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Abstract. This paper deals with the following degenerate and singular equation
Xy, — (Xuy), = / u"(x, H)dx — ku"(x, 1)
0

with non-local source and absorption. The existence of a unique classical non-negative
solution is established and the sufficient conditions for the solution that exists globally
or blows up in finite time are obtained.

AMS (2000) Subject Classification. 35K 55, 35K57, 35K65.

1. Introduction. In this paper, we consider the following degenerate and singular
nonlinear reaction—diffusion equation

XTuy — (Xuy), = /u u"(x, dx — ku"(x, 1), (x,1) € (0,a) x (0, T,
0

u(0, 1) = u(a, 1) = 0, €0, 7), (1.1
u(x, 0) = up(x), x €0, d],

where uy(x) € C>t*([0, a]) for some « € (0, 1) are non-negative non-trivial functions.
up(0) = up(a) = 0, up(x) > 0, up(x) satisfies the compatibility condition, 7 > 0, a > 0,
pel0,),lgl+p#0,m n>1k=>0.

Let D = (0, a) and , = D x (0, 7], D and Q, are their closures, respectively. Since
lg| + p # 0, the coefficients of u;, u,, u,, may tend to 0 or co as x tends to 0, we can
regard the equation as degenerate and singular.
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Let us rewrite the problem (1.1) as

a
up — Xy — pxP=47 Ny, = x’q/ u"dx — x"ku"  (x,1) €(0,a) x (0, T),
0
u@0, 1) =ua, 1) =0, te(0,7), (1.2)
u(x, 0) = uo(x), x €0, 4],
we need more assumptions: p — g < 2 (for a well posedness of the Dirichlet problem at
x = 0)and x~¢ € L!(0, a) (otherwise, the solution u(x, ) is complete blowup at ¢ = 0).

In [18], Ockendon studied the flow in a channel of a fluid whose viscosity depends
on temperature u(x, f) and gave the following model

Xuy = Uyy + €". (1.3)

Floater [11] and Chan et al. [4] approximated ¢* by #” and investigated the blowup
properties of the following parabolic problem

Xy — uy =P, (x,1) € (0,a) x (0, T),
w0,t) =u(a, ) =0, te(0,7), (1.4)
u(x, 0) = up(x), x € [0, a],

where ¢ > 0 and p > 1. Under certain conditions on the initial datum uy(x), Floater
proved that the solution u(x, t) of (1.3) blows up at the boundary x = 0 for the case
1 < p < g+ 1. This is contrasts with one of the results in [12], which showed that for
the case ¢ = 0, the blowup set of the solution u(x, ¢) of (1.3) is a proper compact subset
of D.

Budd et al. [2] generalized the results in [11] to the following degenerate quasi-linear
parabolic equation

xqu, = (um)xx + up, (15)

with homogeneous Dirichlet conditions in the critical exponent ¢ = (p — 1)/m, where
g >0, m>1and p> 1. They pointed out that the general classification of blowup
solution for the degenerate equation (1.5) stays the same for the quasi-linear equation
(see [2, 22])

up = (") + 0. (1.6)

In[5], Chen et al. considered the following degenerate nonlinear reaction—diffusion
equation with non-local source

xTu, — (X uy) = / wWdx, (x,1) €(0,a) x (0, T,
0

w0, 1) = w(a, 1) = 0, t€(0,T), (1.7)

u(x, 0) = up(x), x € [0, al,

they established the local existence and unique solution of a classical solution. Under
approximate hypotheses, they also got some sufficient conditions for the global
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existence and blowup of a positive solution. Furthermore, under certain condition,
it is proved that the blowup set of the solution is the whole domain.
In [7], Chen et al. considered the following more general problem

a
X, — (X uy)y = / f(wdx, (x,1) € (0,a) x (0, T),
0

u(0, 1) = u(a, ) = 0, 1€ (0, T), (1.8)

u(x, 0) = up(x), x €0, 4],
they established the local existence and uniqueness of a classical solution. Under
approximate hypotheses, they obtain some sufficient conditions for the global existence
and blowup of a positive solution.

