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CONFIGURATIONAL STATISTICS

By J. F. NAGLE
(Physics Department, Carnegie—Mellon University, Pittsburgh, Pennsylvania 15213, U.S.A.)

AsstracT. Theories of the dielectric constant in ice differ in three fundamentally different ways that are
often confused with each other. First, there is the choice of interactions to include in the model, notably
whether to try to include long-range dipolar interactions as in the Kirkwood theory or to include only the
short-range ice-rule interactions. Second, there is the choice of the kind of statistical quantity calculated,
e.g. the Kirkwood correlation factor g or the polarization factor G, which Stillinger and Cotter showed to be
different. Finally, there is the choice of the kind of computational tool used, and in original papers this
choice often obscures the first two differences. With these distinctions in mind a review is given of current
theoretical calculations of the diclectric constant and the residual entropy and how the different theories
relate to each other and to experiments.

RESUME. Statistique de configuration. Les théories relatives 4 la constante diélectrique de la glace divergent
fondamentalement suivant trois directions qui sont souvent confondues les unes avec les autres. En premier
licu, il y a le choix des interactions a inclure dans le modéle: en particulier, on peut considérer les interactions
dipolaires & longue distance comme dans la théorie de Kirkwood ou bien alors les interactions a courte
distance suivant les régles de Bernal et Fowler. En second lieu, il y a le choix de la grandeur statistique
calculée, par exemple le facteur de corrélation de Kirkwood g ou le facteur de polarisation G qui est différent
tel que I'ont montré Stillinger et Cotter. Enfin, il y a le choix de la méthode de caleul utilisée et, dans les
travaux précédents, ce choix masque souvent les deux premiers points. Avec ces distinctions présentes a
Iesprit, une revue de calculs théoriques concernant la constante diélectrique et entropie résiduelle est
proposée et nous expliquons comment les différentes théories sont reliées d’une part entre elles et d’autre
part aux expériences,

ZUSAMMENFASSUNG. Konfigurationsstatistik. Die Theorien der Dielektrizititskonstante von Eis weichen in
drei grundlegend verschiedenen Weisen voneinander ab, die oft miteinander verwechselt werden. Als erstes
stehen die Wechselwirkungen zur Auswahl, die in das Modell miteingeschlossen werden sollen, im besonderen,
ob versucht werden soll, Dipolwechselwirkungen grosser Reichweite einzubezichen wie in der Kirkwood-
Theorie oder nur die kurzreichweitigen Wechselwirkungen entsprechend den Bernal-Fowler-Regeln,
Zeitens hat man die Wahl der zu berechnenden statistischen Grésse, z.B. des Kirkwood-Korrelationsfaktors g
oder des Polarisationsfaktors &, der nach Stillinger und Cotter davon verschieden ist. Schliesslich kann man
die Art der rechnerischen Mittel auswéhlen, und in den Originalarbeiten verdeckt diese Wahl oft die ersten
zwei Unterschiede. Im Hinblick auf diese Unterscheidungen wird ein Uberblick {iber die gegenwiirtigen
theoretischen Berechnungen der Diclektrizititskonstante und der Restentropie gegeben, sowie iber die
gegenseitige Stellung dieser verschiedenen Theorien zueinander und zu den Experimenten.

1. INTRODUCTION

The pioneering work of Bernal and Fowler (1943) and Pauling (1935) showed that ice is
sufficiently disordered to present interesting and difficult configurational problems but with
a sufficiently simple kind of disorder that there was reasonable hope that definitive quantita-
tive conclusions could be drawn. In particular, the mathematical problem of the residual
entropy is sufficiently simple so as to be communicable to mathematicians and elegant enough
to appeal to them. But even though the formulation of the mathematical problem is simple
and elegant, the only exact calculations are for hypothetical square ice (Lieb, 1967) which is
the simplest two-dimensional analogue of three-dimensional hexagonal or cubic ice. However,
the two-dimensional results are extremely valuable as a testing ground for the approximate
calculation methods which are used to study the three-dimensional ices. This development is
reviewed in Section 4.

