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Abstract

This article describes an unsupervised language model (LM) adaptation approach that can be used to
enhance the performance of language identification methods. The approach is applied to a current version
of the HeLI language identification method, which is now called HeLI 2.0. We describe the HeLlI 2.0
method in detail. The resulting system is evaluated using the datasets from the German dialect identifi-
cation and Indo-Aryan language identification shared tasks of the VarDial workshops 2017 and 2018. The
new approach with LM adaptation provides considerably higher F1-scores than the basic HeLI or HeLl
2.0 methods or the other systems which participated in the shared tasks. The results indicate that unsu-
pervised LM adaptation should be considered as an option in all language identification tasks, especially
in those where encountering out-of-domain data is likely.
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1. Introduction

Automatic language identification of text has been researched since the 1960s. It has been con-
sidered a subspecies of general text categorization and most of the methods used are similar to
those used in categorizing text according to their topic. However, deep learning techniques have
not proven to be as efficient in language identification as they have been in other categorization
tasks (Medvedeva, Kroon, and Plank 2017; Ali 2018).

For the past 6 years, we have been developing a language identifying method, which we call
HelLlI, for the Finno-Ugric languages and the Internet project (Jauhiainen, Jauhiainen, and Lindén
2015a). The HeLI method is a supervised general-purpose language identification method relying
on observations of word and character n-gram frequencies from a language labeled corpus. The
method is similar to naive Bayes (NB) when using only relative frequencies of words as probabil-
ities. Unlike NB, it uses a back-off scheme to approximate the probabilities of individual words
if the words themselves are not found in the language models (LMs). As LMs, we use word uni-
grams and character level n-grams. The optimal combination of the LMs used with the back-off
scheme depends on the situation and is determined empirically using a development set. The latest
evolution of the HeLI method, HeLI 2.0, is described in this article.

One of the remaining difficult cases in language identification is the identification of lan-
guage varieties or dialects. The task of language identification is less difficult if the set of possible
languages does not include very similar languages. If we try to discriminate between very close lan-
guages or dialects, the task becomes increasingly more difficult (Tiedemann and Ljubesic 2012).
The first ones to experiment with language identification for close languages were Sibun and
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Reynar (1996) who had Croatian, Serbian, and Slovak as part of their language repertoire. The
differences between definitions of dialects and languages are not usually clearly defined, at least
not in terms which would be able to help us automatically decide whether we are dealing with
languages or dialects. Furthermore, the methods used for dialect identification are most of the
time exactly the same as for general language identification. During the last 5 years, the state-
of-the-art language identification methods have been put to the test in a series of shared tasks
as part of VarDial workshops (Zampieri et al. 2014; Zampieri et al. 2015; Malmasi et al. 2016;
Zampieri et al. 2017; Zampieri et al. 2018). We have used the HeLI method and its variations in
the shared tasks of the four latest VarDial workshops (Jauhiainen, Jauhiainen, and Lindén 2015b;
Jauhiainen, Lindén, and Jauhiainen 2016; 2017a; Jauhiainen, Jauhiainen, and Lindén 2018a; 2018b;
2018c¢). The HeLI method has proven to be robust and it competes well with other state-of-the-art
language identification methods.

Another remaining difficult case in language identification is the situation when the training
data are not in the same domain as the data to be identified. Being out-of-domain can mean several
things. For example, the training data can be from a different genre, different time period, and/or
produced by different writers than the data to be identified. The identification accuracies are con-
siderably lower on out-of-domain data (Li, Baldwin, and Cohn 2018) depending on the degree
of out-of-domainness. The extreme example of in-domainness is when the training data and test
data are from different parts of the same text, as it has been in several language identification
experiments in the past (Vatanen, Vdyrynen, and Virpioja 2010; Brown 2012; Brown 2013; Brown
2014). Classifiers can be more or less sensitive to the domain differences between the training and
the testing data depending on the machine learning methods used (Blodgett, Wei, and O’Connor
2017). One way to diminish the effects of the phenomena is to create domain-general LMs using
adversarial supervision which reduces the amount of domain-specific information in the LMs (Li
et al. 2018). We suggest that another way to do this is to use active LM adaptation.