In [17], Liu et al. considered the following degenerate parabolic equation with
non-local source

Uy — X () = / Wdx— ki, (x,0) € (0.a) x (0, T),
0

u(0, 1) = u(a, ) = 0, te(0,T), (1.9)
u(x, 0) = up(x), x €10, al,
they established the local existence and uniqueness of a classical solution. Under
approximate hypotheses, they also get some sufficient conditions for blowup of a
positive solution. Furthermore, under certain conditions, it is proved that the blowup

set of the solution is the whole domain.
In [25], we considered the following parabolic system

xMuy — (X" uy), = / vdx, (x,1) €(0,a) x (0, T,
0

X2y, — (xvy), = / wdx, (x,0) €(0,0) x(0,7), (110
0

w0, =u(a,t) =v(0,t) =v(a,t) =0, te(,T),
u(x, 0) = up(x), v(x, 0) = vo(x), x € [0, a],

under certain conditions, we proved that the blowup set of the solution is the whole
domain. The existence of a unique classical non-negative solution is established and
the sufficient conditions for solution that exists globally or blows up in finite time are
obtained.

In [16], Li et al. considered the following degenerate and singular nonlinear
reaction-diffusion equations with localized sources

XMy, — (X" uy), = v (x0, 1), (x,7) €(0,a) x (0, 7),

xPv, — (x"vy), = v (x0, 1), (x,7) € (0,a) x (0, T, w11
w0, =u(a,t) =v(0,t) =v(a,t) =0, te(0,T),

u(x, 0) = up(x), v(x, 0) = vo(x), x € [0, a],
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under certain conditions, the existence of a unique classical non-negative solution is
established and the sufficient conditions for the solution exists globally and blows up
in finite time are obtained. Furthermore, under certain conditions, it is proved that the
blowup set of the solution is the whole domain.

Motivated by the above cited papers, we consider the problem (1.1) and before
leaving this section, we should remark the blowup properties for non-local semi-
linear parabolic equations (see [10, 19, 20, 23, 24] and the references therein) and
the degenerate parabolic equations without non-local terms (for example, see [1, 4, 5,
8, 13, 17, 21] and the references therein).

This paper is organized as follows: in the next section, we establish the comparison
principle to problem (1.1). In Section 3, we show the existence of a unique classical
solution. In Section 4, we give some criteria for the solution to exist globally or blow
up in finite time.

THEOREM 1.1. Let u(x, 1) be the non-negative solution of (1.1). Let us assume that a
non-negative function w(x, t) € C(Q,) N C>1(,) satisfies

xXtw, — (X wy), > (5)/ w”(x, Hdx — kw"(x, 1), (x,1) € Q,,
0

w(0, 1) > (=)0, w(a, t) > (=)0, te(0,r), (1.12)

w(x, 0) > ()uo(x), x € [0, al.

Then, w(x, t) > (u(x, t) in [0, a] x [0, r).

THEOREM 1.2. There exists to(< T) such that (1.1) has a unique non-negative solution
u(.x, [) € C(Q[O) N Cz’l(Q,O).

THEOREM 1.3. Let T be the supremum over ty for which there is a unique non-
negative solution u(x, t) € C(Q,)N C*(Qy,) of (1.1). Then (1.1) has a unique non-
negative solution u(x,t) € C([0,a] x [0, T))N C>' ((0,a) x (0, T)). If T < 400, we
have lim sup,_, r MaXyejo,q [4(X, 1)] = +o0.

THEOREM 1.4. (1) Assume m < n, then the solution of (1.1) u(x, t) exists globally.
(2) Assume m > n > 1, then the solution of (1.1) u(x, t) exists globally if up(x) < (k/a)ﬁ.
(3) Let u(x, 1) be the solution of (1.1). If up(x) < a1p(x), then u(x, t) exists globally, where,

= 2027 (1-2),

2—p\a a
—m 1.13
a(z—p)m-H f()l xm(l—p)(l _ x)’"dx 1/(1 ) ( )
“ a—py '

To give the blowup results, we assume the the initial data u(x) satisfying the
following assumption
(H) For any x € (0, a), the initial data satisfies (x"uox)x + [y ug'dx — kug > 0.
Furthermore, we need the following result, which is proved in [24].
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LEMMA 1.5. Let m > 1 and a > k, then there exists a constant § € (0, 1) and a
Sunction w(x) € C§°(0, a), such that

a

/aa)(x)dx =1, 0<ko(x)<1-34, / w(x) — kw™(x) = 8, for x € (0, a).
0 0
(1.14)

