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Right and Left Weak Approximation
Properties in Banach Spaces

Changsun Choi, Ju Myung Kim, and Keun Young Lee

Abstract. New necessary and sufficient conditions are established for Banach spaces to have the ap-

proximation property; these conditions are easier to check than the known ones. A shorter proof of

a result of Grothendieck is presented, and some properties of a weak version of the approximation

property are addressed.

1 Introduction

A Banach space X is said to have the approximation property (AP) if for every com-

pact subset K of X and ǫ > 0, there is a finite rank operator T on X such that

‖Tx − x‖ < ǫ for all x ∈ K . Grothendieck [6] initiated the investigation of the AP,
and one important tool he used was the following topology which is strictly weaker

than the topology given by the operator norm :

For compact K ⊂ X, ǫ > 0, and T ∈ B(X,Y ), the space of bounded linear
operators from a Banach space X into another Banach space Y , we let

N(T; K, ǫ) = {S ∈ B(X,Y ) : sup
x∈K

‖Sx − Tx‖ < ǫ}.

We denote by τ the topology on B(X,Y ) generated by the collection of all N(T; K, ǫ)’s.
Observe that the τ topology is a locally convex and completely regular vector

topology on B(X,Y ). For a net (Tα) and T in B(X,Y ),

Tα
τ

−→ T if and only if sup
x∈K

‖Tαx − Tx‖ −→ 0

for each compact K ⊂ X; and that for A ⊂ B(X,Y ) and T ∈ B(X,Y ): T ∈ A
τ

if and only if for each compact K ⊂ X and ǫ > 0, there is a S ∈ A such that

supx∈K ‖Sx − Tx‖ < ǫ.
Therefore, a Banach space X has the AP if the following property holds :

IX ∈ F(X, X)
τ
.

Here IX is the identity and F(X, X) is the space of finite rank operators on X.

We now have the following simple characterizations of the AP through straight-

forward verifications.
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Fact 1 Let X be a Banach space. Then the following are equivalent.

(a) X has the AP.

(b) For every Banach space Y , B(Y, X) = F(Y, X)
τ
.

(c) For every Banach space Y , B(X,Y ) = F(X,Y )
τ
.

In this paper we are concerned with Banach spaces having the following proper-
ties:

(1.1) for every Banach space Y, K(Y, X) ⊂ F(Y, X)
τ

and

(1.2) for every Banach space Y, K(X,Y ) ⊂ F(X,Y )
τ
.

Here K(X,Y ) is the space of compact operators from a Banach space X into an-

other Banach space Y .

A Banach space X is said to have the weak approximation property (WAP) if

K(X, X) ⊂ F(X, X)
τ
, and X is said to have the quasi approximation property (QAP)

if K(X, X) = F(X, X) (the operator norm closure of F(X, X)). Choi and Kim [2]

first introduced the WAP and QAP and corresponding results were presented in Kim

[7–9]. In this paper we say that a Banach space X is said to have the left weak approx-

imation property (lWAP) (resp. right weak approximation property (rWAP)) if X has

the property (1.1) (resp. (1.2)).

We now have the following diagram by Fact 1, (1.1), (1.2), and the definitions.

AP

�
�

�	

@
@

@R?
lWAP QAP rWAP

@
@

@R ?

�
�

�	
WAP

In Section 2, we will obtain the following diagram (1.3), and for reflexive Banach

spaces we will also obtain the diagram (1.4).

lWAP ⇐⇒AP

?

@
@

@R
QAP rWAP

?

�
�

�	
WAP

(1.3)

lWAP ⇐⇒ AP ⇐⇒ rWAP

?
QAP ⇐⇒ WAP

(1.4 : Reflexive Banach spaces)
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We introduce a famous open problem in the area of the AP (cf. [11, Problem 1.e.9]
and [1, Problem 2.7]).

Problem If a Banach space X has the QAP, then does X have the AP ?

For a long time this problem remained unsolved even for the reflexive case. By

diagram (1.4), if the above question had an affirmative answer for a reflexive Banach

space X, then all our approximation properties would be equivalent for X.
In Section 2, characterizations of the AP and relations between the approximation

properties are established. A new short proof of a result of Grothendieck is provided.

In Section 3, some properties for rWAP are established.

2 Relations Between the Approximation Properties

Notation We start by listing some notations.

X, Y : Banach spaces.
X∗: The dual space of X.

T∗ : The adjoint of an operator T.

