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HERON TRIANGLES AND ELLIPTIC CURVES

RALPH H. BUCHHOLZ AND RANDALL L. RATHBUN

In this paper we present a proof that there exist infinitely many rational sided
triangles with two rational medians and rational area. These triangles correspond
to rational points on an elliptic curve of rank one. We also display three triangles
(one previously unpublished) which do not belong to any of the known infinite
families.

I. INTRODUCTION

A triangle with sides denoted by {a,b,c) has medians, (k,l,m) say, given by

(1) k = \\/2b2 + 2c2 -a? 1= \s/2c2 + 2a2 -b2 m= \ \f2a2 + 2b2 - c2.
£i Zi £t

All rational sided triangles with two rational medians (see [1]) are completely parametrised
(up to similarity) by the following equations

a = (-2<j>62 - <j)26) + (26<f> -<t>2)+6+l

b = {<f>62 + 2020) + (26$ -62)-(j>+l

(2) c = (4>o2 - <p2e) + {e2

for rational <f> and 6 such that 0 < 0, (p < 1 and <j> + 28 > 1. While the sides and two of
the medians, namely k and I, are forced to be rational this is not necessarily the case
for the area. Recall that Heron's formula for the area, A say, of the triangle (a, 6, c) is
given by

(3) A = y/s(8 -a)(s- b)(s - c)

where s = (a + b + c)/2 is called the semiperimeter. We shall call any rational sided
triangle with rational area a Heron triangle. In [2] the authors present numerical evi-
dence supporting the conjecture that all the rational points on five curves C i , . . . , Cs,
in the region defined by 0 < 9, <j> < 1 and <f> + 20 > 1 correspond (via equations (2)) to
Heron triangles with two rational medians.
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The equations of these five elliptic curves are given by

d : 270 3 0 3 - 6<f>(0 - 0) (86>2 + I16<f> + 8<f>2) - 300(502 -6<j> + 502)

-(9- 0)(6>2 + 400 + 4>2) - (36»2 - 79cj> + 302) - 3(0 - 0) - 1 = 0,

C2 : 30 V - 200(0 - <j>) - (92 + 600 + 02) + 1 = 0,

C 3 : 0<t>(6 - <t>)3 - (04 + U93<j) + 30202 + U9ct>3 + 0 4 )

- 2(93 - 0 3 ) + 1O0<£ + 2(0 - <t>) + 1 = 0,

C 4 : 9cj>(e -4>)+9<p + 2{9-cj))-l = 0,

C5 : (0 - 1) V + 2(0 + 1)(03 + 202 - 20 + l)cj> + (20 - 1)(0 + I ) 3 = 0.

If we solve equations (2) for 0, <f> in terms of a, b, c we obtain

, x „ c-a± V2c2 + 2a2 - b2 , , b~c± \/262 + 2c2 - a2

(4) 9± — • and 0± = ; .w a+b+c a+b+c

Now we bootstrap the process by substituting from equation (2) back into equations
(4) via (a,b,c) = (a(9,<p),b(9,4>),c(9,(j>)). The pair of equations for (0-,^+) lead to
the identities 0_ = 0 and <j>+ = 4>. However, the other pair leads to the transformation
d:QxQ>-><QxQ given by

f9(f> + 2<j>-9-4>-\ -202 -9(t>-9-<f>
300 + 0 - ^ + 1 ' 300 + 0 - 0 + 1

(Note that this corrects the transformation given in [2].) This maps a point in the 00-
plane to a related point which corresponds to the same triangle. (Geometrically, this
amounts to simply flipping the triangle about the third median, that is, interchanging
sides a and b and simultaneously medians k and /.) We call such points "dual" points
and under this mapping the curves C\ and C2 are dual as are C3 and C4, while C5 is
self-dual. This implies that it is sufficient to prove that all rational points on just the
curves C2,C± and C5 say, correspond to Heron triangles with two rational medians.

