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ON SOME MAPPINGS ASSOCIATED WITH
GEOMETRIC AND ARITHMETIC MEANS

S.S. DRAGOMIR, D. COMANESCU AND C.E.M. PEARCE

In this paper we introduce some new mappings associated with the weighted geo-
metric mean. These are used to derive structural results linking weighted geometric
and arithmetic means.

1. INTRODUCTION

Considerable attention has been given in the literature to studying relations be-
tween various means. Thus if G(x,y), A(x,y), L(x,y) denote respectively the geomet-
ric, arithmetic and logarithmic means of two positive numbers x, y, the relation

{[G{x,y))*A(x,y)}1/3<L(x,y)

applies (see Leach and Sholander [4]). A variety of recent results has been assembled
by Mitrinovic, Pecaric and Fink [6, Chapter 2].

The fundamental inequality in the area remains the familiar arithmetico-geometric
inequality

(1.1) An(p,x) ^ Gn(p,x), ie l"+ .

Here x = ( x j , . . . , xn) € R£ and p £ R!f., with Pn := £ Pi > 0 and
»=i

/ " \ 1 / P n

*< a n d Gn{p,x) := ( n * T )
r n »=1 \=1 /

are respectively the arithmetic and geometric means of the finite sequence x with the
weights p.

As an indication of its central role, Bullen, Mitrinovic and Vasic devote most of
a chapter of their book [1] to this result, including treatments of some 50-odd known
proofs. The reason for this largesse is that different methods suggest different extensions
and improvements. (In this connection, we shall, perhaps, be forgiven for opening
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Section 2 with a particularly simple proof of a result which, while new, is subsumed
under a later and more general one established by a different method.) Extensions of
(1.1) include bounds on An/Gn and An — Gn (see [1, Chapter 2]). For example, if
K is the ratio of the greatest to the least of the values Xi, then for the case of equal
weights pi we have

^ Gn(p,x) " elnK

(see Docev [2]).
This article is in the spirit of the above developments, though we find that An/Gn

and An — Gn are not the most natural quantities with which to work. Also, in contrast
to most of the work referred to, which studies relations between means of fixed real
positive numbers, we shall address results relating to means considered as functions of
variables. Thus it is obvious that

An(p, x+y) = An(p, x) + An(p, y) and An(p, ax) = aAn(p, x)

for all p,x,y £ R™ with Pn > 0 and a > 0, that is, the mapping An(p, •) is additive
and positive homogeneous on R™ . Furthermore

Gn{p,x y) = Gn(p,x)Gn(p,y) and Gn(p,ax) = aGn(p,x)

for all p,x,y £ R™ with Pn > 0 and a > 0, that is, the mapping Gn(p,-) is multi-
plicative and positive homogeneous on R™ .

The mapping Gn{p, •) possesses also a superadditivity property which may be used
to uncover a richer variety of structural results. In the following section, we derive a
superadditivity property for geometric means and use this to develop a supermultiplica-
tivity property for the map rjn{p, •) given by

and a subadditivity property for the map fin(p,-) given by

[An{p,x)f
) :=

In Section 3 we adopt a motif which has proved useful in the literature for interpolation,
namely, the introduction of a real variable as a parameter. This is used for the further
development of the ideas of Section 2.
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2. QUASI-ADDITIVITY AND QUASI-MULTIPLICATIVITY PROPERTIES

First we consider the so-called unweighted (that is, uniformly weighted) geometric

mean

The following theorem expresses superadditivity and monotonicity properties of the

geometric mean Gn.

THEOREM 2 . 1 . Let n ^ 2 be a natural number. Then the mapping Gn(-) is

superadditive and monotone n on decreasing on M™ .

PROOF: If there exists t'o £ { 1 , . . . ,»} with j / ; 0 = 0 , then the inequality

(2.1) Gn(x + y)> Gn(x) + Gn(y)

holds trivially. On the other hand, suppose that j/i > 0 for all i £ { 1 , . . . , n } . If a is a

nonnegative ra-vector and 1 + o := (1 + o i , . . . , 1 + an) , then

(2.2) 1 + Gn(a) ^ GB(1 + a)

(Lupa§ and Mitrovic [5] and Keckic [3]). For a more accessible account see Bullen,

Mitrinovic and Vasic [1, Chapter 2, Theorem 19].

Put a,- = Xi/yi (1 ^ i ^ n). It follows that

+ XiY/n G"(x + y)

and again (2.1) holds, establishing superadditivity.

We deduce in particular that if x ^ y then

Gn{x) ^ Gn(x -y) + Gn(y)

and so, as Gn(x — y) ^ 0, that

(2.3) Gn(x) > Gn(y),

which establishes monotonicity. U

In fact equality holds in (2.2) only if a\ = ... = an, so that if x and y are
strictly positive vectors then strict inequality holds in (2.1) and (2.3) unless a:,- = j/,-

We now show that these results hold when Gn(-) is replaced by Gn(p, •).
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THEOREM 2 . 2 . Let n ^ 2 be a natural number and p G R" with Pn>0. Then

the mapping Gn(p, •) is superadditive and monotone n on decreasing on R " .

