
Publications of the Astronomical Society of Australia (2023), 40, e037, 10 pages

doi:10.1017/pasa.2023.35

Research Article

A novel approach for variable star classification based on
imbalanced learning
Jingyi Zhang1, Yanxia Zhang1 , Zihan Kang1, Changhua Li2, Yihan Tao2, Yongheng Zhao1 and Xue-Bing Wu3
1Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China, 2National Astronomical Observatories,
Chinese Academy of Sciences, Beijing, China and 3Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China

Abstract
The advent of time-domain sky surveys has generated a vast amount of light variation data, enabling astronomers to investigate variable
stars with large-scale samples. However, this also poses new opportunities and challenges for the time-domain research. In this paper, we
focus on the classification of variable stars from the Catalina Surveys Data Release 2 and propose an imbalanced learning classifier based on
Self-paced Ensemble (SPE) method. Compared with the work of Hosenie et al. (2020), our approach significantly enhances the classification
Recall of Blazhko RR Lyrae stars from 12% to 85%, mixed-mode RR Lyrae variables from 29% to 64%, detached binaries from 68% to 97%,
and LPV from 87% to 99%. SPE demonstrates a rather good performance on most of the variable classes except RRab, RRc, and contact and
semi-detached binary. Moreover, the results suggest that SPE tends to target the minority classes of objects, while Random Forest is more
effective in finding the majority classes. To balance the overall classification accuracy, we construct a Voting Classifier that combines the
strengths of SPE and Random Forest. The results show that the Voting Classifier can achieve a balanced performance across all classes with
minimal loss of accuracy. In summary, the SPE algorithm and Voting Classifier are superior to traditional machine learning methods and
can be well applied to classify the periodic variable stars. This paper contributes to the current research on imbalanced learning in astronomy
and can also be extended to the time-domain data of other larger sky survey projects (LSST, etc.).
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1. Introduction

Stellar luminosity varies slowly in the long-term evolution, but
some stars exhibit noticeable luminosity changes on the short
timescale (compared to the evolutionary timescale). These stars
are called variable stars. Depending on the causes of variations,
they are classified into intrinsic and extrinsic variables (Eyer &
Mowlavi 2008). Among them, the periodic variables display
regular or semi-regular luminosity changes, and their periods are
usually correlated with the physical or geometric properties of
variables. The mass, luminosity, radius, and age of variables can be
inferred from their periods using empirical relations (Chen et al.
2018). Some variables, such as Cepheid stars and RR Lyrae stars,
can serve as standard candles for distance measurement (Alloin
& Gieren 2003). Moreover, as tracers, they reveal the structure,
chemical, and dynamical evolution of the Galaxy, as well as the
substructure of the halo (Zhang, Zhang, & Zhao 2018; Koposov
et al. 2019; Price-Whelan et al. 2019; Prudil et al. 2020). Therefore,
periodic variables are not only crucial for studying the structure
of galaxies but also can be used to constrain the stellar evolution
model.
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The development of large-scale sky survey projects, such as
the Wide-field Infrared Survey Explorer (WISE; Wright et al.
2010), Kepler (Koch et al. 2010), and Catalina Real-Time Transient
Survey (CRTS; Drake et al. 2017), has enabled repeated observa-
tions of large areas of the sky every few nights. With the accu-
mulation of abundant light curve data, the study of time-domain
astronomy has become imperative. Time-domain astronomy is
now entering a golden age, which spans across electromagnetic
wavelengths from radio to gamma-rays (Graham et al. 2017). In
this new era of data explosion, it is impractical to classify variable
stars by visual inspection alone. Therefore, it is essential to achieve
automatic classification of massive variable stars and assign the
unprecedented large number of light curves to known or unknown
classes. To better understand periodic variables, many previous
works have focused on their classification. Chen et al. (2018) used
the colours, periods, and shapes of WISE light curves to clas-
sify periodic variable stars by physical cuts. Petrosky et al. (2021)
applied the non-parametric features of WISE light curves and
physical cuts to distinguish periodic and aperiodic variable stars
and discussed the classification of periodic variables. The increas-
ing amount of data makes automatic classification necessary. At
present, machine learning has been widely used to solve classifi-
cation problems in astronomy, such as Support Vector Machine
(SVM; Peng, Zhang, & Zhao 2013; Jin et al. 2019), Random Forest
(Gao, Zhang, & Zhao 2009; Zhang, Zhao, & Wu 2021), and so
on. However, traditional machine learning algorithms may not be
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suitable for some cases, for example, when the dataset is extremely
imbalanced. Standard machine learning algorithms assume that
the number of samples belonging to different classes are roughly
equal. Therefore, the uneven distribution of data can impair the
performance of algorithms. The implicit optimisation goal behind
the design of these learning algorithms is classification accuracy on
the dataset, which causes the learning algorithm to be more biased
towards the majority class.