In LM adaptation, we use the unlabeled mystery text itself to enhance the LMs used by a
language identifier. The LM adaptation scheme introduced in this article is not an off-line adap-
tation technique used to adapt an existing identifier to a particular domain; it is a general on-line
adaptation technique that is used each time the language of a new text is to be identified. The lan-
guage identification method used in combination with the LM adaptation approach presented
in this article must be able to produce a confidence score of how well the identification has
performed. As the LMs are updated regularly while the identification is ongoing, the approach
also benefits from the language identification method being non-discriminative. If the method
is non-discriminative, all the training materials do not have to be reprocessed when adding new
information into the LMs. To the best of our knowledge, LM adaptation has not been used in
language identification of digital text before the first versions of the method presented in this arti-
cle were used in the shared tasks of the 2018 VarDial workshop (Jauhiainen et al. 2018a; 2018b;
2018c). Concurrently with our current work, Ionescu and Butnaru (2018) presented an adaptive
version of the Kernel Ridge Classifier which they evaluated on the Arabic Dialect Identification
(ADI) dataset from the 2017 VarDial workshop (Zampieri et al. 2017).

In this article, we first review the previous work relating to German dialect identification, Indo-
Aryan language identification, and LM adaptation (Section 2). We then present the methods used
in the article: the HeLI 2.0 method for language identification, three confidence estimation meth-
ods, and the algorithm for LM adaptation (Section 3). In Section 4, we introduce the datasets used
for evaluating the methods, and in Section 5, we evaluate the methods and present the results of
the experiments.

2. Related work

The first automatic language identifier for digital text was described by Mustonen (1965). Since
this first article, hundreds of conference and journal articles describing language identification
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experiments and methods have been published. For a recent survey on language identification
and the methods used in the literature, see Jauhiainen et al. (2018d). The HeLI method was first
published in 2010 as part of a master’s thesis (Jauhiainen 2010) and has since been used, outside
the VarDial workshops, for language set identification (Jauhiainen, Lindén, and Jauhiainen 2015¢)
as well as general language identification with a large number of languages (Jauhiainen, Lindén,
and Jauhiainen 2017b). One of the main strengths of the HeLI method is that it uses the word-
level models and is still able to graciously deal with any possible out of vocabulary words that it
encounters.

2.1 German dialect identification

German dialect identification has earlier been considered by Scherrer and Rambow (2010), who
used a lexicon of dialectal words. Hollenstein and Aepli (2015) experimented with a perplexity-
based language identifier using character trigrams. They reached an average F-score of 0.66 on
sentence level distinguishing between 5 German dialects.

The results of the first shared task on German dialect identification (GDI) are described by
Zampieri et al. (2017). Ten teams submitted results on the task utilizing a variety of machine learn-
ing methods used for language identification. The team MAZA (Malmasi and Zampieri 2017)
experimented with different types of support vector machine (SVM) ensembles: plurality vot-
ing, mean probability, and meta-classifier. The meta-classifier ensemble using the Random Forest
algorithm for classification obtained the best results. The team CECL (Bestgen 2017) used SVMs
as well, and their best results were obtained using an additional procedure to equalize the number
of sentences assigned to each category. Team CLUZH experimented with NB, conditional random
fields (CRF), as well as a majority voting ensemble consisting of NB, CRF, and SVM (Clematide
and Makarov 2017). Their best results were reached using CRF. Team qcri_mit used an ensemble
of two SVMs and a stochastic gradient classifier (SGD). Team unibuckernel experimented with
different kernels using kernel ridge regression (KRR) and kernel discriminant analysis (KDA)
(Ionescu and Butnaru 2017). They obtained their best results using KRR based on the sum of three
kernels. Team tubasfs (Coltekin and Rama 2017) used SVMs with features weighted using sublin-
ear TF-IDF (product of term frequency and inverse document frequency) scaling. Team ahagst
used cross entropy (CE) with character and word n-grams (Hanani, Qaroush, and Taylor 2017).
Team Citius_Ixa_Imaxin used perplexity with different features (Gamallo, Pichel, and Alegria
2017). Team XAC_Bayesline used NB (Barbaresi 2017) and team deepCybErNet Long Short-Term
Memory (LSTM) neural networks. We report the Fl-scores obtained by the teams in Table 8
together with the results presented in this article.