Furthermore, we now show that C2, C\ and C5 are all birationally equivalent to
the same elliptic curve so we shall just prove the main theorem for curve C4. Notice that
the former three curves are quadratic in 0 so that when we calculate the discriminant
of each (with respect to 0) we obtain

Visc{C2) = 4(40" + 803 + 502 - 20 + l)

Visc{C4) = 0" + 203 + 502 - 80 + 4

Visc{C5) - 402(0 + 1)2(04 + 203 + 502 - 8 0 + 4).
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Since we are searching for rational points on each of the curves we require the corre-
sponding discriminants of each to be a rational square. All the rational points which
force this correspond to rational points on the elliptic curve

Y2 = X4 + 2X3 + bX2 - 8X + 4

since we can map X to —1/0 for C2, while for C4 and C5 we just map X to 8.

II. PROOF OF RATIONAL AREA

In this section we prove our main result.

THEOREM 1 . Every rational point on the curve

C4 : 02<j> - 6<j>2 + 9<p + 29 - 2<f> - 1 = 0

such that 0 < 8 < 1 and 0 < <j> < 1 and 26 + cf> > 1 corresponds to a triangle with
rational sides, rational area, and two rational medians.

Outline of the proof:

(i) The inequalities for 8 and <j> are simply obtained from the triangle in-
equalities.

(ii) Reduce the squarefree part of the square of the area from degree 11 to
degree 8.

(iii) Show that all but finitely many points on C4 can be obtained from the
rational points on an elliptic curve, E say.

(iv) Finally we use induction in the group E(Q). We show that any point
which corresponds to a triangle with rational area leads, in all possible
ways, to another point with rational area. Another way of viewing this
step is that the group operation on E preserves the rationality of the
square root of the degree 8 polynomial (mentioned in (ii)) and hence the
rationality of the area.

(i) Recall that the sides of a triangle corresponding to a point (6,<p) € C4(Q)
are given by equations (2). These equations immediately imply that the sides and two
medians are rational so we need only check the area A and whether or not (a, b, c) form
a proper triangle. Substituting (2) into the triangle inequalities provides the following
inequalities in terms of 9 and <f>:

<t>{6 + 1 ) ( 2 0 + <t> - 1) s$ 0,

2<f> + 1) ^ 0.
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Figure 1 : The excluded regions of the 9<j> -plane

These define excluded regions in which proper triangles cannot form. The remaining
four regions contain copies of the same set of triangles and so it is sufficient to just
consider one of them, for example the one in the positive quadrant.

(ii) Again using equations (2), in Heron's formula this time, we can calculate the
area of the corresponding triangle as A = y/g{0, <j>) where

gift, 4>) = 64>(1 - 92) (1 - <j>2)(39<p + 9-<j> + 1)(20 + 0 - 1)(0 + 20 + 1)(0 - <t> + 1).

The squarefree part of g(9, (j>) can be reduced to degree 8 on C4 by the following simple

lemma.

LEMMA 1. Let (0,0) be a point on C4(Q) and

f{6,4>) = 6<t>{\ - - \){9 + 2<f> + 1).

Then g(6, <j>) is a rational square if and only if f(8, <j>) is a rational square.

P R O O F : The curve C\ is equivalent to 9 - (j> +1 = 3/(9<f> + 2) which when substi-
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tuted into g{9,<f>) gives

g(0,4>) = 9<f>{l - 62) (1 - <j>2) (*9<t> + ^ ^ j {26 + 4>- \){9 + 2<j> + l ) ^ ^ y

= e<t>(i - e2) (1 - <j>2)(e<t>(e<t> + 2) + 1x20 + <j> - i)(e + 2$ +1) f
(U(p + 2)

(iii) At this stage it is sufficient to prove that all rational points in C4(Q) preserve
f(9,4>) = r2 for some r € Q. To describe all rational points on C4 we note that the
mapping a : E M- C4 defined by

(2X + X2-8X + 4-Y2 -2Y 2X3 - 5X2 + 2X - Y2 - 2XY
a{X,Y)- ^

Y) ' (3A" - 2 + Y)(X + Y)

leads to the elliptic curve

E : Y2 + XY - X3 + X2 - 2X

which has rank 1 and torsion subgroup isomorphic to Z/2Z. The group of rational
points is given by E(Q) = ((0,0), (2,2)) (see [3]) where (0,0) is the order 2 generator
and (2,2) is the torsion-free generator.

