. Maslowe [ 11 ]

Let us now briefly consider the theory for n — 3 corresponding to third
harmonic resonance. This interaction, which has been discussed by Bretherton [1],
is somewhat less important because it occurs on a slower time scale, namely, e2t.
The necessary condition for its occurrence is that u(3k) = 3u(k) and to obtain
nonzero interaction coefficients both eigenfunctions must have the same parity,
i.e. be even or odd. Referring to the mode tabulation in Section 2, it can be seen
that modes 2 and 4 satisfy these conditions when k = 3 and k = \, respectively,
and c2 = g/?/20. We omit the details for this case, but note that the nonlinearity
is cubic and the amplitude equation is given in Section 7 of [1].

An interesting possibility that has not been discussed previously in the litera-
ture is that of simultaneous second and third harmonic resonance. The basic
disturbance for each triad takes the form

where the amplitudes again evolve on an et time scale. Although the triad
conditions (3.1) are satisfied, the evolution equations that result from the analysis
are not identical with those obtained in Section 3 due to the presence of second
harmonic resonance. Instead, we are led to the following set of amplitude
equations:

d A x •' • - ) , ( 4 . 4 a )

dA
- - :l- *2 -1- - * 4*), (4.4b)di

and

dA

A conservation equation can be derived from (4.4), namely,

\AA2 \A '2

(4.4c)

2 | | I " " J | | IJZ | Ul I T7

Y21 Yn Y12

To demonstrate that the requisite conditions for such an interaction can be
satisfied with the present thermocline model, we have worked out the following
example:

4>n = 5 ( 1 - | 5 2 ) (mode 3, A:, = 1),

4>12 = S2T (mode2,A:2 = 2),

$1 3 = S3 (model,A:3 = 3).

The values obtained for the interaction coefficients in (4.4) are y,, = yX2 = -2 /11 ,
Y21 = -64/1155, Y31 = -8 /33 and yi2 = -3.5 X 1(T3. Although we have not
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[12] Internal wave interactions 105

studied in detail the properties of (4.4), it seems likely that they are similar to
those of (4.1) due to the existence of similar conservation laws.

5. Nonlinear self-interaction and wave packets

In this section, we depart from the analysis of resonant interactions and
consider the more traditional weakly nonlinear expansion appropriate to a
monochromatic wave train. This is followed by an extension of the analysis to
include wave packets.

For a monochromatic wave, the expansion for 4> is written

£<£ ~ e[A(rl)9iE + A*®}E*] + E2(A2$2E
2 + *)

+ e3[A2A*®3lE + y43$33£3 + *] + • • • , (5.1)

where T, = e2t and a similar expansion is employed for p. At 0(e3) secular terms
arise due to the interaction of E2 and E* terms so that $3 1 satisfies a nonhomoge-
neous equation of the form

A2A*t%, = f(z)^- + g(z)A2A*. (5.2)

Separation of variables is achieved by writing the amplitude equation

j ^ = iyNLA2A*, (5.3)

where yNL is fixed by imposing a solvability condition on (5.2). Anticipating the
extension to wave packets, we will write down a more general result from which
yNL is obtained by neglecting the contribution due to packet effects. This result,
found independently by Koop and Redekopp [5] and Liu and Benney [6], can be
written

yyNL + y 0 2 k / 0 0 2^d - v-v

where Qo represents the contribution of the packet-induced distortion, so it will
be neglected initially. Equivalent results were derived previously by Grimshaw [4]
using an averaging method.

We have computed yNL for the first four modes in the case p = exp(-/? tanh z).
However, due to the length of these expressions, only the results for modes 1 and
2 are presented here; they are, respectively,

_ (4k2 \ (2k + \)(6\k2 + 61k + 18) T(2A:)r(A: + 1/2) , ,
~ \ « / (3k + 2)(4k + l)(4fc + 3) T(k)T(2k + 1/2) l j
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106 N. T. Hung and S. A. Maslowe [ 13]

and

_ / 12k2 \ (2k + l)(2k + 3)(9£3 - \3k2 - 56k - 28) T(2A:)r(A: + 1/2)
~ \ u / (3Jk + 5)(4k + l)(4* + 3)(4Jt + 5)(4Jt + 7) T(A:)r(2A: + 1/2) "

(5.5b)

The foregoing theory can be generalized to treat wave packets by introducing the
slow spatial variable X = ex and then transforming to a coordinate system
moving at the group velocity through the change of variables (• = X — W'T and
T, = ET. The amplitude A($, T,) now satisfies the nonlinear Schrodinger equation

M .\ a" d2A 2 1 { .

whose general solution characteristics have been established in recent years; a
summary of these characteristics in the context of water waves is given by Yuen
and Lake [17]. As noted below, the properties of the solution depend crucially on
the signs of w" and y.

Before presenting the results for these quantities, we consider the interesting
phenomenon of mean flow modification due to packet effects. The ^-dependence
of A leads to additional terms at O(e2) and (5.1) must be modified accordingly.
Specifically, we include terms of the form

^ | (5.7)

the reader is referred to (2.11) of [5] for the equation satisfied by %, whereas

To illustrate certain complexities that arise, we consider the case of a mode 1
packet. After transforming to T = tanh z as the independent variable, it is found
that % satisfies the ODE

± {(1 - 4*(1 + kf% = 4(k/c)(l + *)2(1 - T2)kT.