The theory of the dielectric constant of ice also involves a configurational problem even
more difficult than the residual entropy. In the past this difficult configurational problem has
tended to obscure the theoretical foundations. In particular, two of the giants in statistical
mechanics, namely Onsager and Kirkwood, had quite different fundamental equations, as is
reviewed in Section 2. This fundamental difference cannot be resolved by computation.
Since it appears that theoreticians are about equally divided between the two theories, an
experiment is proposed in Section 2 to resolve the issue.
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The theory of the dielectric constant has also been confused by the existence of two
quantities ¢ and G called correlation or polarization factors. At the time of the last Ice
Symposium it was believed by most researchers that there was only one correlation factor g
named after Kirkwood. However, Stillinger and Cotter (1973) showed that things are not so
simple. Their ideas were developed further by Nagle (1974[a]) with conclusions quite
different from those of Stillinger and Cotter. This development, which is quite subtle but of
great importance for the interpretation of and the feasibility of doing approximate calcula-
tions, is discussed in Section 3.

2. THE BASIC DIELECTRIC-CONSTANT EQUATION

The Kirkwood-Frohlich theory of dielectric fluids (Kirkwood, 1939; Frohlich, 1949,

ch. 2) is often extended to ice and yields

Bk e i g (1)

R sehes W 3kT’ g
The dipole moment p is related to the dipole moment uy of the water molecule in the vapor
and the high-frequency dielectric constant e by u = (exo+2) py/3. The Kirkwood correla-
tion factor g, the calculation of which requires the use of configurational statistics, accounts
for pair correlations due to short-range forces. Equation (1) was an extension of Onsager’s
theory of dielectric liquids which ignored short-range forces and therefore had no g factor.
However, Onsager (1936) in his original liquid-dielectric paper noted that g in condensed
hydrogen-bonded systems should not be expected to be simply related to uy but should be
even more enhanced. For ice Onsager (Onsager and Dupuis, 1960, 1962; Onsager and
Runnels, 1969) consistently used a different formula, which is analogous to one developed
by Slater (1941), for KDP, namely,

7N Gu?
w—en = 5 3:T’ (@)

to estimate y in ice from measured values of the diclectric constant,

In the next section we will discuss the relation between g and G in Equations (1) and (2).
Anticipating that discussion gives ¢ = G for real ice with a non-zero concentration of Bjerrum
defects. Thus, the Equations (1) and (2) differ by a factor f = 3e,/(2¢,+-€x) & 3. The
physical models corresponding to Equations (1) and (2) both have the Bernal-Fowler—
Pauling ice rules, with a few Bjerrum faults, and the statistics associated with these rules
determine g and G. The model in Equation (2) assumes that all interactions, including
dipolar interactions, are subsumed in the ice rules, and that the effective electric field seen
by a dipole is just the applied field E. In contrast, the Kirkwood-Frohlich model modifies the
E field seen by a central dipole due to the interaction with the ice, with dielectric constant
€, that is outside a large imaginary sphere containing the central dipole. The basis of this
modification is entirely macroscopic, but, as will be discussed in more detail in the next
section, it may be thought of as the effect of long-range dipolar interactions which might be
supposed to exist in addition to the ice-rule interactions.

Hollins (1964) has discussed the difference between these two approaches and suggests
that the ffactor should be absent. He suggests that the ice crystal consists of constant tubes of
polarization along the bonds which terminate only at the surface. Thus, V-P = 0 and the
field seen by a dipole would be the applied field E with no modification, thus supporting the
model in Equation (2). The omission, or at least the reduction, of long-range dipolar inter-
actions also follows from this picture as well as from the discussion given by Slater (1941).