B(X,Y ) : The space of bounded linear operators from X into Y .
F(X,Y ) : The space of bounded and finite rank linear operators from X into Y .

K(X,Y ) : The space of compact operators from X into Y .
F∗(X,Y ) : The space of finite rank adjoint operators from Y ∗ into X∗.

K∗(X,Y ) : The space of compact adjoint operators from Y ∗ into X∗.

For convenience we denote B(X, X), . . . by B(X), . . . .

We review the following well-known results of Grothendieck [6].

Fact 2 (a) (B(X,Y ), τ)∗ consists of all functionals f of the form
f (T) =

∑

n y∗n (Txn), where (xn) ⊂ X, (y∗n ) ⊂ Y ∗, and
∑

n ‖xn‖‖y∗n‖ < ∞.

(b) X has the AP if and only if for every Banach space Y , K(Y, X) = F(Y, X).
(c) X∗ has the AP if and only if for every Banach space Y , K(X,Y ) = F(X,Y ).

The following is due to Feder and Saphar [4, Theorem 1].

Lemma 2.1 If X∗∗ or Y ∗ has the Radon–Nikodym property, then K(X,Y )∗ consists

of all functionals g of the form g(T) =

∑

n x∗∗n (T∗y∗n ), where (x∗∗n ) ⊂ X∗∗, (y∗n ) ⊂ Y ∗,

and
∑

n ‖x∗∗n ‖‖y∗n‖ < ∞.

We now have the following.

Theorem 2.2 Suppose that X is reflexive. Then K(X,Y ) ⊂ F(X,Y )
τ

if and only if

K(X,Y ) = F(X,Y ).

Proof We only need to show the “only if” part. Let T ∈ K(X,Y ). Then there is a

net (Tα) ⊂ F(X,Y ) such that Tα
τ

−→ T. From Fact 2(a) it follows that

∑

n

y∗n (Tαxn) −→
∑

n

y∗n (Txn)
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for each (xn) ⊂ X and (y∗n ) ⊂ Y ∗ with
∑

n ‖xn‖‖y∗n‖ < ∞. Since X is reflexive, by
Lemma 2.1 we have

g(Tα) −→ g(T)

for each g ∈ K(X,Y )∗. Hence T ∈ coweak({Tα}) = co({Tα}) ⊂ F(X,Y ).

The following is a result of Lindenstrauss [10, Proposition 1].

Lemma 2.3 Let X be a reflexive Banach space. If X0 is a separable subspace of X, then

there is a separable space Z satisfying X0 ⊂ Z ⊂ X such that there is a projection of

norm one from X onto Z.

We now have the following characterizations of the AP, which are easier to check
than the ones in Fact 2(b) and (b3) in [13, Theorem 2].

Theorem 2.4 The following are equivalent.

(a) X has the AP.

(b) X has the lWAP

(c) For every separable and reflexive Banach space Y , K(Y, X) ⊂ F(Y, X)
τ
.

(d) For every reflexive Banach space Y , K(Y, X) ⊂ F(Y, X)
τ
.

Proof We show (a) ⇒(b)⇒(c)⇒(d)⇒(a). But (a)⇒(b) and (b)⇒(c) are clear.

(c)⇒(d) Let Y be a reflexive Banach space. Let T ∈ K(Y, X), compact K ⊂ Y ,
and ǫ > 0. Since the closed linear span [K] of K is a separable subspace of Y , by

Lemma 2.3 there is a separable subspace Z of Y such that [K] ⊂ Z ⊂ Y and there
is a projection P of norm one from Y onto Z. By the assumption (c) there is a T0 ∈
F(Z, X) such that

sup
x∈K

‖T0x − TIZx‖ < ǫ,

where IZ is the inclusion from Z into Y . Now consider T0P ∈ F(Y, X). Then we have

sup
x∈K

‖T0Px − Tx‖ = sup
x∈K

‖T0x − TIZx‖ < ǫ.

Hence T ∈ F(Y, X)
τ
, proving our implication.

(d)⇒(a) Let Y be a Banach space and T ∈ K(Y, X). Then there exist a reflexive

Banach space Z, R ∈ K(Y, Z), and S ∈ K(Z, X) such that T = SR (cf. Figiel [5,

Corollary 3.3]). By the assumption there is a net (Sα) ⊂ F(Z, X), Sα
τ

−→ S. Consider
(SαR) ⊂ F(Y, X). Then we have

‖SαR − T‖ = ‖SαR − SR‖ = sup
z∈R(BY )

‖Sαz − Sz‖ −→ 0,

which shows T ∈ F(Y, X). Hence X has the AP by Fact 2(b).