(5.8)

The solution to (5.8) can be expressed as an infinite series of Legendre polynomi-
als which are bounded at T = ±\, but 3>0 does not vanish there. When k = 1, for
example, the solution of (5.8) is simply

* 0 = (4/5c)r(l - T2) - (8/75c)r (5.9)

and the second term leads to an 0(e3) vertical velocity as z -» ± oo. This indicates
that the expansion scheme should be modified slightly to deal with unbounded
flows. Fortunately, there is no difficulty in computing y0, the packet contribution
to y, because Qo contains d<bo/dz rather than $0 which does vanish as | z | -» oo so
that Qo is well-behaved. Similarly, the mean density term, denoted 2(z) in [5],
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causes no difficulty and is found to be

2 = -8S2r(l5S2 + 8)/75 (5.10)

when k = 1 and after correction of a sign error in (2.12) of [5] (c/. equation (3.14)
of [6]). Finally, after a lengthy calculation we obtain

Y0 = -0.1097/co. (5.11)

Thus, Y0 turns out to make a very small contribution to y, at least for the lowest
mode with k = 1. For purposes of comparison, when k = 1, (5.5a) yields

Y*L=6.674/« (5.12)

and, consequently, y = 6.564/u.
With the coefficients of (5.6) determined, the stability of the wave train to

sideband modes can be established. If u"y > 0, instability occurs, where this
instability means physically that envelope solitons will develop in the primary
wave over long periods of space and time. For the mode 1 wave

Ak\\+kf
( 5 1 3 )

and, comparing with the results above, we see that u"y < 0 when k = 1. This
means that dispersion and nonlinearity act in concert to cause the wave packet to
disperse and decay.

The above conclusion was reached for k = 1, but comparing with the results of
Liu and Benney [6; Section 4.1] for a constant N2 case it seems likely to be true
for short waves in general. These authors found, however, that y changes sign for
long waves which consequently tend to form envelope solitons. This probably
occurs with our thermocline model too, because yNL decreases in magnitude with
k; it is reduced by 66%, for example, when k = {. Should Yo» which is negative,
increase in magnitude as k -» 0 it is clear that y will become negative for small
values of k.

6. Concluding remarks

Resonant interactions have been considered in the case of an unbounded
thermocline model and closed-form expressions obtained for the interaction
coefficients. The advantages of having explicit results for these constants are
evident; one can readily identify circumstances in which strong interactions will
take place and, conversely, it is clearly demonstrated that there exist cases where
no interaction occurs to this order despite satisfaction of the resonance condi-
tions.
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These results should be relevant to the real ocean even though it cannot happen
often that three waves exactly satisfying the triad conditions arrive at the same
place at the same time. McEwan and Plumb [9] in an experimental and theoretical
study of a constant N2 fluid have considered a more realistic detuned situation
involving two waves initially; the third component is generated by sums and
differences of the wavelengths and frequencies of the interacting pair. Even
though their configuration and point of view (based on parametric instability)
differs somewhat from our own, many of the ideas discussed in [9] concerning the
nature of resonant interactions in the ocean would appear to be equally applica-
ble to the model employed in this paper.

In the foregoing context, the case of second harmonic resonance is of particular
interest because it really requires only one wave to get started; the second
harmonic is generated automatically by weak nonlinear effects. The ease with
which this phenomenon can be observed experimentally was noted by Mc-
Goldrick [10] in his investigation of capillary-gravity waves and it is somewhat
surprising that similar observations have not yet been reported for internal waves.

There are several obvious directions in which the present analytical study can
and should be extended. For example, the long-wave/short-wave resonance
occuring for a three-layer model, as reported in [5], can also take place with the
present thermocline model and a corresponding analysis is possible. The effects of
a mean shear are also of interest in many regions of the ocean. It is clear that the
interaction coefficients computed in Sections 3 and 4 will be greatly modified by
the presence of a mean current because the eigenfunctions of the linear problem
are then no longer symmetric. Certainly, the "window" cases in which the
interaction coefficients vanish, will occur much less frequently. The modification
due to finite Richardson number effects, even in the cases where F, and F2 are
nonzero, is substantial according to the numerical results of Lucas et al. [7]. For
example, with a velocity profile w = tanh z the interaction time scale is doubled
when the Richardson number is unity in comparison with the infinite Richardson
number situation where shear is absent. Numerical difficulties are encountered
sooner when shear is present according to [7], so more Fourier modes are
required.

The propagation of wave packets may be of particular interest when there is
shear, because the possibility arises of a group-velocity critical layer, where
«' = u(y). In such a case, the analysis of Liu and Benney [6] of wave packets in
stratified shear flows would require some modification, as noted- in their paper.
Finally, a brief comment is in order about the nonvanishing of <J>0, the mean flow
distortion, as | z | -» oo. In retrospect, this is not surprising because the mean flow
induced by the packet is analogous to a long wave and the modifications leading
to the Benjamin-Ono equation in that case are well known. We have not extended
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our analysis to deal with that difficulty because, as noted in Section 5, it seems to
have little effect on the value of y, the coefficient of the nonlinear term in the
amplitude equation.
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