THEOREM 1.6. (1) Assume m =n > 1, a > k and the assumption (H) holds. Then
the solution of problem (1.1) blow up in finite time if ug(x) > apw(x), where ay is sufficient
large such that

1

<A0>ml ar)”
ap > max { | — y ————
Jo @(x)dx

Ao = MaXyep,q] — (¥ wy), and w(x), 8 are given by Lemma 1.5.
(2) Assume m > n > 1, q¢ > p — 1 and the assumption (H) holds. Then the solution of
problem (1.1) blow up in finite time if up(x) > a,¢(x), where

2 o).

x) = ki x"P72 g _
p(x) =k a-pfia+2-p \ oy =,

J(1=p)/(g+2—p) denote the Bessel function of the first kind of order (1 — p)/(q+ 2 — p), p is

first root of J—p) /(q+2_p)(qi‘£p aa+2=p)/ 2) and ay is sufficient large such that the following

inequalities hold

a
a’l”/ o"dx — kd{¢" > a\p,
0

m—1

a a m 5
m—1 / <pdx </ (pmdx> > 4[,L(1m"11 ’
0 0
a a

m—n m—n

a;
a’l”’”/ <pdx</ (p”+1dx> ' sz(/ <pmm"dx> L
0 0 0

2. Comparison principle. In this section, we prove the comparison principle, i.e.,
Theorem 1.1. We start with the following lemma.

LEMMA 2.1. Let b(x, 1) and bx(x, 1) be continuous functions defined on [0, a] x [0, r]
forany r € (0, T), ba(x, 1) > 0 in Q,. Let u(x, t) € C(Q,) N C>(RQ,) satisfies

XMy — () = bi(x, Dulx, 1) +/ by(x, Du(x, Hdx, (x,1) € Q,,

0
u(0,1) >0, u(a,t)>0, te(0,r) 2.1
ux, 0) 2 0, x € (0.4,

then, u(x,t) > 0in [0, a] x [0, T).
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Proof. At first, similar to the proof of Lemma 2.1 in [24], by using Lemma 2.2.1 of
[19], we can obtain the following conclusion
If w(x, 1) € C(2,) N C>(Q,) satisfies

— (XPwy), = bi(x, Hw(x, 1) +/-a bo(x, Hw(x, Hydx, (x,t) € Q,,
0

w(0, 1) > 0, wia, ) >0, te©,rn, (22
w(x, 0) >0, x €0, a],
then, w(x, ¢) > 0, (x, 1) € Q,.
Next, let p’ € (p, 1) be positive constant and
w(x, 1) = u(x, 1)+ n (1 + xp/’l’) e, 2.3)

where n > 0 is sufficiently small and ¢ is a positive constant to be determined. Then
w(x, t) > 0 on the parabolic boundary of 2, and

xXtw, — (Pwy), — bi(x, Hw(x, 1) — /a ba(x, Hw(x, t)dx
0

@ —p)d —=pme
x2=r

> xp (1 + xp,_p> ce + — bi(x, )y (1 + xp/_p> e’

- fa by(x, )y (l + xp”p> e“dx

' —pd-p)h '—p
( T ~(1+@ )(g)i%rbl(x, ) (2.4)
—a (1 + a"/*p> max by(x, t))
(x,0)eQ,
> ne! (qu + w
x=—P
—(1+a) (1 +ap/’1’) max{ max bj(x, f), max by(x, t)})
(X, (x,0)eQ,
Case 1. If
@ —p)(1-p)
b b Z 9 b 9 t — / . 2.5
max{o:?)aé?z,- 15, 1) (:I:)ae)s(z 2 )} = @ P(1 +a)(l +a’'r) ()
It is obvious that
xXw, — (X wy), — bi(x, Hw(x, 1) — / by(x, Hw(x, t)dx > 0. (2.6)
0
Case 2. 1f
@' —pd-=p)
max{ max bi(x, ), max by(x,t —. 2.7
X{(x,t)e)s%,. 1(x, 1) (X’I)E?ér 2(x )} > 0T 0 L a7 (2.7)
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Let xo be the root of the algebraic equaiton