The reader will perhaps have surmised that this reviewer prefers Equation (2) to (1).
However, too many competent researchers have believed in Equation (1) to dismiss it lightly.
The best way to decide which, if either, theory is correct is by experiment. The experimental
problem essentially is to determine the dipole moment u at low frequencies. If one could
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apply a large enough field to orient all the protons and measure the polarization, then one
would have p. = (F/V) P. Unfortunately, such a large field would enhance p by molecular
polarization, if it did not first cause dielectric breakdown. Suppose, instead, that neutron
diffraction were used to measure the proton occupational probabilities &, and «, in the two
positions on each bond in a small field E. For cubic ice with the field along a crystal axis this
would give
(otz—a)) Np/V =P = (¢,—1) E. (3)

For hexagonal ice the equation is only a little more complicated. To distinguish between the
two theories would require a measurement of «,—a, to about 10%. An experimental
resolution of this problem would also be important in understanding cooperative phenomena,
such as ferroelectricity, in other hydrogen-bonded crystals.

3. THE CORRELATION FACTORS (G AND g

The Kirkwood correlation factor g is defined for isotropic systems (Stillinger and Cotter,

1973) as
g =lim lim p=2 3% (upy), (4)
w—+® Vsw jinw
where w denotes a large sphere containing the central dipole labelled 1. The order of the
limits means that the entire system " is always much larger than the large sphere w, so the
correlations are never summed over all molecules j in the system. This contrasts with the
definition of G given for isotropic systems by

N
G = Jlim TR IR (5)
0 F=1
where Nis the total number of dipoles and the correlations are summed over all molecules in

the system.

In this paragraph the derivation of Equation (5) will be given to help avoid any misunder-
standings of its meaning and origin. Letting E be the internal clectric field, the partition
function for the model described by Equation (2) is

Z = Zstates €Xp (—Bi w'E) ’ (6)

and the polarization P is

.
P = J ' Zgates i 1e EXP(—BZ Hi'E)a (7)

1=1
where 1g is the unit vector in the direction of the field. Taking another derivative with
respect to E, proceeding to the zero-field limit to obtain the electric susceptibility, and using
Equation (2) which defines (5, one obtains

N
G = 39“?2{((@, “1g) (- 1g) . (8)

The simplification of Equation (8) to (5) follows easily for cubic ice by symmetry since the
sum in Equation (8) is the same when 1 is taken in any of the three directions parallel to the
three orthogonal dipole pair types, and Equation (5) is just the average of the three sums.
For lattices with lower symmetry, such as hexagonal ice, the dielectric constant and hence G
(and also ¢) will depend on the field direction and so no such simple reduction of Equation (8)
to Equation (5) is possible. Tn Kirkwood’s (1939) paper one would not take the step from
his equation (7) to equation (8) for anisotropic lattices and this leaves one an equation for g
similar to our Equation (8) for . However, the calculations to be discussed in the next
section show that G is very close to G, for hexagonal ice and so no real harm is done by
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thinking about Equations (4) and (5). In the case of square ice only four of the six H,O
configurations have dipole moments. Using the square lattice symmetry reduces Equation (8)
to Equation (5) but with a factor of § to prevent undercounting due to the configurations with
zero moment, However, it must be emphasized that this difference is only a local geometrical
complication similar to the anisotropy complication in hexagonal ice and does not affect the
use of square ice as a testing ground for approximate methods of calculation.

In this paragraph an alternative but completely equivalent form for G is given which is
more useful for some of the computations. Let n = n,—n_ be the net number of dipoles
pointed in the direction of the field. Then the partition function is

N
2= 3 W) exp (nu), (9)
where W(n) is the number of states with polarization P = ap./N. Using the maximum-term
theorem
In 2 = maxy, [#ppl+In W(n)], (10)
gives
Bul = —d [In W(n)]/dn. (11)
Taking the derivative of Equation (11) with respect to n gives
d* [In W(n)]/dn* = —Bp (dE[dn) = —(Bu?|N) (dE/dP)
i 2N (12)
= —4mPp?|N(eg—em).