Corollary 2.5 Suppose that X is reflexive. Then the following are equivalent.

(a) X has the AP.

(b) X has the lWAP.

(c) X has the rWAP.
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Proof In view of Theorem 2.4 we only need to show (c)⇒(a). Assume (c). Then by
Theorem 2.2 and Fact 2(c) X∗ has the AP. It is well known that if X∗ has the AP, then

X has the AP (cf. [1, 11]). Hence X has the AP.

In [7, Corollary 1.5], it was shown that for every separable and reflexive Banach
space X, X having QAP and WAP are equivalent. But by Theorem 2.2 the assumption

of separability can be removed.

Corollary 2.6 Suppose that X is reflexive. Then X has the QAP if and only if X has

the WAP.

Lemma 2.7 For all Banach spaces X and Y , F(Y ∗, X∗) ⊂ F∗(X,Y )
τ
.

Proof It suffices to show that every rank one T0 ∈ F(Y ∗, X∗) belongs to F∗(X,Y )
τ
.

So let x∗0 ∈ X∗, y∗∗0 ∈ Y ∗∗ and write T0 y∗ = y∗∗0 (y∗)x∗0 for y∗ ∈ Y ∗. Let K ⊂ Y ∗ be

compact and ǫ > 0. First choose a small δ > 0 so that δ‖x∗0‖(1 + 2‖y∗∗0 ‖) < ǫ. Since

K is compact, there are y∗1 , . . . , y∗m in K such that for each y∗ ∈ K , ‖y∗ − y∗i ‖ < δ

for some 1 ≤ i ≤ m. By Goldstine’s theorem there is y0 ∈ Y such that ‖y0‖ ≤ ‖y∗∗0 ‖
and |y∗i y0 − y∗∗0 y∗i | < δ for all 1 ≤ i ≤ m. Now consider T ∈ F∗(X,Y ) given by
Ty∗ = (y∗y0)x∗0 for y∗ ∈ Y ∗. Using the triangle inequality one checks that

sup
y∗∈K

‖T0y∗ − Ty∗‖ < ǫ,

which proves the lemma.

In the following theorem, (a)⇔(b) is Fact 2(c) and (a)⇔(d) is known [13, Theo-

rem 5]. However, we would like to present its full proof, which may be noted for its
brevity and elegance.

Theorem 2.8 The following are equivalent.

(a) X∗ has the AP.

(b) For every Banach space Y K(X,Y ) = F(X,Y ).

(c) For every separable and reflexive Banach space Y K(X,Y ) = F(X,Y ).

(d) For every reflexive Banach space Y K(X,Y ) = F(X,Y ).

Proof We show (a)⇒(b)⇒(c)⇒(d)⇒(a).

(a)⇒(b) Let Y be a Banach space, T ∈ K(X,Y ), and ǫ > 0. Since T∗ ∈ K(Y ∗, X∗),

T∗(BY∗) is a relatively compact set in X∗, where BY∗ is the unit ball in Y ∗. By the as-

sumption there is a T0 ∈ F(X∗) such that

sup
y∗∈BY∗

‖T0T∗y∗ − T∗y∗‖ <
ǫ

2
.

Also, by Lemma 2.7 there is a S∗0 ∈ F∗(X)

sup
y∗∈BY∗

‖S∗0 T∗y∗ − T0T∗y∗‖ <
ǫ

2
.
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Now consider TS0 ∈ F(X,Y ). Then we have

‖T − TS0‖ = ‖S∗0 T∗ − T∗‖ ≤ ‖S∗0 T∗ − T0T∗‖ + ‖T0T∗ − T∗‖ < ǫ.

Hence T ∈ F(X,Y ).
(b)⇒(c) Clear.

(c)⇒(d) Let Y be a reflexive Banach space. Let T ∈ K(X,Y ) and ǫ > 0. Since
T(X) is a separable subspace of Y , by Lemma 2.3 there is a separable subspace Z of

Y such that T(X) ⊂ Z ⊂ Y and there is a projection P of norm one from Y onto Z.

By the assumption there is a T0 ∈ F(X, Z) such that ‖T0 − PT‖ < ǫ. Now consider
IZT0 ∈ F(X,Y ), where IZ is the inclusion from Z into Y . Then we have

‖IZT0 − T‖ = ‖T0 − PT‖ < ǫ.