Now we find that all except a finite number of rational points on E correspond to
rational points on C4 and vice versa. Clearly, the rational points on E given by

(X,y) = (-2,2),(0,0),(l ,-l) and (2,-4)

are all the singularities of the mapping a(X, Y) and so all other rational points, on E,
correspond to rational points on C\ (Q).

Furthermore, the only rational points which may be missed on C4 are

(0,0 = (1,1), (-1,-1)

which are obtained from the singularities of the inverse mapping a"1 : C4 i-> E given
by
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However, it turns out that (9, <j>) = ( -1 , -1 ) = a( l ,0) , while using homogeneous coor-
dinates one finds that (9, <j>) = (1,1) corresponds to (X, Y) = (1, - 1 ) . We shall ignore
the latter fact and just treat (9, cf>) — (1,1) separately when the time comes.

(iv) The final part of the proof requires the following three lemmas. The first one
covers the case of negation of points on E.

LEMMA 2. If (X, Y) e E(Q) such that f(a(X, Y)) = r2 and {X\ Y') = -{X, Y)
then f(a{X',Y')) = R2.

PROOF: First we use E to remove all powers of Y greater than the first from the
squarefree part of f(a{X, Y)) to get

where

P7(X) = Y1X1 - 96X6 - 96X5 + 444X4 - 161X3 - 276X2 + 204* - 32,

P6(X) = 2X6 - 8X5 - 70X4 + 102X3 + 45X2 - 108X + 36 and

Pl5(X) = 4X15 + 21X14 - 984X13 + 2918X12 + 17862JT11 - 37355X10

- 58326X9 + 166369^8 - 25775X7 - 194595X6 + 153070X5

+ 26088X4 - 80512*3 + 37392A"2 - 6432X + 256.

Next, note that on E we have (X', Y') = (X, -X - Y) so that we get

where qit,(X) = pi5(X)- X p7(X)p6(X). Now, rather surprisingly, when we multiply
the two squarefree parts of f(a(X, Y)) and f(a(X',Y')) together we obtain a perfect
square, namely

(P7(X) -P6(X) • Y+p15(X)){-p7(X)-p6(X) • Y + q15(X)) = [r15(X)}2

where rlb{X) = {4X + 1){X - 8)(X + l)(X + 2)2(X - 2)Z{X - I)7. Clearly, we now
have f(a(X\Y')) = K2/f(a(X,Y)) and so the assumption that f(a{X,Y)) = r2

proves lemma 2. Q

Now we need to consider what happens when we add the infinite order generator
(namely (2,2)) to a point on E(Q).
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LEMMA 3 . If (X, Y) e E(Q) and (X1, Y') = -{(X,Y) + (2,2)} then there exists
ReQ such that f(a(X',Y')) = R2.

PROOF: First we intersect the line through (X,Y) and (2,2) with E to find that

, _ (lX2 + 4X -4-6Y -4X3 - 18X2 + 12X + 8 + 18XY \

' \ (X - 2)2 ' (X-2)3 )

for all (X,Y) except (2,2). Substituting this into the expression for f(a(X',Y')) and
using E to reduce powers of Y leads to

Note that -2 * (2,2) = (1,0) on E and so we have f(a(-{(2,2) + (2,2)})) =

/ ( o ( l , 0 ) ) = / ( - l , - l ) = 02. D

Combining Lemma 2 with Lemma 3 immediately implies that {X, Y) + (2, 2) also
preserves the rationality of the area.