The second shared task on German dialect identification was organized as part of the 2018
VarDial workshop (Zampieri et al. 2018). We participated in the shared task with an earlier ver-
sion of the method described in this article and our submission using the LM adaptation scheme
reached a clear first place (Jauhiainen ef al. 2018a). Seven other teams submitted results on the
shared task. Teams Twist Bytes (Benites et al. 2018), Tiibingen-Oslo (Coltekin, Rama, and Blaschke
2018), and GDI_classification (Ciobanu, Malmasi, and Dinu 2018a) used SVMs. The team safina
used convolutional neural networks (CNN) with direct one-hot encoded vectors, with an embed-
ding layer, as well as with a Gated Recurrent Unit (GRU) layer (Ali 2018). The team LaMa used a
voting ensemble of eight classifiers. The best results for the team XAC were achieved using NB, but
they experimented with Ridge regression and SGD classifiers as well (Barbaresi 2018). The team
dkosmajac used normalized Euclidean distance. After the shared task, the team Twist Bytes was
able to slightly improve their F1-score by using a higher number of features (Benites et al. 2018).
However, the exact number of included features was not determined using the development set,
but it was the optimal number for the test set. Using the full set of features resulted again in a
lower score. We report the F1-scores obtained by the teams in Table 11 together with the results
obtained in this article.
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2.2 Language identification for Devanagari script

Language identification research in distinguishing between languages using the Devanagari script
is much more uncommon than for the Latin script. However, some research was done already
before the Indo-Aryan Language Identification shared task (ILI) at VarDial 2018 (Zampieri
et al. 2018). Kruengkrai et al. (2006) presented results from language identification experiments
between ten Indian languages, including four languages written in Devanagari: Sanskrit, Marathi,
Magahi, and Hindi. For the ten Indian languages they obtained over 90% accuracy with 70-byte
long mystery text sequences. As language identification method, they used SVMs with string ker-
nels. Murthy and Kumar (2006) compared the use of LMs based on bytes with models based on
aksharas. Aksharas are the syllables or orthographic units of the Brahmi scripts (Vaid and Gupta
2002). After evaluating the language identification between different pairs of languages, they con-
cluded that the akshara-based models perform better than byte-based. They used multiple linear
regression as the classification method.

Sreejith, Indu, and Reghu Raj (2013) tested language identification with Markovian character
and word n-grams from one to three with Hindi and Sanskrit. A character bigram-based language
identifier fared the best and managed to gain an accuracy of 99.75% for sentence-sized mystery
texts. Indhuja et al. (2014) continued the work of Sreejith et al. (2013) investigating the language
identification between Hindi, Sanskrit, Marathi, Nepali, and Bhojpuri. In a similar fashion, they
evaluated the use of Markovian character and word n-grams from one to three. For this set of
languages, word unigrams performed the best, obtaining 88% accuracy with the sentence-sized
mystery texts.

Bergsma et al. (2012) collected tweets in three languages written with the Devanagari script:
Hindi, Marathi, and Nepali. They managed to identify the language of the tweets with 96.2% accu-
racy using a logistic regression (LR) classifier (Hosmer, Lemeshow, and Sturdivant 2013) with up
to 4-grams of characters. Using an additional training corpus, they reached 97.9% accuracy with
the A-variant of prediction by partial matching. Later, Pla and Hurtado (2017) experimented with
the corpus of Bergsma et al. (2012). Their approach using words weighted with TF-IDF and SVMs
reached 97.7% accuracy on the tweets when using only the provided tweet training corpus. Hasimu
and Silamu (2018) included the same three languages in their test setting. They used a two-stage
language identification system where the languages were first identified as a group using Unicode
code ranges. In the second stage, the languages written with the Devanagari script were individ-
ually identified using SVMs with character bigrams. Their tests resulted in an F1-score of 0.993
within the group of languages using Devanagari with 700 best distinguishing bigrams. Indhuja
et al. (2014) provided test results for several different combinations of the five languages, and for
the set of languages used by Hasimu and Silamu (2018), they reached 96% accuracy with word
unigrams.

Rani et al. (2018) described a language identification system which they used for discrimi-
nating between Hindi and Magahi. Their language identifier using lexicons and suffixes of three
characters obtained an accuracy of 86.34%. Kumar et al. (2018) provided an overview of experi-
ments on an earlier version of the dataset used in the ILI shared task including five closely related
Indo-Aryan languages: Awadhi, Bhojpuri, Braj, Hindi, and Magahi. They managed to obtain an
accuracy of 96.48% and a macro F1-score of 0.96 on the sentence level. For sentence level language
identification, these results are quite good and as such they indicate that the languages, at least in
their written form as evidenced by the corpus, are not as closely related as for example the Balkan
languages: Croatian, Serbian, and Bosnian.