Hence T ∈ F(X,Y ).

(d)⇒(a) By Theorem 2.4(d) it is enough to show that for every reflexive Banach

space Y , K(Y, X∗) = F(Y, X∗). The proof is a review of the proof of [11, Theorem
1.e.5]. Let Y be a reflexive Banach space. Let T ∈ K(Y, X∗) and ǫ > 0. Then

T∗QX ∈ K(X,Y ∗), where QX is the natural map from X into X∗∗. By the assumption
there is a

∑n
k=1 x∗k (·)y∗k ∈ F(X,Y ∗) such that

∥

∥

∥
T∗QX −

n
∑

k=1

x∗k (·)y∗k

∥

∥

∥
< ǫ.

Now consider
∑n

k=1 y∗k (·)x∗k ∈ F(Y, X∗). Then we have

∥

∥

∥
T −

n
∑

k=1

y∗k (·)x∗k

∥

∥

∥
= sup

‖y‖≤1

∥

∥

∥
Ty −

n
∑

k=1

y∗k (y)x∗k

∥

∥

∥

= sup
‖y‖,‖x‖≤1

∥

∥

∥
(Ty)x −

n
∑

k=1

y∗k (y)x∗k (x)
∥

∥

∥

= sup
‖y‖,‖x‖≤1

∥

∥

∥
QXx(Ty) −

n
∑

k=1

y∗k (y)x∗k (x)
∥

∥

∥

= sup
‖y‖,‖x‖≤1

∥

∥

∥
T∗QXx(y) −

n
∑

k=1

x∗k (x)y∗k (y)
∥

∥

∥

= sup
‖x‖≤1

∥

∥

∥
T∗QXx −

n
∑

k=1

x∗k (x)y∗k

∥

∥

∥

=

∥

∥

∥
T∗QX −

n
∑

k=1

x∗k (·)y∗k

∥

∥

∥
< ǫ.

Hence T ∈ F(Y, X∗).
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We introduce another topology on B(X,Y ), which is induced by a subspace of
B(X,Y )♯, the space of linear functionals on B(X,Y ).

Let Z be the space of linear functionals ϕ on B(X,Y ) of the form

ϕ(T) =

∑

n

y∗n (Txn)

where (xn) ⊂ X and (y∗n ) ⊂ Y ∗ with
∑

n ‖xn‖‖y∗n‖ < ∞. Then the ν topology (ν) on

B(X,Y ) is the topology induced by Z.

From elementary facts about topologies induced by spaces of linear functionals on
vector spaces, ν is a locally convex topology. Also (B(X,Y ), ν)∗ = Z, and for a net

(Tα) and T in B(X,Y ),

Tα
ν

−→ T if and only if
∑

n

y∗n (Tαxn) −→
∑

n

y∗n (Txn)

for each (xn) ⊂ X and (y∗n ) ⊂ Y ∗ with
∑

n ‖xn‖‖y∗n‖ < ∞.
Recall Fact 2(a). Then (B(X,Y ), ν)∗ = (B(X,Y ), τ)∗. Hence by [12, Corollary

2.2.29], C
ν

= C
τ

for every convex set C in B(X,Y ).

We now have the following characterization of the AP for dual spaces, which is
easier to check than the ones in Theorem 2.8.

Corollary 2.9 X∗ has the AP if and only if for every separable and reflexive Banach

space Y , K∗(X,Y ) ⊂ F∗(X,Y )
ν

in B(Y ∗, X∗).

Proof We only need to show the “if” part. If, for every separable and reflexive Ba-

nach space Y , K∗(X,Y ) ⊂ F∗(X,Y )
ν
, then, as in the proof of Theorem 2.2, we obtain

K(X,Y ) = F(X,Y ). Hence X∗ has the AP by Theorem 2.8(c).

Remark 2.10 (a) In [9, Corollary 2.7], it was shown that for every Banach space X

with separable dual, X has the QAP if and only if K∗(X) ⊂ F∗(X)
ν

in B(X∗).

But as in the proof of Theorem 2.2, even when the dual space has the Radon–
Nikodym property, we have the same result.

(b) In [7, Theorem 1.3], it was shown that for every Banach space X with the separa-

ble dual, if X∗ has the WAP, then X has the QAP. But by (a) and Lemma 2.7 even
when the dual space has the Radon–Nikodym property, we have the same result.