Finally, we need to ensure that adding the order two point to any point on E(<Q)
preserves the rationality of the area. To ease the proof we use that fact that on E we
have (0,0) + (2,2) = (-1,2) which leads to the identity

(0,0) = -{-{(*,»)+ (-1,2)}+ (2,2)}.

Thus it is sufficient to check addition of the point (—1,2) to arbitrary points on E(Q).

LEMMA 4 . If (X,Y) e E(Q) and (X',Y') = -{(X,Y) + (-1,2)} then there
exists ReQ such that f(a(X',Y')) = R2.

PROOF: First we intersect the line through (X,Y) and (-1,2) with E to find
that

for all (X, Y) except (—1,2). Now, as before we substitute this into the expression for
f(a(X',Y')) and use E to reduce powers of Y to obtain

/ ( a ( * ' y ) ) ^ ( X - 2fX2J •

Note that - 2 * (-1,2) = (1,0) on E and so we have / ( a ( - { ( - l , 2 ) + (-1,2)})) =

/ ( o ( l , 0 ) ) = / ( - l , - l ) = 0 2 . D
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These three lemmata imply that negation of points and addition of either generator
of E(Q) preserves the property that f(a(X, Y)) € Q2. Since / ( a ( - l , 2)) = /(-1,3) =
02 and /(a(2,2)) = / (0 , -3/2) <= 02 we conclude that all points on E(Q) preserve
f(a(X,Y)) £ Q2. Hence all points (0,</>) € C4(Q) preserve f(a{X,Y)) e Q2 except
perhaps (8, (j>) = (1,1), as noted earlier. However /(I,1) = 02. Thus the main theorem
is proven.

III. INFINITELY MANY HERON-2-MEDIAN TRIANGLES

The approach we use to show that there are infinitely many Heron triangles with
two rational medians is simply to observe that an unbounded portion of the positive
arm of the elliptic curve E is mapped into the bounded region defined by 0 < 6,4> < 1
and 28 + 4> > 1. Then we use the fact (established in Lemma 5) that the rational points
on the curve, namely E(Q), are dense in the group of real points, E(M).

LEMMA 5 . If (X, Y) is an infinite order point on the unbounded component of
an elliptic curve E then E(Q) contains points such that \X\ is arbitrarily large.

PROOF: Suppose that the infinitely many rational points are contained in a
bounded region, that is, Xmin < X < Xmax, Ymin < Y < Ymax for all (X, Y) € E(Q).

First we argue that E(R) contains no limit points (that is, a possibly real point
on the curve which is the limit of a sequence of rational points on the curve). If it did
contain a sequence {Pn} converging to P say, then the sequence {-Pn} converges to
—P and the chords formed by the points Pn and —Pn-i have increasingly large slope.
These slopes are not necessarily monotonically increasing but for sufficiently large n we
shall find, by adding the points Pn and -Pn-\ on the curve, that

\X(Pn-Pn-1)\>Xmax

which contradicts our initial assumption.
With no limit points there must be a minimum distance, S say, between any two

rational points on E. But with a finite arc length of the curve E in the bounded region
we end up with only a finite number of rational points on E contradicting the fact that
E(Q) has rank at least one. D

Using this result and the observation that E(Q) does contain points on the bounded
component (for example (0,0)) is essentially enough to show that E(Q) is dense in
E(R). (It is an interesting question to determine the density of the rational points in
the group of real points for arbitrary curves.) However, the Lemma above is sufficient
for our current needs.

THEOREM 2 . The curve

C4 : e2<f> - 6(f)2 + dip + 26 - 20 - 1 = 0
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contains an infinite number of rational points in the region 0 < 6 < 1, 0 < cj> < 1 and

26 + <f>>l.