, —p) (1 —p
a+m@+¢wym4mmb@m)mmmuﬁ}=9—%LJQ.@&
(x,0)e (x,0e x<7P
let ¢ be sufficiently large that
c> (max{ max b;(x, t), max ba(x, t)}(l +a)(1 +a” ”))/ . 2.9)
(x,0eQ, (x,0)€82,

Then we have
xXw, — (Xwy), — bi(x, Hw(x, ) — / br(x, Hw(x, t)dx
0

r;e"’(w —(14a) (l—f-ap/’p) max{ max bi(x, 1), max bs(x, t)})

x2r (x,0ed, (x,0eQ,
for x < xy,
=
ne‘ (cx‘] —(1+a) (1 + ap/’p) max{ max by(x, 1), max by(x, t)})
(x,0)eQ, (x,)€Q,
for x > xy,
> 0.
(2.10)

From the above two cases, we know that w(x, £) > 0in [0, a] x [0, r]. Letting n — 0%,
we have u(x, ) > 0in [0, a] x [0, r]. By the arbitrariness of r € (0, T'), we complete the
proof of Lemma 2.1. O

Proof of Theorem 1.1. We only consider the case ‘>’ (as for the other case ‘<’, the
proof is similar). Let ¢(x, 1) = w(x, t) — u(x, ?), then ¢(x, ) satisfies

X — (X)), > /a (W™ —u"ydx — k(w" —u"). (2.11)
0

By using the mean value theorem, we get

w” —u" = mn"” w—u), w'—u" =nn, Yw —u), (2.12)

where 11, 1, are some intermediate values between w and u. Since m > n > 1, we have

mny" I'>0, nny I'> 0. So, the function ¢(x, 1) satisfies

a

X, — (Pgy), > / (e, Ddx — kni (. D). (n 1) € Q.

0
90,1 >0, ¢(a,t)>0, re(,r), (213
@(x,0) >0, x € [0, a).

Lemma 2.1 ensures that ¢(x, ) >0, that is w(x, ) > u(x, ¢) in [0, a] x [0,r). We
complete the proof of Theorem 1.1. O
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3. Local existence. In this section, we will establish the existence of a unique
classical non-negative solution of problem (1.1) and prove Theorems 1.2 and 1.3. We
start with the definition of a supersolution of problem (1.1)

DEFINITION. A non-negative function u(x, 7) is called an supersolution of (1.1). If
u(x, 1) € C([0, a] x [0, T)) N C>1((0, a) x (0, T)) and satisfies

a

X, — (), > / " (x, )dx — ki"(x, 1), (x,1) €(0,a) x(0,7),
0
0,1 >0, u(a,t)=>0, te(0,7), (3.1)
u(x, 0) > uo(x), x €10, a).
Similarly, u(x, ) € C([0, a] x [0, T)) N C>1((0, a) x (0, T)) is called a subsolution of
(1.1) if it satisfies all the reversed inequalities in (3.1).

REMARK. Let u(x, f) be the solution of (1.1), u(x, 1), u(x, t) be the supersolution
and subsolution of (1.1), respectively. Then, u(x, ) < u(x, t) < u(x, 1).

Obviously, u(x, 1) = Oisasubsolution of (1.1), we need to construct a supersolution
of (1.1).

LEMMA 3.1. There exists a positive constant to (to < T') such that the problem (1.1)
has an supersoution h(x, t) € C(€;,) N C>1(R,,).

Proof. Let yr(x) = (X)! (1 — %) + ()"P/24(1 — £)!/2and ko be a positive constant
such that ko (x) > up(x). Denote the positive constant fol(slfp(l —5) +s1P72(1 —
$)12ynds by by. Let ki € (0, (1 — p)/(2 — p)) be positive constant such that

ki < min {(b02m+1a3—pk161—1)—2/(1—]7) ’ (b02m+1a3—pk81—1)—2} ' (32)