The results of the first shared task on Indo-Aryan language identification are described by
Zampieri et al. (2018). Eight teams submitted results on the task. Like in the second edition of the
GDI shared task, we participated with an earlier version of the method described in this article.
Again, our submission using a LM adaptation scheme reached a clear first place (Jauhiainen et al.
2018c¢). Seven other teams submitted results on the shared task. The team with the second-best
results, Tiibingen-Oslo, submitted their best results using SVMs (Coltekin et al. 2018). In addition
to the SVMs, they experimented with Recurrent Neural Networks (RNN) with GRUs and LSTMs,
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but their RNNs never achieved results comparable to the SVMs. The team ILIdentification used
an SVM ensemble (Ciobanu et al. 2018b). The best results for the team XAC were achieved using
Ridge regression (Barbaresi 2018) in addition to which they experimented with NB and SGD clas-
sifiers. The team safina used CNNs with direct one-hot encoded vectors, with an embedding layer,
as well as with a GRU layer (Ali 2018b). The team dkosmajac used normalized Euclidean distance.
The team we_are_indian used word-level LSTM RNNs in their best submission and statistical
n-gram approach with mutual information in their second submission (Gupta et al. 2018). The
team LaMa used NB. We report the F1-scores obtained by the teams in Table 14 together with the
results presented in this article.

2.3 LM adaptation

Even though LM adaptation has not been used in language identification of text in the past, it has
been used in other areas of natural language processing. Jelinek et al. (1991) used a dynamic LM
and Bacchiani and Roark (2003) used self-adaptation on a test set in speech recognition. Bacchiani
and Roark (2003) experimented with iterative adaptation on their LMs and noticed that one iter-
ation made the results better but that subsequent iterations made them worse. Zlatkova et al.
(2018) used a LR classifier in the Style Change Detection shared task (Kestemont et al. 2018).
Their winning system fitted their TF-IDF features on the testing data in addition to the training
data.

LM adaptation was used by Chen and Liu (2005) for identifying the language of speech. In
the system built by them, the speech is first run through Hidden Markov Model-based phone
recognizers (one for each language) which tokenize the speech into sequences of phones. The
probabilities of those sequences are calculated using corresponding LMs and the most probable
language is selected. An adaptation routine is then used so that each of the phonetic transcriptions
of the individual speech utterances is used to calculate probabilities for words ¢, given a word
n-gram history of h as in Equation (1).

Pa(tlh) = APo(t|h) + (1 — A)Py(t|h) (1)

where P, is the original probability calculated from the training material, P, the probability calcu-
lated from the data being identified, and P, the new adapted probability. A is the weight given to
original probabilities. This adaptation method resulted in decreasing the error rate in three-way
identification between Chinese, English, and Russian by 2.88% and 3.84% on an out-of-domain
(different channels) data and by 0.44% on in-domain (same channel) data.

Later, also Zhong et al. (2007) used LM adaptation in language identification of speech. They
evaluated three different confidence measures and the best faring measure C is defined as follows:

Clgi M) = %{ log (P(Mg:)) — log (P(Mg))] 2)

where M is the sequence to be identified, n the number of frames in the utterance, g; the best iden-
tified language, and g; the second-best identified language. The two other evaluated confidence
measures were clearly inferior. Although the C(g;, M) measure performed the best of the indi-
vidual measures, a Bayesian classifier-based ensemble using all the three measures gave slightly
higher results. Zhong et al. (2007) used the same language adaptation method as Chen and Liu
(2005), using the confidence measures to set the X for each utterance.

We used an earlier version of the LM adaptation technique presented in this article in three of
the 2018 VarDial workshop shared tasks (Jauhiainen ef al. 2018a; 2018b; 2018¢).

The adaptive language identification method presented by Ionescu and Butnaru (2018)
improved the accuracy from 76.27% to 78.35% on the ADI dataset. In their method, they retrain
the LMs once by adding 1000 of the best identified (sorted by the confidence scores produced by
their language identification method) unlabeled test samples to the training data.
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3. The methods

In this section, we present the detailed descriptions of the methods used in the experiments. First,
we describe HeLlI 2.0, the language identification method used. Then we present the confidence
measures we consider in this article. We conclude this section by describing the LM adaptation
method used.