PROOF: Recall the mapping from E to C4 defined by

2X3 + X2 - 8X + 4 - Y2 - 2Y 2X3 - 5X2 + 2X-Y2- 2XY_ (
Y) ' {3X - 2 + Y)(X + Y)

S e t t i n g a{X, Y) = ( 0 , $ ) , w e find t h a t t h e i n e q u a l i t i e s 0 > O , # > O , 0 < l , 0 < l a n d

26 + (j> > 1 r e s p e c t i v e l y l e a d t o

Y2 + 2Y < 2X3 + X2 - 8X + 4

Y2 + 2XY < 2X3 - 5X2 + 2X

Y2 + 2XY > X3 - X2 - 3X + 2

Y2 + {3X - 1)Y > X3 - 4X2 + 2X

2Y2 + (3X + 1)Y < 3X3 - 3X2 -6X + 4.

Now by solving each of these as a quadratic in Y one obtains

Y < Y± = - 1 ± y/2X3 + X2 - 8X + 5

Y <Yf = -X± V2X3 - 4X2 + 2X
Y > Y? = -X ± y/X3 -3X

Y >Yf = 1/2 - 3X/2 ± y/X3 - 7X2/A + X/2 + 1/4

Y <Y^ = -1/4 - 3^/4 ± y/3X3/2 - 15X2/16 - 21X/8 + 33/16.

We consider the positive arms of each curve. Notice that the radical part dominates
each of the Yi for large X and that V2

+ (8) = y5
+ (8) = 20. A number of comparisons

(similar to the ones shown below) lead to the ordering

y4
+ < y3

+ < y5
+ < y2

+ < Y+ for aii x > 8

on these curves. In fact, the inequalities above force y3
+ < Y < y5

+ for all X > 8. So
the aim now is to show that an infinite part of the elliptic curve E is contained in the
region of the XY-plane defined by V3

+ and Y"5
+. Solving E for Y in terms of X leads

to

y^ = -X/2 ± s/X3 + f>X2/4 - 2X.

Hence we calculate

- y3
+ = X/2 + y/X3 + 5X2/4 - 2X - y/X3 -3X + 2

> \/X3 + X2 - 2X - \/X3 -ZX + 2

2) - \J{X - 1)2{X + 2)

> 0
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for all X > 1. Thus we have Y£ > F3
+ for X > 1. In a similar way we can compare

Y+ to Y+

Y+ Y+
5 E V

3 3

16
X

- X2 - 3X - yJx{X + 5/8)2 - X/2

= y/X (s/3Xy2-X-3- (x + VI/2 + 5/8))

5/8)2/4 + (XV4 - X - 3) -

> VEX/2 ~(X + VX/2 + 5/8)

> X/9 - VX/2 - 5/8
>0

for all X > 36. Thus we have y,+ < F^ < y+ for all X > 36.

Figure 2 : The graphs of YUY2,YZ,Y^ Y5 and YE

Using Lemma 5 and the fact that (2,2) is an infinite order point on the unbounded
part of E we conclude that there are infinitely many rational points (X, Y) e E(Q)
such that X > 36. This proves the theorem. Q

IV. N E W SPORADIC TRIANGLE

Since the completion of the proof of the main result of this paper we have continued
a systematic search for more sporadic Heron triangles with two rational medians and
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have recently been rewarded for our perseverence with a new one, namely the last one
shown in Table 1.

Table 1. Sporadic Heron-2-median triangles

Sides
b

Medians
I

Area

4368 1241 3673 1657 7975/2 2042040

14791 14384 11257 21177/2 11001 75698280

2288232 1976471 2025361 1641725 3843143/2 1877686881840

The interest in these triangles is due to the fact that none of them lie on any of the
5 elliptic curves we have discovered so far and hence may lead to a new infinite family
of such triangles.

V. CONCLUSION

It seems likely, at least to the authors, that none of the Heron-2-median triangles
generated from these elliptic curves actually have 3 rational medians. This belief is
supported by the observation that the half angle cotangent of the angle at the vertex
of the third median is expressible in terms of two so-called 'Somos sequences' (see [2])
and is irrational in each case calculated thus far. Furthermore, we have checked the
first 100 multiples of the infinite order point on E (both with and without adding the
order 2 point) and none of the corresponding triangles has a third rational median.
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