There are three kinds of approaches for dealing with class
imbalanced problems, namely data level, algorithm level, and
ensemble methods (Liu et al. 2020). Data-level methods are the
earliest and most widely used methods in the field of imbalanced
learning, which are also called re-sampling methods. They aim to
modify the training data to improve the performance of machine
learning algorithms. Algorithm-level methods mainly adapt tradi-
tional machine learning algorithms to correct their preference for
the majority class. The most popular branch of such methods is
cost-sensitive learning. By incorporating the costs into the clas-
sifier construction, cost-sensitive learning makes the prediction
more favourable to the minority (Zhang, Zhang, & Zhao 2020).
Ensemble methods combine data-level or algorithm-level method
with ensemble learning to obtain powerful ensemble classifiers.
Ensemble learning is favoured due to its excellent performance
on imbalanced tasks. Hoyle et al. (2015) used a tree-based data
augmentation method for apparent magnitudes, which provided
low-bias redshift estimation of galaxies. Hosenie et al. (2020, here-
after Ho20) classified the periodic variable stars of CRTS catalogs
using imbalanced learning, including Synthetic Minority Over-
sampling Technique (SMOTE; Chawla et al. 2002) and hierarchi-
cal classifier. However, the algorithm can be further improved by
addressing the sample imbalance and feature selection issues. Liu
et al. (2020) proposed a new approach (Self-paced Ensemble; SPE)
for imbalanced learning. Compared with the traditional meth-
ods, the SPE algorithm is an efficient, general-purpose, and robust
ensemble imbalanced learning framework. In this paper, we will
apply the SPE algorithm to classify the variables.

In this work, our main objective is to classify the periodic vari-
ables by imbalanced learning. The paper is organised as follows.
Section 2 introduces the CRTS survey and describes howwe obtain
the samples. In Section 3, we review the advantages and disad-
vantages of different imbalanced learning approaches, explain the
feature extraction of the sample and the hyperparameter optimi-
sation of SPE, and define the evaluation metrics of classification
performance. In Section 4, we apply the SPE approach, compare
and discuss its performance with Ho20, and present a Voting
Classifier, and then analyse the results. Finally, we conclude and
outline future work.

2. The data

The CRTS (Drake et al. 2017) is an astronomical time-domain
survey that covers 33000 deg2 of the sky to discover rare and
interesting transient phenomena. The survey used three dedi-
cated telescopes of the highly successful Catalina Sky Survey (CSS)
project to acquire data. Its limiting magnitude is about 20–21 mag
per exposure with time baselines from 10 min to 6 yr. The sur-
vey has detected about 500 million sources, which is a scientific
and technological test bed and precursor for the larger sky survey.
It also has produced a catalogue of 11 classes of periodic variable
stars for 6 yr of optical photometry. Here, we take these 11 classes

Table 1. The number of different classes of variables
in the CRTS dataset.

Classes of variable stars No.