From Equations (12) and (2) one therefore has

G = —3[Nd?In W(n)[dn2] 1. (13)
This formula relates G to the second derivative of the entropy with respect to the “configura-
tional® polarization n/N. In this form it is apparent that G/3 is the same as the I' defined by
Hubmann (unpublished) and his analysis of NH;-doped ice gives the result I' = 0.90+5%
or G = 2.704-0.15.

Until a few years ago it was widely supposed by most researchers that the Kirkwood
factor g in Equation (4) and G in Equation (5) were the same. However, spurred by Monte
Carlo calculations (Rahman and Stillinger, 1972) that give ¢ & 2.1 whereas series approxi-
mations to be discussed later gave G & 3, Stillinger and Cotter (1973) convincingly argued
that g and G should not be equal for perfect ice which obeys the Bernal-Fowler-Pauling ice
rules completely. The reason for the possible difference between g and G comes from the fact
that rigid ice rules cause very long-range correlations which fall off slowly with distance with
a power-law dependence (Sutherland, 1970)

(papiry ~77% s> 0, (14a)
rather than the usual exponential decay
{papr) ~€xp (—«r); & > 0. (14b)

Because of Equation (14a) there may be a finite contribution outside the sphere in Equation
(4) (no matter how large) which contributes to G but not to g for perfect ice. The slow decay
of correlations in Equation (14a) is caused by a conservation rule in perfect ice which demands
that the net orientation of the dipoles in two parallel planes be exactly equal with no fluctua-
tions. For example, in hexagonal ice the conservation rule requires that the bond polarization
in the bonds parallel to the ¢-axis in one layer be exactly the same for all layers.

Another reason for correlations to decay algebraically as in Equation (14a) rather than
exponentially as in Equation (14b) is the long-range dipolar interactions implicitly assumed
in the Kirkwood-Frohlich theory of Equation (1) but absent in the Onsager—Slater theory of
Equation (2). In fact, if Equation (14b) held for the Kirkwood-Frohlich theory, then any
large volume w in Equation (4) would give the same value of g but the f factor in Equation (1)
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would depend upon the shape, which would be a fatal inconsistency. However, with the
exception of an early calculation by Powles (1952) none of the approximate calculations
which use Equations (1) and (4) actually include an electrostatic dipolar interaction in the
calculation of g. "This calculational procedure can be justified because the dipolar interaction
over a sphere, and only over a sphere, averages to zero. While this does not guarantee that
the value of g will remain unchanged when dipolar interactions are added, it does suggest that
such a change will be small for a sphere. This is the basis for asserting that the long-range
dipolar forces are included in the ffactor in Equation (1) and that the calculation of g involves
only the same ice-rule interactions that determine G in Equation (2). Thus, an answer to
Hollins’ (1964) question: “Why choose a sphere?” in the Kirkwood-Fréhlich theory is
that only for a sphere are the effects of the dipolar interactions and the ice-rule interactions
likely to be computationally separable into the f and g factors respectively.

The reader may have noticed that the product of ¢ = 2.1 and the factor f = 3¢,/(2¢,-1)
in Equation (1) give nearly the same result for ¢, as does Equation (2) with G = 3 and so it
might appear that the two theories are reconciled. Unfortunately, this is not the case, as we
now show. In real ice there is a small but non-zero concentration of Bjerrum faults which
relaxes the perfect ice rules and which breaks the conservation rule mentioned at the end of
the last paragraph. Thus, for large enough » = 74 the correlations decay exponentially as
Equation (14b) and not as Equation (14a). From the concentration of Bjerrum faults the
screening distance rg can be estimated as about 200 A and is certainly not macroscopic,
although it is large enough so that neutron scattering experiments to test the ice rules would
probably not be able to differentiate real ice from perfect ice. Thus, for real ice the correla-
tions outside a large Kirkwood sphere decay exponentially and there is only a vanishing extra
contribution to Equation (5). Therefore, G = g for real ice. It should be emphasized that
long-range dipolar interactions do not appreciably affect this conclusion because they do not
apply to the & calculation at all and, from the discussion in the preceding paragraph, can be
largely excluded from the computation of g.