3 Some properties for rWAP

It is known that the AP, QAP, and WAP are inherited from X∗ to X [1, 2, 9]. For the
rWAP we have the following.

Theorem 3.1 If X∗ has the rWAP, then for every Banach space Y , K∗(Y, X) ⊂

F∗(Y, X)
ν

in B(X∗,Y ∗); in particular, X has the lWAP and rWAP.

Proof If X∗ has the rWAP, then for every Banach space Y , K(X∗,Y ∗) ⊂ F(X∗,Y ∗)
τ
.

Recall the ν topology. Then by Lemma 2.7, for every Banach space Y , we have

K
∗(Y, X) ⊂ K(X∗,Y ∗) ⊂ F(X∗,Y ∗)

τ
= F∗(Y, X)

τ
= F∗(Y, X)

ν
.
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In particular, for every Banach space Y , K(Y, X) ⊂ F(Y, X)
τ

in B(Y, X). By Theorem
2.4, X has the AP; consequently, X has the lWAP and the rWAP.

The following example shows that AP, rWAP, QAP, WAP are not inherited from X

by X∗ in general.

Example 3.2 There is a dual space Z with a boundedly complete basis such that Z∗

is separable and does not have the WAP [7, Theorem 1.9].

By simple calculations one may see that the AP, QAP, and WAP are inherited by

complemented subspaces. For the rWAP we also have the following.

Proposition 3.3 Let Z be a complemented subspace of X. If X has the rWAP, then Z

has the rWAP.

Proof Suppose that X has the rWAP. Let P be a projection from X onto Z. Let Y be a

Banach space, T ∈ K(Z,Y ), compact K ⊂ Z, and ǫ > 0. Since TP ∈ K(X,Y ), there

is a T0 ∈ F(X,Y ) such that supx∈K ‖TPx−T0x‖ < ǫ. Now consider T0IZ ∈ F(Z,Y ),
where IZ is the inclusion of Z into X. Then we have

sup
x∈K

‖Tx − T0IZx‖ = sup
x∈K

‖TPx − T0x‖ < ǫ.

Hence T0IZ is a desired finite rank operator and so Z has the rWAP.

The following is well known (cf. Diestel [3, Exercises I.6 and II.6(1)]).

Fact 3 Let (Xn) be a sequence of Banach spaces. If 1 ≤ p < ∞ and K is a relatively

compact subset of (
∑

n ⊕Xn)lp
, then for every ǫ > 0 there is a positive integer Nǫ

such that
∑∞

n>Nǫ
‖kn‖

p
Xn

< ǫ for all (kn) ∈ K . Also, if a subset K of (
∑

n ⊕Xn)c0

is relatively compact, then for every ǫ > 0 there is a positive integer Nǫ such that

supn>Nǫ
‖kn‖Xn

< ǫ for all (kn) ∈ K .

The AP passes through lp-sums and c0-sums [1, Proposition 2.14]. For the rWAP

we also have

Theorem 3.4 If (Xn) is a sequence of Banach spaces with the rWAP, then for every

1 ≤ p < ∞, (
∑

n ⊕Xn)lp
and (

∑

n ⊕Xn)c0
have the rWAP.

Proof First we show that X = (X1⊕X2)lp
has the rWAP. Let Y be a Banach space and

let T ∈ K(X,Y ). Let K ⊂ X be compact and ǫ > 0. Now Tin ∈ K(Xn,Y ), where in

is the map from Xn into X defined by i1x1 = (x1, 0), i2x2 = (0, x2). Let Pn : X −→ Xn

be the projection given by Pn((x1, x2)) = xn for n = 1, 2. Since Pn(K) is compact in

Xn and Xn has the rWAP for n = 1, 2, there is a Tn ∈ F(Xn,Y ) such that

‖TnPn(k1, k2) − TinPn(k1, k2)‖Y <
ǫ

2
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for all (k1, k2) ∈ K . Put T0 = T1P1 + T2P2 ∈ F(X,Y ). Then for all (k1, k2) ∈ K we
have

‖T0(k1, k2) − T(k1, k2)‖ ≤ ‖T1P1(k1, k2) − Ti1P1(k1, k2)‖

+ ‖T2P2(k1, k2) − Ti2P2(k1, k2)‖ < ǫ.