Let k(¢) be the solution of the following initial value problem

bok™ (1)
12 ’ 920,
/ a1k (ko(l — ko)'? + k(1 - k0)<1—/’>/2)
k' (1) = bok™(?) <0 (3.2)
@711 = ko)t (Io(1 = ko) 7 + ky/ *(1 — ko)1-72)
k(0) = k.
Then the solution is given by
k(l)—m + bO(l - Wl)t ’ g> 0’
a1k (Fo(1 = ko)'= + &y *(1 = k)17

k(t) =

1-m
bo(1 — m)t
k" + o= 1,2 - 4=0
a1 (1 = ko)t (Ko(1 = ko)!=2 + ky/*(1 = ko)1=
(3.3)

Since k(7) is an increasing function, we can choose 79 > 0 such that k(?) < 2k for all
t € [0, to]. Let h(x, 1) = k(£)y(x), then h(x, ¢) > 0 in Q,. We would like to show that
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h(x, t) is a supersolution of (1.1) in €,,. To do this, let us construct a function J by
J=xTh — (X hy)y — /Oa W'dx + k', (x,1) € Q4. (3.4
Then,
J=xh — (X hy)y — /o ’ W"dx + kh"

> xh, — (X hy) — / hW'dx
0

_ — )2
> XK (0 (x) + (Za e ((1 4”) X (g ) %x(‘H)/z(a— X2 (3.5)

1 1
+ Zx(1+p)/2(a — x)s/z) X al—P/2> k(1) — abok™ (1)

k(t
> XU ()Y (x) + xP V2 (q — x)71/? zal(_l), 75 — abok™ (1),
For (x, #) € (0, aky) x (0, 1),
_ _1p K@ .
J > xP D2 — x) 1/2201171;/2 — abok™ (1)
, ko a2 (aky) PV — aby(2ko)"
= 24112 (3.6)
k k(P*I)/2
= (’Z;T — abo(2ko)"
> 0.

For (x, 1) € [aky, a(1 — k)] x (0, fo),
J = XK (D) (x) — abok™ (1)
I (@) (Fn (1= )7+ 21— k)2 — abok™ (), g 20,

> (3.7
(1 =k)'K (1) (K (1=F)! 7 4+ I (1 =) P72) —abok™ (1), g <0,
> 0.
For (X, t) € (a(l - kl)’ a) X (07 to)n
- _1j2_ k@) m
J > x0TV — x) 1/22a1*1’/2 — abok™ (1)
kO (p—1)/2 -1/2 m
> W(l (a — a(l — k])) — abo(Zko) (38)
kokl_l/z m
= St — abu(2ko)
> 0.
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Thus, J(x, ) > 0 in Q,,. It follows from A(0, t) = h(a, t) = 0 and A(x, 0) = ko (x) >
up(x) that A(x, t) is a supersolution of (1.1) in Q. We complete the proof of Lemma
3.1 O

To show the existence of the classical solution u(x, £) of (1.1). Let us introduce a cut-
off function p(x). By Dunford and Schwartz [10], there exists a undecreasing function
p(x) € C3(R) such that p(x) = 0if x <0and p(x) = 1ifx > 1. Let0 < 8§ < 1=

2—pa’
0, x <86,
ps(x) =1 p (g — 1) 5 <x <28 (3.9)
L, x>,

and ups(x) = ps(x)up(x). We note that

0, x <4,

dugs(x) X /X

a5 _8_2'0 (3_1) up(x), & < x <286, (3.10)
0, x> 4.

Since p is non-decreasing, we have 8“%#;“) < 0. From 0 < p(x) < 1, we have uy(x) >
ups(x) and lims_, ¢ uos(x) = uo(x).

Let ds = (8, a), let ws = ds x (0, 0], let ds and w; be their respective closures, and
let 55 = {8, a} x (0, #y]. We consider the following regularized problem

Xus; — (X usy), = / ug'(x, tydx — kuj(x, 1),  (x, 1) € ws,
0
us(0, 1) = us(a, t) = 0, t € (0, 1], (3.11)

us(x, 0) = ups(x), x € ds.

By using Schauder’s fixed point theorem, we have the following lemma.

LEMMA 3.2. Problem (3.11) admits a unique non-negative solution us(x,t) €
CHel+e/2(gg), a € (0, 1). Moreover, 0 < us(x, t) < h(x, 1), (x, t) € Wws, where h(x, t) is
given in Lemma 3.1.