Let us follow Stillinger and Cotter (1973) by introducing the parameter A = tanh Bw
where 2w is the energy required to create a pair of Bjerrum faults. Then, the perfect ice limit
is represented by A = 1 and real ice is represented by A close to but smaller than 1. Now, one
can consider ¢ and g as functions of A, and indeed this is natural for the series-expansion
calculations to be discussed in the next section and ought to be a relevant variable to any
calculation. The conclusion of the last two paragraphs is that

g(A) = G(X) foro < A <1, (15a)

but that it is possible that

g(1) < G(1). (15b)

Assuming Inequality (15b), then at least one of the functions g or G is discontinuous as a
function of X at A = 1. This has two implications. First, if the discontinuity is significantly
large, then an evaluation at A = 1 is not useful for real ice with A <= 1. Second, most com-
putations using approximate methods will give a smooth curve as a function of A. For example,
the Monte Carlo method requires a finite lattice and only a finite number of terms can be
obtained using the series method, so in both cases the very long-range correlations will not be
fully taken into account. Thus, approximation methods will necessarily be erroneous when
one is calculating discontinuous functions near the discontinuity. One is likely to have much
higher accuracy in approximating a continuous function, even if the function has a radius of
convergence given by [A| = 1. In the next section computational evidence is given that
supports the continuity of G at A = 1 and that therefore suggests that G is the best quantity
to compute for real ice even if one wishes to know g.

=3
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4. COMPUTATIONAL METHODS

Mathematically exact computations are rare in the statistical mechanics of cooperative
phenomena and ice researchers are fortunate in having some exact results for the perfect ice
model for which Equation (2) applies. The residual entropy of square ice was calculated
exactly to be S = R In (4/3)! by Lieb (1967) using the Bethe ansatz method developed by
Yang and Yang (1966) for quantum magnetic problems in one dimension. From ensuing
work by Sutherland and others (196%) and Lieb (1967) one can deduce (Nagle, 1973[b],
1974[a]) that

G =g/m=2.864.... (16)

The numbers for S and G for the square lattice are expected to deviate more from the Pauling
type of dendritic approximation, which gives § = R In (3/2) and G = 3, than the numbers
for the cubic or hexagonal lattices because of the existence of cycles with only four bonds in
the square lattice compared to the shortest cycles of six bonds in the three-dimensional
lattices, and this is borne out by the approximate calculations to be described. However,
there is no reason to believe that the configurational problems are qualitatively different in
square ice and in hexagonal or cubic ice. In particular, the zero-moment dipole configura-
tions in square ice are similar to the dipole configurations in three-dimensional ices whose
moments are perpendicular to the electric field. Therefore, any approximation should be put
to this square-ice test.

Rahman and Stillinger (1972) performed Monte Carlo calculations for ¢ using finite
cubic ice lattices with 4096 molecules and hexagonal ice lattices with 2 048 molecules.
These calculations gave the surprising result that ¢ & 2.1 whereas the earlier work had
strongly suggested g — 3. Unfortunately, no similar calculations have yet been performed on
the square lattice or for the quantity G, but it is expected that they will be made before the
next Ice Symposium.

By far the most successful approximate computational method for lattice statistical
problems in ice has been the series-expansion method. With this technique one first develops a
perturbation formalism in which each successive correction is a term in a power series. Then,
one evaluates exactly as many of the terms of the series as one can. The approximation part
of the method involves guessing the answer from the finite number of terms that one has
computed. The simplest way to do this is to add up only the available terms. Refined approxi-
mations attempt to extrapolate the behavior of the remaining terms from the first » terms.
The initial step in obtaining a useful series expansion for the residual entropy of ice was made
by DiMarzio and Stillinger (1964) and the method was developed by the present author
(Nagle, 1966, 1968, 1974[a]). The residual entropy was calculated for the three-dimensional
ices and also for square ice (Nagle, 1966). The subsequent computation of the exact answer
for square ice (Lieb, 1967) confirmed the reliability of the method and the calculated value
for real ice is in good agreement with experiment. In addition to its applicability to the ice
problem this series expansion method has been generalized in a form called the weak graph-
series method (Nagle, 1968, 1974[b]). As such it includes older series methods used for the
Ising model and has been applied to a number of other problem areas (Descamps and Coulon,
1977[a]; Wu, 1969; Nagle, 1968). Since the developments in this paragraph have been
reviewed elsewhere (Nagle, 1974[b]), let us proceed to the more recent work on the dielectric
constant.