PROOF: AS in the previous theorem, it is enough to treat the case in which n, yt

are strictly positive for all i G { 1 , . . . , n } . Consider the mapping / : R —• (0, oo) given
by f{x) = l n ( l + e1) . We have

which shows that the mapping / is convex on R.

Jensen's inequality

provides

L i = l J N ~ " i=l

With the choice a.i = ln(x,/j/i), 1 $J i ^ n, this yields

which gives us

Gn(p,y) ' Gn(p,y)

The remainder of the proof proceeds as before. D

By way of corollary, the standard condition for equality to apply in Jensen's in-
equality again tells us that if x and y are strictly positive vectors, then strict inequality
holds in both (2.1) and (2.3) (for x ^ y) unless x,- = y; (1 < i ^ n).

We shall now use the superadditivity of geometric means together with the addi-
tivity of arithmetic means to derive a further result. We define the mapping

Vn(p,x) := (G
A

n\P'X\) " P' for p,x > 0 and An(p,x) > 0.

Here and subsequently it will be helpful to invoke the auxihary quantity
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THEOREM 2 . 3 . Let p e R" with Pn > 0 and n ^ 2. Tien 7/n(p,) is super-
multiplicative on R™.

PROOF: By the superadditivity of the geometric mean and the additivity of the
arithmetic mean, we have for An(p,x) > 0, An(p,y) > 0 that

> Gn{p,x)+Gn(P,y)
> A n M + An{p>y)

_ An(p,x)Ln(p,x) + An(p,y)Ln(p,y)

Thus

or

which establishes the desired result. U

REMARK 2.4. Define the mapping rjn{p,•) by rjn(p,x) = [ ^ (p , ! ) ] " 1 . Then rjn(p,x) ^
1 and Tjn(p, •) is submultiplicative.

We can introduce also a mapping fin{p, •) by

where Pn ^ 0 and Xi > 0 for 1 ̂  t ^ n .

THEOREM 2 . 4 . Let p e M" witi P n > 0 and n > 2. Tiien the mapping fin{p, •)

is subadditive and positive homogeneous.

PROOF: Let x,y £ R™ with xiyyi ^ 0 for all i £ { 1 , . . . , n } . We have, by the

superadditivity of the mapping Gn(p,-) and the additivity of An(p, •), that

K ( p , x + y)]2 (An(p, x) + AB(p, y))2

(i4n(p,z)

We now apply the arithmetico-harmonic mean inequality
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which it is convenient to recast as

For a = An(p,x), /? = An(p,y), a = 1/Ln(p,x) and 6 = 1/Ln(p,y) this gives

(An(p,x) + An(p,y))2 ^^ An(p,x) An(p,y)
An(p,x)Ln(p,x) + An(p,y)Ln(p,y) ^ Ln(p,x) Ln(p,y)'

that is,

Pn(p,X +y) ^ PniP,*) +Atn(p,2/),

providing subadditivity. The condition fin(p,ax) = a.(j,n(p, x) for positive homogeneity
is immediate. D

3. SOME MAPPINGS OF A REAL VARIABLE

In this section we introduce a real variable as a parameter to continue the ideas of
the previous two theorems. First we define a mapping r\ of a real variable by

Gn{p,x + ie)An(p, e) 1 A^'x+t^ ^ \Ln{p,x + te) j *"(»••+*«>

^n(P>x + <e)Gn(p,e)J [ Ln(p,e) \

for e a fixed positive n-vector and 2 ̂  0.

The following theorem encapsulates its main properties.

THEOREM 3 . 1 . The mapping r\ is monotonic nondecreasing and logarithmically

concave. Further, it satisfies the estimate

[LJp x)~\AniPtX) x\
(3.1) \ r f ' ( ^v{t) ^exP[An{p,e)An (p, -J - An(p,x)\

for all t G [0,oo), where as in Bullen, Mitrinovic and Fink [1] we define x/e :=

{x\/e\,... ,xn/en).

PROOF: Suppose that <2 > ' i ^ 0. The positive homogeneity of An(p, •) and

Gn(p, •) induces the affine property

Ln{p,av) = Ln(p,v)

for a > 0, so that

Ln(p, (<2 — <i)e) = Ln(p, e) for t2 > t\ •
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Hence

= Ln(p,x +

> Ln(p,x +

x

and the monotonicity of r) is thus proved.

Now let a,/3 ^ 0 with a + /? = 1 and t\,t2 G [0,oo). Then we have similarly

= Ln(p,a(x + t,e) + 0(x

x L (p e )~ a A "^ p

^ Ln(p,a(x > 1 (

x £

J

Thus the mapping 77 is logarithmically concave.

The first inequality in (3.1) follows from the fact that 77 is monotonic nondecreasing

on [0,oo) and 1,(0) = [Ln(p,x)/Ln(p,e)}AnM.