RRab 4325

RRc 3752

RRd 502

Blazhko 171

Contact & Semi-Detached Binary 18803

Detached Binary 4509

Rotational 3636

Long Period Variable 1286

Delta-Scuti 147

Anomalous Cepheid 153

Type-II Cepheid 153

into account from the Catalina Surveys Data Release 2a for our
analysis, as shown in Table 1. For clarity, Fig. 1 presents folded
light curves of different kinds of variable stars. As shown in Fig. 1,
most kinds of variables have different light curve shapes and so
they are easy to discriminate; while some kinds of variables have
similar shapes, we need consider other parameters (e.g., period) if
we want to separate them.

3. The method

3.1. Imbalanced learning

The existing traditional imbalanced learning algorithms can
be categorised into three types: data-level, algorithm-level and
integration-level methods. The advantages and disadvantages (Liu
et al. 2020) of each method are summarised in Table 2. The main
reason why the existing methods fail in such tasks is that they
ignore the difficulties inherent in the nature of imbalanced learn-
ing. These difficulties may arise from the data collection process
(such as noise and missing values), or from the characteristics
of the dataset (such as class overlap and large data volume), or
from the machine learning model (the model capacity is too small
or too large) and the task itself (class imbalance). Besides the
class imbalance, these factors also significantly degrade the clas-
sification performance. Their impact can be further amplified by
the high imbalance ratio. Traditional imbalanced learning meth-
ods usually only address one or several of these factors, and the
final performance depends on the choice of hyperparameters. For
instance, the number of neighbours considered in the distance-
based re-sampling will affect the sensitivity to noise (Liu et al.
2020). The cost matrix in the cost-sensitive learning needs to be
set by experts. Since SPE (Liu et al. 2020) does not require any
predefined distance metric or computation, it is more convenient
for application andmore efficient for computation.Moreover, SPE
is adaptive to different models and robust to noises and missing
values.

In this paper, we use SPE to classify the variables. Fig. 2 illus-
trates the SPE framework. Compared with traditional methods, it
has some advantages as follows (Liu et al. 2020):

aCatalina Surveys Data Release 2.
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Table 2. Comparison of different imbalance methods.

Comparison of different methods

Data level Algorithm level Integration level

Types Under-sampling SMOTE-Boost

Oversampling Cost-sensitive learning SMOTE-Bagging

Oversampling+ under-sampling Easy-Ensemble, etc.

Pros It can denoise and balance class
distribution

Increasing training complexity can be directly
used for multi-classification problems

Its performance is generally good and can
be dynamically adjusted using
feedback during iterations

Cons Sampling process is computationally
inefficient;

susceptible to noise;
oversampling methods generate too

much data;
unsuitable for complex datasets where

distance cannot be calculated

Requires prior domain knowledge;
cannot generalise to different tasks;
depends on specific classifiers

Oversampling and ensemble further
increase computational overhead;
not robust to noise

Figure 1. Folded light curves of different kinds of variable stars reported in magnitudes as a function of phase. The data points are represented in light blue dots along with the
error bars, and the fitted light curves are illustrated in purple lines.

1. It can get better classification performance.
2. It uses less training data.
3. For sampling, it requires less computation time.
4. It is robust for data with noise or missing values.
5. Compared to traditional imbalanced learning, SPE is less

influenced by hyperparameters since it belongs to ensemble
learning methods.

6. It provides various base classifiers for choice.

7. It does not depend on the distance metric and can also be
applied for discrete data without modification.

The SPE algorithm introduces the concept of ‘classification
hardness distribution’, which reflects the task difficulty related
to factors such as noise, model capacity, and class imbalance.
Instinctively, hardness means the difficulty of accurately classify-
ing a sample with a classifier. So hardness distribution is helpful
to guide the re-sampling strategy to obtain better performance.
Rather than simply balancing dataset or directly assigning class
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Figure 2. The pipeline of Self-paced Ensemble from Liu et al. (2020). Instead of simply balancing the data or directly adjusting class weights, classification hardness is taken into
account over the dataset, and themost informativemajority data samples are iteratively selected according to the hardness distribution. The under-sampling strategy is controlled
by a self-paced procedure, which enables SPE to gradually focus on the harder data samples but still retains the information of the majority sample to prevent over-fitting.