Proof. The proof is very similar to [5], we omit the details. O

Proof of Theorem 1.2. By Lemma 3.2, the problem (3.11) has a unique non-
negative solution us(x, 1) € C>T*1+2/2(ipy). It follows from Lemma 2.1 that us;(x, {) <
usy(x, t) if §1 > §2. Therefore, lims_, o us(x, t) exists for all (x, ¢) € (0, a] x [0, #]. Let
u(x, t) = limg_,o us(x, ) and define u(0,7) =0, ¢ € [0, zp]. We would like to show
that u(x, ) is a classical solution of (1.1) in €. For any (xi, t;) € €,,, there exist
domains Q' = (4, d,) x (13, 1], Q" = (a{, a3) x (¢5, 5] and Q" = (a}’, ay) x (', 7]
such that (x1,1)e Q@ C Q" C Q" C(0,a) x (0, %] with 0 <af <af <a; <x; <

/ /! " " /! / / /! /1 s s
ay <dy <ay <a,0<ty <ty <t,<t] <ty <t; <ty <t.Sinceus(x, 1) < h(x, t)in
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Q" and h(x, f) is finite on Q" for any § > 1 and some constants k3, k4, we have
) lusllLy0m) < Nl 0m) < k3,
< (@)™

a a
x1 / ug'dx / h"dx
s L4(Q”) 0

(111) ||x_qul§||Lz/(QW) < (a?< 4 ||hn||L;/(Q’”) < k4,

< ki, (3.12)
Ly(Q")

(ii)

where af = a]' if g > 0,af =ay if g < 0.
By the local L, estimate of Ladyénskaja et al. [14], us € W;Ig’l(Q”). By the

embedding theorem in [14], W5''(Q") < H***(Q")if we choose § > 2/(1 — &). Then
[|us || reerrory < ks for some positive constant ks and we have

a
x1 / uy dx
r) H"*“/Z(Q”)
+ sup

a
/ W"dx —
5 o (nHe0"FHe0" |x — Xx|*

57 - 1 e, D 7 e ov, 1) = s (D)™ (s v, 1) (v, D)l

|5 w5'dx] - |~ = 57|

< (a})™*

+ sup -
F.eQ" (XDe0” |t —7|/2
a a
= (aT)iq / h"dx + / h"dx : ||x7q| H*(d{,dy)
0 0o 0 o 1°4

a
4 (a})™ / mh"dx|| - lusl| geeror)
0 00
< ks,
(3.13)
and
Hx‘qu’g! Heel2(Q")
X" (x, 1) — XWX, t
S(QT)quhnHoo_’_ sup ’ 8( ) — 8( )‘
(x.0)€0",(%,1)e0" |x — X]|
X4 WX, ) — ul(X,T
b oy X A ~)a/2 LX)
G.0e0" (XDHe0" [t —f|
< @)~ |[n"]]
- R, b s, Dt F ) [, D5 )
+  sup -
(00" (Z,)e0” [x — x[¥
WX, 0| - |x 1 =Xx"1
T o) et
(00", (Z,He0” [x — x[¥
|X79]- ‘”(Ha(%ymfz(us (&, O-us(X, D))" ‘ Jus(X, 1)—us(X,7)|
+  sup =
G.0)e0" (XPHe0” |t — 7|2
_ _ 1 _
< (@) |[1"|[ o + @) |nh" | sl ez + (1| 17 e
- -1
+(a}) ™ ||nh" | - sl georory
< ke,
(3.14)
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for some constant k¢ > 0, which is independent of §, where 7, 71, 7o € (0, 1). By
Ladyénskaja et al. [14], we have

| |u5 | |H2+o(.l+o¢/2(Q!) < k7, (3 1 5)

for some positive constant independent of §. This implies that us, us,, us, and usy, are
equicontinuous in Q. By the Ascoli-Arela theorem, we know that

||u||H2+a’.l+a’/2(Q/) < kg, (316)

for some o’ € (0, «) and some positive constant kg independent of §, and that the
derivatives of u are uniform limits of the corresponding partial derivatives of us. Hence,
u(x, t) satisfies (1.1) and lim,¢u(x, ) = lim,_ o lims_ o us(x, t) = limg_, ¢ ups(x) =
up(x). It follows from 0 < u(x, 1) < h(x, t) and lim,_, ¢ A(x, {) = lim,_,, A(x, ) = O that
lim,_ o u(x, £) = lim,_,, u(x, £) = 0. Thus, u(x, ) € C(Q,,) N C>(R,,) is a solution of
problem (1.1). We complete the proof of Theorem 1.2. O

By using Lemma 2.1, there exists at most one non-negative solution of (1.1), similar
to the proof [11], we can get Theorem 1.3.