3.1 Language identification

We use the HeLI method (Jauhiainen et al. 2016) for language identification. The HeLI method
has been rivalling SVMs already before the LM adaptation was added, reaching a shared first place
in the 2016 Discriminating Similar Languages (DSL) shared task (Malmasi et al. 2016). The HeLI
method is mostly non-discriminative,® and it is relatively quick to incorporate new material into
the LMs of the language identifier. We have made a modification to the method where the original
penalty value is replaced with a smoothing value that is calculated from the sizes of the LMs. This
modification is needed especially for such cases where the LMs grow considerably because of LM
adaptation, as the original penalty value was depending on the sizes of the training corpus during
the development phase. The penalty modifier p,,,4 is introduced to penalize those languages where
features encountered during the identification are absent. The p,,,,4 parameter is optimized using
the development corpus and in the experiments presented in this article, the optimal value varies
between 1.09 and 1.16. The complete formula for the HeLI 2.0 method is presented here, and we
provide the modified equations for the values used in the LMs in a similar notation as that used
by Jauhiainen et al. (2016).

The method aims to determine the language ¢ € G in which the mystery text M has been
written, when all languages in the set G are known to the language identifier. Each language is
represented by several different LMs only one of which is used for every word ¢ found in the mys-
tery text. The LMs for each language are one or more models® based on words and/or one or more
models based on character n-grams from #1i, to #1,,4x. The mystery text is processed one word at
a time. The word-based models are used first and if an unknown word is encountered in the mys-
tery text, the method backs off to using the character n-grams of the size n,,4x. If it is not possible
to apply the character n-grams of the size 4y, the method backs off to lower order character
n-grams and, if needed, continues backing off until character n-grams of the size 1.

Creating the LMs: The training data can be preprocessed in different ways to produce different
types of LMs. The most usual way is to lowercase the text and tokenize it into words using non-
alphabetic and non-ideographic characters as delimiters. It is possible to generate several LMs for
words using different preprocessing schemes, and then use the development material to determine
which models and in which back-off order are usable for the current task.

The relative frequencies of the words are calculated. Also, the relative frequencies of character
n-grams from 1 to n,,,, are calculated inside the words, so that the preceding and the follow-
ing space-characters are included.® The character n-grams are overlapping, so that for example a
word with three characters includes three character trigrams. Word n-grams were not used in the
experiments of this article, so all subsequent references to n-grams in this article refer to n-grams
of characters. After calculating the relative frequencies, we transform those relative frequencies
into scores using 10-based logarithms.

The corpus containing only the word tokens in the LMs is called C. A corpus C in language g
is denoted by Cy. dom(O(C)) is the set of all words found in the models of any of the languages

2Setting any of the parameters using a development corpus is dependent on the other languages present, and thus the
system learns to discriminate between them.

There can be several models for words, depending on the preprocessing scheme.
©A space character is added to the beginning and the end of each word even if it was not there originally.
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g € G. For each word t € dom(O(C)), the values vcg(t) for each language g are calculated, as in
Equation (3).

—log,, (%), if c(Cy, ) >0 .

ve, () =
~10g,g (7= )Pmods e(Cert) =0

where ¢(Cy, t) is the number of words £ and Ic, is the total number of all words in language g. The
parameter p,,,4 is the penalty modifier which is determined empirically using the development
set.

The corpus containing the n-grams of the size n in the LMs is called C". The domain
dom(O(C")) is the set of all character n-grams of length n found in the models of any of the
languages g € G. The values ver (u) are calculated in the same way for all n-grams u € dom(O(C"))
for each language g, as shown in Equation (4).

cr,
—logy, (%) if o(Cl 1) > 0

a @)
- 10810 (Q)Pmod’ if c(Cl,u)=0

vep(u) =

where ¢(Cy, u) is the number of n-grams u found in the corpus of the language g and lcg; is the
total number of the n-grams of length 7 in the corpus of language g. These values are used when
scoring the words while identifying the language of a text.