At the time of the last Ice Symposium there were three groups completing dielectric
calculations using the weak graph-series method (Gobush and Hoeve, GH, 1972; Stillinger
and Cotter, SC, 1973; Nagle, 1973[b], 1974[a]). GH and SC were primarily interested in
computing ¢ and SC also computed the first three individual correlation functions. Both
groups straight-forwardly extended the expansion method for residual entropy to obtain
expansions for the correlation functions. This requires the counting of numerous graphs with
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two vertices of odd degree, which are all zero in the residual-entropy calculation. Even the
recovery of the dendritic approximation for g or G requires a summation over an infinite subset
of all such graphs. Under these circumstances it is not surprising that SC and GH restricted
their attention to cubic ice only. In contrast I was interested primarily in G. Also, in the
course of developing the series method I had noticed a trick that allowed the G series to be
renormalized so that the dendritic approximation was the first term in the series and higher
terms had no vertices of dcgrcc one and so were much less numerous. Therefore, it was not
too difficult to treat square ice and hexagonal ice with field parallel and perpendicular to the
c-axis as well as cubic ice (Nagle, 1973[b], 1974[a]).

The series are most naturally expressed in powers of the variable introduced by Stillinger
and Cotter (1973), namely A = tanh SBw where w is the energy of a Bjerrum fault. For the
individual correlation functions SC obtained series such as

{popr) = x—2x5— 1047 — 1289 — 1 54X11 — 1020815 — .. | {T77)

where x = A/3, for the nearest-neighbor correlation function of cubic ice. Gobush and Hoeve
(1972) did not obtain series for individual correlations but instead added them up algebrai-
cally to obtain the first twelve terms of the [ollowing series for cubic ice,

G = g = 1420432 4x3 4 4x4+ 425 — 4x6 — 1247 4 368+
+84x94-132x4"°-2g2x1 1+ 748x12 - 1124473+ ... . (18)

Both GH and SC call Equation (18) the series for g. My series for ¢ added the 13th term to
Equation (18) (Nagle, 1974[a]). That Equation (18) represents both G and g is expected
from Equation (15a) since they must be the same function for A < 1.

The evaluation by SC of the correlation-function series in Equation (17) at A = 1 gave
good agreement with the Monte Carlo results of Rahman and Stillinger (1972), thereby
supporting the result g & 2.1. Those correlation series, such as Equation (17), also indicated
quite strongly that the radius of convergence is at A = 1, consistent with the long-ranged
nature of the correlations for the perfect-ice model. In contrasl the series in Equation (18)
gives a value ¢(1) — G(1) = 3. The discrepancy here is due to the fact that the series in
Equation (18) cannot possibly represent g(1). SC point out in their study of the mth-neighbor
corrclation functions that all coefficients of x” with n = m are negative. Thus, for a Kirkwood
sphere including up to rth neighbors of a central dipole, the g series will coincide with the G
series up to 1 but for further terms the g series coeflicients will change character and become
increasingly negative. SC describe this as an “avalanche” of negative terms. For A < 1,
as the value of r becomes large, one will obtain ¢ = G because all the series are inside their
radii of convergence and terms beyond r become negligible. In contrast, at A — 1 the
correlation-function series are at the radii of convergence. In this case one should first sum the
correlation-function series for each mth-neighbor correlation and then sum these values over
m to obtain g in accordance with the Kirkwood formulation as SC did. This is a different
order of summation than the one given by Equation (18). Therefore, one has a simple
mathematical explanation of the difference between g(1) and G(1) because it is well known
that series which are only conditionally convergent can give different values when the order of
summation is changed (Knopp, 1947). I have given a simplified mathematical example that
shows this explicitly (Nagle, 1974[a]).