4. Existence and no-existence of the global solution. In this section, we prove
Theorems 1.4 and 1.6.

Proof of Theorem 1.4. (1) Since uy € C([0, a]) and m > n, we can choose M large

enough such that
1
ko
M > max{ max u(x), [ — .
x€[0,d] a

Then, it is easy to see u = M is a supersolution solution of problem (1.1) and the result
follows by Theorem 1.1.

(2) Since u = (k/a)ﬁ is a supersolution solution of problem (1.1) and the result
follows by Theorem 1.1.

(3) Obviously, ¢(x) defined in (1.13) is the solution of the following elliptic
boundary problem

{ ~ (W) =1 xe©.a, (@.1)

#(0) = p(a) = 0.
Let #(x, t) = a;¢(x) and Beta function B(/, m) = fol x=1(1 — xy"~'dx, then we have

xt, — (¥ Uy),

= — (Fa9'(x)
(am(Z—p)-HB(m(l —p+Lm+ 1)>1/(l—m)
= al =
m(2 —p)
= / al'e"dx = / u"dx > / u"dx — ki, (x,1) € (0,a) x (0, T),
0 0 0
w0, 1) = u(a, t) =0, te(0,7),
u(x, 0) = a1p(x) > up(x), x € [0, a].

https://doi.org/10.1017/50017089509990280 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089509990280

BLOWUP FOR A DEGENERATE AND SINGULAR PARABOLIC EQUATION 221

That is to say #(x, t) = aj¢(x) is a supersolution of (1.1). By, Theorem 1.3, we know
that u(x, 7) exists globally. We complete the proof of Theorem 1.4. |
To give the proof of Theorem 1.6, we need the following lemma.

LEMMA 4.1. If (Xupy)x + foa uydx — kug > 0, then the solution of problem (1.1)
u(x, t) is non-decreasing in t.

Proof. Let v = u,, then the function v satisfies

X, — (X vy), = / amum_lv(x, Ndx — kmd"'u(x, 1), (x,1) € (0,a) x (0, T),
0
v(0, 1) =v(a, 1) =0, te(0,7), 4.2)

v(x,0) = x4 ((xpu()x)x + / uydx — kuﬁ) >0, x € [0, al,
0

then, Lemma 2.1 tells us that v > 0 for ¢ € [0, T), i.e., u is non-decreasing in ¢ for
t € [0, T). We complete the proof of Lemma 4.1. a

Proof of Theorem 1.6. Let ¢(x, ) be the solution of (1.1) with initial data ¢y(x) =
apw(x) where ay and w(x) are given in Theorem 1.6 and Lemma 1.5 respectively. Since
Lo = — (Po(x)), and aghg < 84y, itiseasy to show that (¥ ¢oy)x + [y ¢f'dx — k¢ > 0.
So ¢(x, ?) is non-decreasing is by Lemma 4.1.

Setting J(¢) = foa x?¢(x, Hw(x)dx and using Jensen’s inequality, we have

T(t) = / " y(x. Do)
0
= /a (X wy), pdx + /a ¢"dx — k/a ¢ wdx
0 0 0
> _AO./(; ¢dx+/0 ¢"dx + (1 — 6)/0 ¢"dx (4.3)
a a m—1 a
> / ¢dx (al_’" (/ ¢dx) - Xo) + (- 8)/ ¢"dx
0 0 0
a a m—1 a
> / $dx <a1-'" ( / q)odx) —,\0> +(1-96) / ¢"dx.
0 0 0