To prove the second, define the mapping

ma).=^;
Ln(p,

We have easily that

and

t—>oo t

Thus Ln(p,x + te) —* Ln(p,e) as t —* 00 and so lim m(<) = 0. Consequently we have
t—>oo

that

lim r;(0 = Urn 1(1 + m(t))1/m{t) \ = exp Urn (m(t)An(p, x + te))].

https://doi.org/10.1017/S0004972700033967 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033967


306 S.S. Dragomir, D. Comanescu and C.E.M. Pearce [8]

Further,

lim [m(t)An(p,x+te))= lim
t—»oo t—»oo

,.
= lim

t—»oo n(P) J

Gn(p,ux + e)An(p,e) - An(p,ux + e)Gn(p,e)

uGn(p,e)

Consider the mapping

r n l l /Pn [ 1 ™ 1
/I(M) := Gn(p,ux + e) = JJ(ua: i + e,)Pl = exp — £ ) p , l n { u x { + e;) , u ^ 0.

Li=l J L-̂ n .= 1 J

We have for u ^ 0 that

du

C 2
P)

ux •

Using L'Hopital's rule, we get

Gn(p, ux + e)An(p, e) - An(p, ux + e)Gn(p, e)

A U^M

An(p,e)-r- (Gn(p,ux + e)) - Gn(p,e)—(An(p,ux + e))

—o+ Gn(p,e)

_ Gn(p, e)An(p, e)An (p, f) - Gn(p, e)An(p, x)

= A{p,e)An (P » ̂ ) ~ An(p,x).

Finally, we get the limit

hm rj(t) = exp \An(p,e)An (p, - ) - ^n(p,x) | .

Since r\ is monotonic nondecreasing, we have the desired inequality and the proof is
finished. D

Now, we introduce another mapping of a real variable

n{p,e) _ fin(p,x + et)

PeW ~ M ( p e ) ' " '

where p, x,e are as above.
The main properties of this mapping are embodied in the following theorem.
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THEOREM 3 . 2 . With the above assumptions

(i) the mapping fi is convex on [0,oo);
(ii) the mapping (i—TL is monotonic nonin creasing on [0, oo), where 1(<) = t,

teR;
(iii) we have the estimate

2-4n(p,z) - An (p, - ) An(p,e)
(3.2)

n{p,x)[An(p, t + A ( /An(p,e)

for all te [0, oo) .

PROOF: (i) Let a,/3 ^ 0 with a + / 3 = 1 and tx,t2 E [0,oo). Then we have

afin(p, x + tie) + P/in{p, x + t2e)

which proves that fi is convex on [0, oo).

(ii) Now let t2 > h ^ 0. Then

, x + <! e) + (t2 - tt )fin(p, x)
fin(p,x)

which gives us

M(*2)-*2 < M ( < I ) - * I for all t2 ><i ^ 0

and the monotonicity of the mapping fi — 1 is proved.
(iii) The first inequality in (3.2) follows to the fact that fi — 1 is monotonic non-

increasing and
[An(P,x)}*Gn(p,e)

Gn(p,x)[An{P,eW '

For the second, we proceed as follows.
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For all t > 0 we have
M ' ? , x + te)}2Gn(p, e) - tGn(p, x + te)[An(p, e)]2

Gn(p,x + te)[^n(p,e)]2

+ te))2Gn{p, e) - Gn(p, x + te)[An(p, t)}2

As in Theorem 3.1, we have

Gn(p,x + te)
um = Gn(p,e).

t—^oo I

Let us compute the limit

/ = lim { \ [An(p, x + te)]2Gn{p, e) - Gn{p, x + te)[An{p, e)]2 }.

ia! + i e)]2Gn(p,e) - Gn(p,x + ± e)[^n(p,e)]2J

We have

- [An(p,ux + e)}2Gn{p,e) - - Gn(p,ux + e)[An(p

= H m [An(p,ux + e)]2Gn(p,e) - Gn(p,ux + e)[An(p,e)]2

u—>0+ U

Also we have

— [yin(p,ua + e)]2 = 2An{p,ux + e)An(p,x)
au

and as in Theorem 3.1

— [Gn(p,ux + e)] = Gn(p,ux + e)An(p , — ^ —
au \ ux + e

Applying L'Hopital's rule we get

/ = lim \2An{p,ux + e)An{p,x)Gn{p,e)-Gn(p,ux + e)An(p, * Wn(p,e)]2l
Ti—»o+ L \ ux + e/ J

= 2 ^ n ( p , e)An{p,x)Gn{p,e) - Gn(p,e)An(p , ^)[An(p,e)}2

= ^n(p,e)Gn(p,e) [2An{p,x) -An(p, ^ ) An(p,e)]

and thus

n(p,x) - An (p, J
lim [fi(t) -t} = -, . »r . / M,
t-oo1^^ ' Gn(p,e)[ATl(p,e)]2

2An(p,x) - An (p, -j An(p,e)

An(p, e)

As the mapping /t — 1 is monotonic nondecreasing we get the second part of (3.2)

and the proof is finished. U
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