Scoring the text: The mystery text M is tokenized into words using the same tokenization
scheme as when creating the LMs. The words are lowercased when lowercased models are being
used. After this, a score vg(t) is calculated for each word ¢ in the mystery text for each language
g If the word ¢ is found in the set of words dom(O(Cy)), the corresponding value ve, (1) for each
language g is assigned as the score v,(t), as shown in Equation 5.

vcg(t), if t € dom(O(Cy))

5
ve(t, min(npmax, It +2)),  if t ¢ dom(O(Cy)) ©)

ve(t) =

If a word t is not found in the set of words dom(O(Cg)) and the length of the word [; is at least
Nmax — 2, the language identifier backs off to using character n-grams of the length 7,,,4,. In case
the word ¢ is shorter than n,,,, — 2 characters, n = [; + 2.

When using n-grams, the word ¢ is split into overlapping n-grams of characters u!, where i =
1, ..., I — n, of the length n. Each of the n-grams u] is then scored separately for each language g
in the same way as the words.

If the n-gram ' is found in dom(O(Cg)), the values in the models are used. If the n-gram u' is
not found in any of the models, it is simply discarded. We define the function dg (¢, n) for counting
n-grams in ¢ found in a model in Equation 6.

l[*?l

1, ifu’ € dom(O(C™"))
dy(t,n) = '
¢ ; 0, otherwise

(6)

When all the n-grams of the size n in the word t have been processed, the word gets the value
of the average of the scored n-grams u} for each language, as in Equation (7).

Ii— .
m Zi;ln ch(u?), if dg(t,n) >0

ve(t,n—1), otherwise,

(7)

Vg(t, n)=
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where d,(t, n) is the number of n-grams u}’ found in the domain dom(O(Cg,‘)). If all of the n-grams
of the size n were discarded, dg(#, n) = 0, the language identifier backs off to using n-grams of the
sizen — 1.

The whole mystery text M gets the score Ry(M) equal to the average of the scores of the words
vg(t) for each language g, as in Equation (8).

Irau
Ziz(l) ve(t)

Rg(M) = Iron

(8)
where T(M) is the sequence of words and Iy is the number of words in the mystery text M.
Since we are using negative logarithms of probabilities, the language having the lowest score is
returned as the language with the maximum probability for the mystery text.

3.2 Confidence estimation

In order to be able to select the best candidate for LM adaptation, the language identifier needs
to provide a confidence score for the identified language. We evaluated three different confidence
measures that seemed applicable to the HeLI 2.0 method.

In the first measure, we estimate the confidence of the identification as the difference between
the scores R(M) of the best and the second best identified language. Zhong et al. (2007) call this
confidence score CMps, and in our case it is calculated using the following equation:

CMps(M) = Ry(M) — Re(M) )

where g is the best scoring language and h the second best scoring language.

The second confidence measure, CMyg, was presented by Chen and Liu (2005). In CMuyg,
we calculate the difference between the score for the best identified language and the average of
the scores of the rest of the languages. CMay¢ adapted to our situation is calculated as follows:

lg
1
CMavg(M) = —— ) Ri(M) = Ry(M) (10)
G j=niAg
The third measure, CMppsr, presented by Zhong et al. (2007), is based on the posterior
probability. We calculated it using the following equation:

lg
CMposr(M) =log Y _ eN™ — Ry (M) (11)
j=1

3.3 LM adaptation algorithm

In the first step of our adaptation algorithm, all the mystery texts M in the mystery text collection
MC (e.g., a test set) are preliminarily identified using the HeLI 2.0 method. They are subsequently
ranked by their confidence scores CM and the preliminarily identified collection is split into k — g
parts MC;_. k is a number between 1 and the total number of mystery texts, Ipc, depending on
in how many parts we want to split the mystery text collection.d The higher k is, the longer the
identification of the whole collection will take. The number of finally identified parts is g, which
in the beginning is 0. After ranking, the part MC; includes the most confidently identified texts
and MCy_,; the least confidently identified texts.

4The only difference between the language adaptation method presented here and the earlier version of the method we
used at the shared tasks is that in the shared tasks, the k was always equal to Iyc.
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Table 1. List of the Swiss German varieties used in the
datasets distributed for the 2017 GDI shared task. The sizes of
the training and the test sets are in words

Variety (code) Training Test
Bern (BE) 28,558 7025
Basel(BS) [ 28,680 [ 7064
Lucerne (LU) 28,653 7509
ZunCh ,(ZH,) [ ,28’7,1.5,. B ,7.94,9

Words and character n-grams up to the length n,,,, are extracted from each mystery text in
MC; and added to the respective LMs. Then, all the mystery texts in the part MC; are set as finally
identified and q is increased by 1.