1
m—1

. a, .. .
Since ay > +2%—-, it is easy to obtain

Jo @(x)dx’
a m—1
al=m (/ ¢0dx> — Ao > 0.
0

So, we get form (4.3) that

J(t) > (1 —38) /0 a¢’”dx. (4.4)
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Using Holder’s inequality we obtain

/ " Vwdx < ( / ad)’”dx)m ( / a(xqa))mmldx> " 4.5)
0 0 0

Combining (4.4) and (4.5), we get

a I-m a
J'(0) > (1-26) ( /0 (xqa))mmldx) ( /0 xqua)dx)

a 1-m
—a-o([wora) o

(4.6)

Since m > 1 and J(0) > 0, we know that ¢(x, 7) blows up in finite time. So u(x, ) blows
up in finite time for ¢(x, ¢) is a subsolution of problem (1.1).
(2) First, the following eigenvalue problem

— (W' () = Axlp(x), x € (0,a),
4.7
9(0) = p(a) = 0.
is given by
_ 2/1 _
(p(x) = klx(l P)/ZJ(]_p)/(q+2—p) <£X(Q+2 P)/Z) , (48)

which is positive for x € (0, a), where J(_p)/4+2-p) denote the Bessel function of the

first kind of order (1 — p)/(q + 2 — p), w is first root of J(l_p)/(ﬁz_p)(qiﬁp al4t2-n)2),
It is obvious that u is the first eigenvalue of problem (4.7). Since ¢ > p — 1, we can
choose k1 > 0 such that max.cjo 4 x7¢(x) = 1 (see [5]).

Let ¢(x, t) be the solution of (1.1) with initial data ¢y(x) = a;¢(x) where ay and
w(x) are given in Theorem 1.6. Since a;u < af' fO“ ¢"dx — kaje", it is easy to show
that (X’ ¢oyx)x + foa ¢y'dx — kg > 0.So ¢(x, 1) is non-decreasing is ¢ by Lemma 4.1. Set

J(1) = [y x1¢(x, N)e(x)dx, we have

() = /0 " g, (x, Dp(dx

=f (xl’<px)x¢dx~|—/ (pdx/ ¢’”dx—k/ ¢"pdx
0 0 0 0
> —u/ ¢dx

0

a 1 a A a ° a
—}—/ pdx | = f ¢"dx + — (/ ¢”<pdx> — k/ ¢"pdx,
0 2 Jo 2 \Jo 0
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m—n

where 4 = (fo @i dx) . Since d' " A [y pdx( [y ¢"'dx)*" > 2k and ¢(x, #) is non-
decreasing is ¢, it is easy to show that

m

é/aq)dx </a¢”<pdx>" —k/aq‘)”godx
2 0 0 0
a A a a o
=/ ¢"pdx (—/ pdx </ ¢”<pdx> —k)
0 2 Jo 0
a a a % 4.10
> [ #oas (f IRE ( | ¢>8<de) —k) (10
2 Jo 0
/ ¢g0dx< ilnn/ wdx</a(pn+ldx)n_k>
0 0

Combining (4.9), (4.10) and using Holder inequality, we get

J(t) > —pa'n ( / '"dx> / pdx / ¢"dx
fgodx/ ¢"dx (4.11)

—i—(/ ¢>de) ' (l/ugodx</a¢'"dx>m —Mamml).
0 4 Jo 0

m—1 — i . . -
Since a’l”_1 foa pdx (foa (p’”dx) "> 4/LaTzl and ¢(x, f) is non-decreasing is ¢, it is easy
to show that

=

1 ¢ m m m—1
= z/o pdx / godx | —par 4.12)
1 m—1 /a fa m m =
= —d| odx o"dx —pam
(‘)‘ 0 0

Using Holder’s inequality we obtain

m=1

ppdx < (| ¢mdx oytidx) (4.13)
[ o= ([[ovae)” ([[eomrar)

Combining (4.11)—(4.13), we obtain

J'(t) > —/ godxf ¢"dx
( f (xYg)m ldx) ( /0 ax%sodx)m (4.14)
< / (xp)iT ldx)l x J"(1).
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Since m > 1 and J(0) > 0, we know that ¢(x, 7) blows up in finite time. So u(x, t) blows
up in finite time for ¢(x, t) is a subsolution of problem (1.1). The proof of Theorem 1.6
is complete. O
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