weights, the distribution of classification hardness is taken into
account, and SPE iteratively selects the most informative major-
ity datasets based on the hardness distribution. Boosting-like
serial training is performed using under-sampling and ensemble
strategy, and finally an additive model is obtained. Specifically,
the under-sampling is controlled by a self-paced procedure,
which makes the structure gradually concentrate on the harder
samples (i.e., minority sample). All the majority samples are
split into k bins based on their hardness values. To harmonise
the hardness contribution of each bin, the sample probability of
those bins gradually decreases for the majority samples and the
declining level is controlled by a self-paced factor. In the first
few iterations, the framework primarily focuses on informative
samples. In the later iterations when a self-paced factor becomes
very large, the information of the majority sample is still retained
to prevent over-fitting. So SPE is an efficient, general-purpose,
and robust ensemble imbalanced learning algorithm. Now SPE is
a part of imbalanced-ensemble toolbox, built on the basis of both
scikit-learn (Pedregosa et al. 2011) and imbalanced-learn.b So SPE
is directly utilised from the imbalanced-ensemble package in our
work.

3.2. Feature extraction

In time-domain astronomy, the data collected from telescopes are
usually expressed in the form of light curves. These light curves

bhttps://imbalanced-learn.readthedocs.io/en/stable/index.html.

show the brightness changes of stars over a period of time. The
extraction of light curve features is a part of this work, which can
be used to characterise and distinguish different variables. Features
can range from basic statistical attributes such as mean and stan-
dard deviation, to more complex time series features such as
autocorrelation functions. Ideally, these features should be infor-
mative and discriminative, enabling machine learning algorithms
to distinguish the categories of light curves. FATS (Nun et al.
2015) is used for feature extraction. We select the features that
can best capture the properties of the light curves for imbalanced
classification of periodic variable stars.

We choose seven features for classification. They are mean
magnitude, standard deviation, mean variance, skew, kurtosis,
amplitude, and period. Six of these features are computed by FATS,
and the period is from the downloaded catalogue. These features
reflect the location, scale, variability, morphology, and observa-
tion time of the light curves. They are easy to interpret and robust
against bias.

3.3. Hyperparameter optimisation

In previous works, researchers usually used the greedy grid search
for hyperparameter optimisation. Hutter, Hoos, & Leyton-Brown
(2011) found that Bayesian optimisation, also called sequential
model-based optimisation (SMBO), outperformed grid search for
large parameter spaces. Compared to SMBO, grid search has
slower speed and more computation cost. Moreover, it is affected
by setting range of each hyperparameter. In reality, it is impossible
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Table 3. Confusion matrix of binary classification.

Label Predict Positive Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

to try all possible values of hyperparameters. Considering these
factors, we adopt SMBO for selecting optimal hyperparameters. In
this work, SMBO is combined with the SPE algorithm to establish
a better classifier at high speed.

3.4. Evaluationmetric

For imbalanced learning, the accuracy is not a good measure of
the performance of a classifier. So, we usually use other evalua-
tion metrics based on true positive (TP), false negative (FN), false
positive (FP), and true negative (TN). For the binary classification,
they can be recorded in a confusion matrix, as shown in Table 3.
For evaluating the performance of algorithms, Recall and Precision
are commonly used. For imbalanced datasets, we also consider
Balanced Accuracy, G−Mean (harmonic or geometric mean of
Precision and Recall; García, Sánchez, & Mollineda 2007), and
AUCROC (the area under receiver operator characteristic curve;
Sahiner et al. 2017).

Recall= TP
TP + FN

(1)

Precision= TP
TP + FP

(2)

Specificity= TN
FP + TN

(3)

Balanced Accuracy= Recall+ Specificity
2

(4)

GMean=
√
Recall× Precision (5)

4. Results and discussion

Our aim is to classify periodic variables based on the CRTS
database. Sample imbalance and the performance of a classifier
may influence classification results. Our work involves the imbal-
ance problem. Here, we plan to apply the SPE algorithm and
Voting Classifier to solve it.