Hence X has the rWAP. Similarly it follows that for each m (
∑m

n=1 ⊕Xn)lp
has the

rWAP. Now put X = (
∑

n ⊕Xn)lp
. Let Y be a Banach space and let T ∈ K(X,Y ). Let

K ⊂ X be compact and ǫ > 0. Using Fact 3 find a positive integer N such that

‖T‖p
∑

n>N

‖kn‖
p
Xn

<
( ǫ

2

) p

for all (kn) ∈ K . Now Ti ∈ K((
∑N

n=1 ⊕Xn)lp
,Y ), where i is the map from

(
∑N

n=1 ⊕Xn)lp
into X defined by i(x1, . . . , xN ) = (x1, . . . , xN , 0, . . . ). Let P : X −→

(
∑N

n=1 ⊕Xn)lp
be the projection given by P((xn)) = (x1, . . . , xN). Since P(K) is com-

pact in (
∑N

n=1 ⊕Xn)lp
and (

∑N
n=1 ⊕Xn)lp

has the rWAP, there is a

T0 ∈ F

(

(

N
∑

n=1

⊕Xn

)

lp
,Y

)

such that ‖T0P(kn) − TiP(kn)‖ <
ǫ

2

for all (kn) ∈ K . Now T0P ∈ F(X,Y ) and for all (kn) ∈ K

‖T0P(kn) − T(kn)‖ ≤ ‖T0P(kn) − TiP(kn)‖ + ‖T‖
(

∑

n>N

‖kn‖
p
Xn

)
1
p

< ǫ.

Hence X has the rWAP. Also, similarly, we can show that (
∑

n ⊕Xn)c0
has the rWAP.

The authors are naturally led to the following question related to the problem in
the introduction.

Question If X and Y have the WAP (resp. QAP), then does X ⊕ Y have the WAP

(resp. QAP) ?

But we have the following.

Theorem 3.5 If X has the WAP (resp. QAP) and Y has the AP (resp. Y ∗ has the AP),

then X ⊕ Y has the WAP (resp. QAP).

Proof Suppose that X has the WAP and Y has the AP. Let T ∈ K(X ⊕ Y ), compact

K ⊂ X⊕Y , and ǫ > 0. Now Tix ∈ K(X, X⊕Y ) and Ti y ∈ K(Y, X⊕Y ) where ix (resp.
i y) is the map from X (resp. Y ) into X⊕Y defined by ixx = (x, 0) (resp. i y y = (0, y)).

Let Px (resp. Py) : X⊕Y −→ X (resp. Y ) be the projection given by Px(x, y) = x (resp.

Py(x, y) = y). Consider PxTix ∈ K(X), PyTix ∈ K(X,Y ), PxTi y ∈ K(Y, X), and
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PyTi y ∈ K(Y ). Since X and Y have the WAP, there are Txx ∈ F(X) and Ty y ∈ F(Y )
such that

‖Txxx − PxTixx‖ <
ǫ

4
and ‖Ty y y − PyTi y y‖ <

ǫ

4

for all (x, y) ∈ K . Since Y has the AP, by Fact 1 there are Txy ∈ F(X,Y ) and Tyx ∈
F(Y, X) such that

‖Txyx − PyTixx‖ <
ǫ

4
and ‖Tyx y − PxTi y y‖ <

ǫ

4

for all (x, y) ∈ K . Let the map T0 : X ⊕ Y −→ X ⊕ Y defined by

T0(x, y) = (Txxx + Tyx y, Txyx + Ty y y).

Observe T0 ∈ F(X ⊕ Y ) and for all (x, y) ∈ K

‖T0(x, y) − T(x, y)‖X⊕Y

≤ ‖(Txxx + Tyx y, Txyx + Ty y y) − (PxTixx + PxTi y y, PyTixx + PyTi y y)‖X⊕Y

≤ ‖(Txxx − PxTixx, Txyx − PyTixx)‖X⊕Y + ‖(Tyx y − PxTi y y, Ty y y − PyTi y y)‖X⊕Y

= ‖Txxx − PxTixx‖X + ‖Txyx − PyTixx‖Y + ‖Tyx y − PxTi y y‖X

+ ‖Ty y y − PyTi y y‖Y < ǫ,

where we used l1-sum for X ⊕ Y , hence X ⊕ Y has the WAP. Similarly we can show
the other part using the fact that Y ∗ having the AP implies

K(X,Y ) = F(X,Y ) and K(Y, X) = F(Y, X)

for every Banach space X.
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