Then for as long as q < k, the process is repeated using the newly adapted LMs to perform a new
preliminary identification for those texts that are not yet finally identified. In the end, all features
from all of the mystery texts are included in the LM. This constitutes one epoch of adaptation.

In iterative LM adaptation, the previous algorithm is repeated from the beginning several times.

4, Test setting

We evaluate the methods presented in the previous section using three standard datasets. The first
two datasets are from the GDI shared tasks held at VarDials 2017 and 2018. The third dataset is
from the ILI shared task held at VarDial 2018.

4.1 GDI 2017 dataset

The dataset used in the GDI 2017 shared task consists of manual transcriptions of speech utter-
ances by speakers from different areas in Switzerland: Bern, Basel, Lucerne, and Zurich. The
variety of German spoken in Switzerland is considered to be a separate language (Swiss German,
gsw) by the ISO-639-3 standard (Lewis, Simons, and Fennig 2013), and these four areas corre-
spond to separate varieties of it. The transcriptions in the dataset are written entirely in lowercased
letters. Samardzic et al. (2016) describe the ArchiMob corpus, which is the source for the shared
task dataset. Zampieri et al. (2017) describe how the training and test sets were extracted from
the ArchiMob corpus for the 2017 shared task. The sizes of the training and test sets can be seen
in Table 1. The shared task was a four-way language identification task between the four German
dialects present in the training set.

4.2 GDI 2018 dataset

The dataset used in the GDI 2018 shared task was similar to the one used in GDI 2017. The sizes of
the training, the development, and the test sets can be seen in Table 2. The first track of the shared
task was a standard four-way language identification between the four German dialects present
in the training set. The GDI 2018 shared task included an additional second track dedicated to
unknown dialect detection. The unknown dialect was included neither in the training nor in the
development sets, but it was present in the test set. The test set was identical for both tracks, but the
lines containing an unknown dialect were ignored when calculating the results for the first track.

4.3 IL1 2018 dataset

The dataset used for the ILI 2018 shared task included text in five languages: Bhojpuri, Hindi,
Awadhi, Magahi, and Braj. The texts were mainly literature published over the web as well as
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Table 2. List of the Swiss German varieties used in the
datasets distributed for the 2018 GDI shared task. The sizes of
the training, the development, and the test sets are in words

Variety (code) Training  Development Test
Bern (BE) 28,558 7404 12,013
B..a.sél.(és.) B 27421 B 9544 I 9802
Lucerne (LU) 29,441 8887 11,372
.Zvur.ich.(zvl_.l) S vzs,ézdv . ,.80v99, - ,.96.10
U.n.kﬁawﬁaiél.ec.t.(x.y.).., S 8938

Table 3. List of the Indo-Aryan languages used in the datasets
distributed for the 2018 ILI shared task. The sizes of the train-
ing, the development, and the test sets are in words

Language (code) Training Development Test

Bhojpuri (BHO) 258,501 56,070 50,206
Awadhi (AWA) 123,737 19,616 22,984
Mégahi (MAG) v 234,649 v 37,809 ' 35,358
BraJ(BRA) [ 249’243 R 40’023 I 31’934

in print. As can be seen in Table 3, there was considerably less training material for the Awadhi
language than the other languages. The training corpus for Awadhi had only slightly over 9000
lines, whereas the other languages had around 15,000 lines of text for training. An earlier version
of the dataset, as well as its creation, was described by Kumar et al. (2018). The ILI 2018 shared
task was an open one, allowing the use of any additional data or means. However, we have not
used any external data, and our results would be exactly the same on a closed version of the task.

5. Experiments and results

In our experiments, we evaluate the HeLI 2.0 method, the HeLI 2.0 method using LM adaptation,
as well as the iterative version of the adaptation. We test all three methods with all of the datasets
described in the previous section. First we evaluate the confidence measures using the GDI 2017
dataset and afterwards we use the best performing confidence measure in all further experiments.