The samples are randomly split into training and test sets for
10 times, with a ratio of 7:3. For the SPE algorithm, it can be
used to boost any canonical classifier’s performance (e.g., SVM,
C4.5 Quinlan 1986, Random Forest, or Neural Networks Haykin
2009). Random Forest is selected as the base classifier in our work.
Because the number of base classifiers (n_estimators) significantly
influences the performance of ensemble methods, n_estimators
should be tuned. We use SMBO to select the optimal number of
base classifiers.

4.1. Comparing SPE with hierarchical tree classifier

Ho20 proposed a hierarchical tree classifier (HTC) with three lay-
ers for periodic variables using the CRTS catalog. They argued that

simple under-sampling methods were not enough to deal with the
class imbalance problem. Instead, they applied GpFit (Williams
& Rasmussen 2006) to generate artificial data and increase the
number of training samples. They used GpFit for data augmen-
tation and Random Forest as the base algorithm for each layer
of the HTC. This approach combined data-level and algorithm-
level solutions for imbalanced learning. In contrast, our work uses
a self-paced under-sampling procedure that gradually focuses on
the harder samples and prevents over-fitting. We train and test
the SPE algorithm directly on the original data without building
a HTC or augmenting the data. To compare the performance of
Ho20’s method and our SPE method, we use AUCROC as a com-
prehensive metric that reflects the trade-off between sensitivity
and specificity. We find that Ho20’s method performs poorly for
classes with small sample sizes, such as Rotational, RRd, Type-II
Cepheid, and Blazhko RR Lyrae variables. Fig. 3 shows that our
SPE method significantly improves the performance for Blazhko
RR Lyrae variables but slightly worse for RRc variables. We also
use confusion matrices to compare the methods, as shown in
Figs. 4–5. For Ho20’s method, the HTC divides all variables into
Eclipsing, Rotational, and Pulsating variables in the first layer, with
Recall values of 72%, 67%, and 88%, respectively. These values are
not very high, and any misclassification in this layer will propa-
gate to the next layers. For the second layer, the classification of
Eclipsing and Pulsating variables seems good, but it may be influ-
enced by the previous layer. For the third layer, Fig. 5 shows poor
performance for separating RRd and Blazhko variables. In fact,
for Ho20’s method, misclassification accumulates from the top
layer to the bottom layer. Therefore, the final classification metrics
should be computed by multiplying the metrics obtained in three
layers. Compared to Ho20’s method, our SPE method improves
the classification Recall of Blazhko RR Lyrae stars from 12% to
85% and of mixed-mode RR Lyrae variables from 29% to 64%; for
detached binaries, the classification Recall increases from 68% to
97%; for LPV, the classification Recall rises from 87% to 99%. The
only exceptions are RRab, RRc, and contact and semi-detached
binary classes.

There are some evaluation metrics for imbalanced problems.
Here, we consider Balanced Accuracy and GMean. Tables 4–5
represent Balanced Accuracy and GMean for SPE and the
method of Ho20. We observe that our SPE method increases
Balanced Accuracy of Blazhko stars from 11% to 60% and of RRd
stars from 24% to 60%. However, this improvement comes with a
slight decrease in the classification of RRab and RRc subtypes. For
detached binaries, our SPE method improves Balanced Accuracy
from 52% to 87% and GMean from 75% to 93%. For rota-
tional variables, our SPE method performs worse than Ho20’s
method, because we separate rotational variables from all the
subtypes in one step, while Ho20’s method uses a three-layer
HTC. If we use a similar HTC as Ho20, Recall of Eclipsing,
Rotational, and Pulsating variables by our SPE method is 69%,
73%, and 89%, respectively. Recall (73%) of Rotational variables
by our SPE method is higher than that (67%) of Ho20’s method.
Therefore, our approach significantly improves the classification
performance compared to Ho20’s work and achieves good results
for most classes of variables except RRab, RRc, and contact and
semi-detached binary.