There are two G series for hexagonal ice, one for the field parallel to the ¢-axis and one
for the field perpendicular to the ¢c-axis. Neither series has been written down in powers of
instead a less natural grouping of terms was used (Nagle, 1973[1)]). Essentially all terms to
order A'T are included plus a subset of higher-order terms. It is clear that the two series are
formally different, but evaluation at A = 1 gives nearly the same values, G, x G, =95
Thus, conﬁquratmna] statistics contributes negligible anisotropy to the dielectric LOﬂbldnt
At the last Ice Symposium [ stated in discussions that the 15%, anisotropy measured by some
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groups (Humble and others, 1953), but not by others (Wérz and Cole, 1969), requires
additional intermolecular interactions in the basic ice-rule model. There is an alternative
suggestion by Jaccard (1964) that the bond dipole moments may be different for the bonds
parallel to the c-axis compared to the others, and if true this would avoid the need for further
computations. Jaccard’s hypothesis requires the configurational polarization factor G to be
very nearly the same in both directions whereas the additional interaction hypothesis requires
the c-axis G factor to be larger. It seems that neutron diffraction experiments could in
principle measure the configuration polarization in the two directions and so resolve the
question.

In the case of square ice the series calculation has been carried out to 11th order (Nagle,
1974[a]). The series for square ice appears more erratic than the one for cubic ice; it is also
typical in magnetic series expansion work that the series for three-dimensional lattices are
smoother than the series for two-dimensional lattices (Fisher, 1965). Nevertheless, various
ways of analysing the series lead to values of G(1) that are well within 0.05 of the exact result
(Nagle, 1974[a]). This leads one to the conclusion that G(A) is probably continuous at
A = 1 for square ice. Of course, this is no guarantee that G(A) is continuous at A = 1 for
hexagonal ice nor is there any direct evidence that g(1) < G(1) for square ice. But in the
absence of any reason why the two- and three-dimensional lattices should not behave qualita-
tively the same, it is most reasonable to conclude that g(A) is probably discontinuous at
A = 1 and that for real ice one should use g ® G = 3 in Equations (1) and (2).

Using ¢ = G = 3, ¢, = 91 at T = 273 K, p = 3.07 10**> molecules/cm?, and ex = 3.1
yields u = 2.42 D from Equation (1) and p = 2.93 D from Equation (2). In comparison
the formula u = (ex+2) uv/3 where the vapor dipole moment py = 1.83 D yields p = 3.1 D,
although, as discussed by Hollins (1964), one might think of using #? = 1.77 in place of ¢
and this gives p — 2.4 D. However, in this reviewer’s opinion the theory behind this kind of
formula is not so strong for a complicated hydrogen-bonded solid such as ice that these
latter dipole moments should be taken too seriously. Of much greater significance is the 21,
difference between the value 2.42 D given by Equation (1) and the value 2.93 D given by
Equation (2).

5. OTHER PROBLEMS IN CONFIGURATIONAL STATISTICS OF ICE

This review has been primarily concerned with the theory of the dielectric constant and
to a lesser extent the entropy in the low-pressure phases of ice I. However, there are other
problems for which configurational statistics are relevant.