To summarise, the SPE algorithm can classify all the variables
in one step without using HTC, and its ability to increase Recall
makes it desirable. The results show that the SPE algorithm favours
the small sample classes, such as RRd, Blazhko, Delta-scuti, and
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Figure 3. The AUCROC of SPE for different classes.

(a) (b)

Figure 4. Comparison of confusion matrix of SPE with the first-layer classifier of Ho20.

Cepheid stars, and achieves high classification performance for
them. However, the base algorithm of HTC is Random Forest,
which is similar to other traditional classifiers and tends to select
the majority classes, such as RRab and RRc stars. Therefore, there
is a trade-off between SPE and Random Forest. To balance their
performance, we will use a Voting Classifier that combines SPE
and Random Forest in Section 4.2.

4.2. Voting Classifier

The Voting Classifier is a method that combines different machine
learning classifiers and uses a majority vote or the average
predicted probabilities (soft vote) to predict the class labels. We

use soft voting and return the class label as argmax of the aver-
age of predicted probabilities, as explained in the websitec and
Fig. 6. The voting mechanism may help us to balance the perfor-
mance between SPE and Random Forest and thus improve the
classification accuracy. We build Random Forest and SPE mod-
els separately and then use voting to return the class label based
on the average predicted probabilities of both models. Figs. 7
and 8 show that Voting Classifier can correct errors made by any
individual classifier, leading to better performance. Specifically,
Voting Classifier finds a balance between Random Forest and SPE.

chttps://scikit-learn.org/stable/modules/ensemble.html#voting-classifier.
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(a)

(b)

Figure 5. Confusion matrix of the second-layer and third-layer classifier in Ho20.

Compared to the SPE classifier, Voting Classifier increases the
classification Recall of the RRab and RRc stars but decreases it for
the RRd and Blazhko stars. Compared to Random Forest, Voting
Classifier retains some advantages of the SPE classifier. So it can
also be sensitive to small sample classes, such as Delta-scuti and
Cepheid stars. We also compute Balanced Accuracy for Random
Forest, SPE, and Voting Classifier, which are 71%, 78%, and 77%,
respectively. Table 6 shows that Voting Classifier can balance the
performance of classifiers. Therefore, for different research goals,
we may adopt different strategies. For large surveys, a compre-
hensive classifier is necessary, and Voting Classifier is useful to
obtain a balanced classification. If we are interested in the small
classes, such as Blazhko and Delta-Scuti stars, we may use the SPE

classifier. Similarly, if we tend to select themajority classes, wemay
use the Random Forest algorithm.

4.3. Some factors affecting the performance of a classifier

Since class imbalance is not the fundamental cause of classification
difficulty (Liu et al. 2020), there are other factors influencing the
performance of a classifier, as follows:

1. Some minority class samples appear in the distribution of
dense majority class samples.

2. Overlapping between classes (García et al. 2007).
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Table 4.Mean Balanced Accuracy and G Mean for SPE.

Classes of variable stars Balanced Accuracy G Mean

RRab 0.69 0.84

RRc 0.58 0.77

RRd 0.60 0.78

Blazhko 0.84 0.92

Contact & Semi-Detached Binary 0.49 0.71

Detached Binary 0.87 0.93

Rotational Variable 0.48 0.70

Long Period Variable 0.99 1.00

Delta-Scuti 1.00 1.00

Anomalous Cepheid 0.85 0.93

Type-II Cepheid 0.78 0.89

Table 5.Mean Balanced Accuracy and G Mean for the work of Ho20.

Classes of variable stars Balanced Accuracy G Mean

RRab 0.72 0.85

RRc 0.66 0.81

RRd 0.24 0.51

Blazhko 0.11 0.34

Contact & Semi-Detached Binary 0.55 0.75

Detached Binary 0.52 0.75

Rotational Variable 0.55 0.75

Long Period Variable 0.78 0.89

Delta-Scuti 0.72 0.85

Anomalous Cepheid 0.66 0.81

Type-II Cepheid 0.64 0.81

3. Minority class is split into small disjuncts due to sparsity,
which is abbreviated as small disjuncts (Prati, Batista, &
Monard 2004).

In our work, overlapping between classes makes it hard for a
classifier to separate the minority from the majority. For exam-
ple, subtypes of RR Lyrae stars overlap because they have no
clear physical differences. RRab stars pulsate in fundamental mode
while RRc stars pulsate in the first overtone, so they can be sep-
arated well. However, RRd stars pulsate in both modes, so they
are tricky to distinguish from RRab and RRc stars. Furthermore,
Blazhko effect occurs among RRab, RRc, and RRd stars. Fig. 9
shows that it is not easy to separate RRc stars from RRd stars,
and RRab from Blazhko stars. Only for show, the scatter plot of
Period versus Smallkurtosis is given here, actually it is difficult to
distinguish different RR Lyrae stars by any pairwise combination
of features due to their overlapping. Rotating variables show small
luminosity changes from patches of light spots on their surfaces,
and they may have bright spots at the magnetic poles. Moreover,
they often belong to binary systems. All these facts lead to the
confusion of rotating stars with other classes.

Another reason is that the labels of periodic variables depend
on the classification of existing sky surveys or different experts.
The classifier’s performance will suffer from the wrong labels. If
the standard variable star sets or accurate labels are provided, the
classifier will obtain a more reliable performance.

Figure 6. The flowchart of the Voting Classifier. In Soft voting, classifiers or base mod-
els are fedwith training data to predict the class output of npossibilities. Each classifier
independently assigns the occurrence probability of each class. In the end, the average
of the possibilities of each class is calculated, and the final output is labelled as the
class with maximum average.

Figure 7. Confusion matrix of SPE.

As a result, the SPE algorithm is suitable for the classifica-
tion task of targeting minority samples, compared to traditional
imbalanced learning. By combining SPE with Random Forest in
a Voting Classifier, we can achieve better balanced classification
performance.
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(a) (b)

Figure 8. A Voting Classifier is built by combining Random Forest and SPE. As shown in Fig. 7, the left and right panels depict the confusionmatrices of Random Forest and Voting
Classifier, respectively.

Figure 9. The Period versus Smallkurtosis distribution of RRab, RRc, RRd, and Blazhko stars.

5. Conclusion

In this work, we use the SPE algorithm and Voting Classifier to
classify different variables and address the imbalanced classifica-
tion problem. Compared to Ho20’s work, which uses GpFit for
data augmentation and Random Forest for hierarchical classifi-
cation, our SPE method uses the original dataset without data

processing and classifies all variables in one step. Moreover, our
SPE method avoids the propagation of misclassification from one
layer to another in the hierarchical trees. Therefore, our SPE
method is better when these factors are considered. The results
also show that the SPE algorithm improves the performance for
minority classes at the expense of some majority classes without
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Table 6.Mean Balanced Accuracy and GMean for Voting Classifier.

Classes of variable stars Balanced Accuracy G Mean

RRab 0.82 0.91

RRc 0.66 0.82

RRd 0.48 0.71

Blazhko 0.57 0.77

Contact & Semi-Detached Binary 0.54 0.75

Detached Binary 0.89 0.94

Rotational Variable 0.51 0.73

Long Period Variable 0.99 1.00

Delta-Scuti 1.00 1.00

Anomalous Cepheid 0.83 0.92

Type-II Cepheid 0.74 0.87

losing the overall accuracy. Considering the trade-off between SPE
and Random Forest, we use the Voting Classifier to balance the
overall classification performance. In practice, the overlapping of
classes and inconsistent labels may lead to misclassification and
affect the performance of classifiers. Therefore, a complete and
representative known sample is essential for building an excel-
lent classifier. However, such samples are scarce, especially for
rare objects. In this case, the SPE algorithm shows its superiority.
For the identification of minority classes, the SPE algorithm and
Voting Classifier are efficient and reliable, and they can be applied
to the time-domain data of other larger sky survey projects (LSST,
etc.).
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