At the last Ice Symposium, Villain and Schneider (1973) initiated the new development
in configurational statistics of calculating directly the Fourier transform x(q) of the correlation
functions so as to compare theory directly with elastic neutron scattering experiments. They
used a random-walk approximation which required the alteration of some of the graphical
contributions. Very recently, Descamps and Coulon (1977[b]) have applied the weak-
graph-series method directly to x(¢) and have obtained series for the hexagonal lattice up to
8th order with no graphical alteration. This expansion requires the counting of graphs with
two vertices of odd degree, similar to the correlation-function calculations. It would appear
to this reviewer to be similar in spirit to the calculation of the dielectric & in that it automati-
cally sums the series for all correlations up to a certain order rather than summing over as
many orders as possible for cach correlation and then summing over correlations. This
approach seems sensible and might avoid some of the problems associated with singularities
in the correlation functions. The results seem to be in qualitative agreement with the earlier
work of Villain and Schneider (1973) and the experiments (Axe and Hamilton, unpublished).

Also, high-pressure forms of ice are a challenging problem area, first to construct reason-
able models and then to try to do appropriate configurational statistics. Since ice 11l and
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ice VII order protonically at low temperatures (Kamb, 1973), and even ice VI has a
temperature-dependent g factor (Johari and Whalley, 1976), it is clear that the models will
require additional interactions compared with the ice I models and not just different geo-
metries. Since the nature of these interactions is not obvious, Kamb (1973) proposed that
quantities such as the configurational entropy be calculated directly from the measured
entropy probabilities of the proton configuration, thus by-passing a basic theory, and such a
formula of the same approximate type as Pauling’s (1935) dendritic formula was produced
(Nagle, 1973[a]). However, progress with other hydrogen-bonded systems which order at
low temperatures such as copper formate tetrahydrate (Allen, 1974) and tin chloride dihydrate
(Salinas and Nagle, 1974) make one optimistic about the prospects of dealing with the high-
pressure forms of ice at a more basic theoretical level.
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DISCUSSION

R. TAuBENBERGER: Do you think that there is a possibility of a dependence of the actual
measured (e,—ew) on geometry of the sample based on the differences in looking at the
correlation factors in Kirkwood’s terms in Onsager’s formula ?

J. F. Nacre: I think that both theories apply to shapes such as ellipsoids for which the £;
field inside the sample is constant and for which ¢,—ex = 9P/2E;. 1f one used unusual
geometries one would certainly have to apply corrections, similar to the demagnetization
factor in magnetic measurements, to obtain E; from the D field. But when this is done I
think both theories predict e,— e to be independent of the shape of the sample.

G. P. Jonari: I find it intriguing that two different theories, Onsager’s and Kirkwood’s, seem
to come to an agreement on the numerical value of g, when your value of G and Stillinger and
Rahman’s and Stillinger and the Cotter’s values of g are used. Could you perhaps further
comment on it ?

NAGLE: Yes, this is intriguing and perhaps it offers a clue that T have not been able to decipher.
The basic numerological difficulty is that for real ice with A < 1 we do not seem to be able
to avoid the conclusion that g(A) = G()) even though the best estimates give G(1)/g(1) =~
8 ~ f. From a basic point of view it would be accidental if the two theories did agree, because
Kirkwood’s theory implicitly includes interactions not included in Onsager’s theory.
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D. D. Krug: In your paper you point out that the equations of Onsager and Kirkwood are
irreconcilable since in the case where defects are present ¢ = G. Is it possible that the Onsager
equation is to be applied only to the defect-free system and when defects are introduced this
equation goes to the Kirkwood equation?

Nacre: This is an appealing possibility because, in ice with Bjerrum faults, Hollins’ tubes of
polarization can end inside the crystal at the faults and so should be more like an ordinary
dielectric fluid. Numerologically, this possibility is best accommodated by g(A) = G()) =~ 2
for A near 1 and G(1) = 3 because then the static dielectric constant is continuous at A = 1
as it should be. Unfortunately, the series calculations are not consistent with this because, in
the region of greatest reliability, namely A << 1, they give higher values, namely G(}\) ~ g
for A near 1. And in two dimensions the agreement of the series results with the exact results
at A = 1 is strong evidence that /() is continuous at A = 1. Therefore, at the present time,
I favour the view that there are simply two conflicting physical theories.
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