We are measuring language identification performance using the macro and the weighted F1-
scores. These are the same performance measures that were used in the GDI 2017, GDI 2018, and
ILI 2018 shared tasks (Zampieri et al. 2017; 2018). F1-score is calculated using the precision and
the recall as in Equation (12).

precision * recall
Fl-score =2 %

12
precision + recall (12)

The macro Fl-score is the average of the individual Fl-scores for the languages and the
weighted F1-score is similar but weighted by the number of instances for each language.
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Table 4. Average accuracies within the 10% portions when the
results are sorted by the confidence scores CM

% most CMgs CMave CMpost
confident (%) accuracy (%) accuracy (%) accuracy (%)
0-10 98.5 95.6 88.3
30-40 98.2 95.1 92.1
50_60 R 969 R 949 917
6,0_.70, e 960 [ 94..0, e ,91.'5, .
70-80 94.4 93.2 91.0

5.1 Evaluating the confidence measures

We evaluated the three confidence measures presented in Section 3.2 using the GDI 2017 train-
ing data. The results of the evaluation are presented in Table 4. The underlying data for the table
consists of pairs of confidence values and the corresponding Boolean values indicating whether
the identification results were correct or not. The data have been ordered according to their con-
fidence score for each of the three measures. The first column in the table tells the percentage of
examined top scores. The other columns give the average accuracy in that examined portion of
identification results for each confidence measure.

The first row tells us that in the 10% of the highest confidence identification results according to
the CMpg-measure, 98.5% of the performed identifications were correct. The two other confidence
measures on the other hand fail to arrange the identification results so that the most confident 10%
would be the most accurate 10%. As a whole, this experiment tells us that the CMpg-measure is
stable and performs well when compared with the other two.

In addition to evaluating each individual confidence measure, Zhong et al. (2007) evaluated
an ensemble combining all of the three measures, gaining somewhat better results than with the
otherwise best performing CMps-measure. However, in their experiments the two other measures
were much more stable than in ours. We decided to use only the simple and well-performing
CMps-measure with our LM adaptation algorithm in the following experiments.

5.2 Experiments on the GDI 2017 dataset

5.2.1 Baseline results and parameter estimation

As there was no separate development set provided for the GDI 2017 shared task, we divided the
training set into training and development partitions. The last 500 lines from the original training
data for each language was used for development. The development partition was then used to
find the best parameters for the HeLlI 2.0 method using the macro F1-score as the performance
measure. The macro Fl-score is equal to the weighted F1-score, which was used as a ranking
measure in the shared task, when the number of tested instances in each class are equal. On the
development set, the best macro F1-score of 0.890 was reached with the language identifier where
Nmax = 5 words being used and p,,,,y = 1.16. We then used the whole training set to train the LMs.
On the test set, the language identifier using the same parameters reached the macro F1-score of
0.659 and the weighted F1-score of 0.639.
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Table 5. The weighted F1-scores obtained by the identifier using LM adapta-
tion with different values of k when tested on the development partition of the
GDI 2017 dataset

k weighted F1-score k weighted F1-score
lor2 0.890 30, 35, 0r40 0.899

4 0.894 50 0.899
l.O.O.r.ls.. 0899 70’8090’ e
200r25 0898 I 100’150,”200 [ 0899

Table 6. Weighted F1-scores with confidence threshold for LM adaptation on
the development set

Conf. threshold Macro F1l-score Conf. threshold Macro F1-score
0.00-0.01 0.900 0.10 0.898
0.04 0.898 0.32 0.889
0060r008 [ 0899 e e

5.2.2 Experiments with LM adaptation

First, we determined the best value for the number of splits k using the development partition.
Table 5 shows the increment of the weighted F1-score with different values of k on the devel-
opment partition using the same parameters with the HeLI 2.0 method as for the baseline. The
results with k=1 are always equal to the baseline. If k is very high, the identification becomes
computationally costly as the number of identifications grows exponentially in proportion to k.
The absolute increase of the F1-score on the development partition was 0.01 when using k = 45.

5.2.3 Experiments with thresholding

We experimented with setting a confidence threshold for the inclusion of new data into the LMs.
Table 6 shows the results on the development partition. The results show that there is no confi-
dence score that could be used for thresholding, at least not with the development partition of
GDI 2017.

5.2.4 Results of the LM adaptation on the test data

Based on the evaluations using the development partition, we decided to use k =45 for the test
run. All the training data were used for the initial LM creation. The language identifier using LM
adaptation reached the macro F1-score of 0.689 and the weighted F1-score of 0.687 on the test set.
The weighted F1-score was 0.048 higher than the one obtained by the nonadaptive version and
clearly higher than the other results obtained using the GDI 2017 dataset.

5.2.5 Iterative adaptation

We tested repeating the LM adaptation algorithm for several epochs, and the results of those trials
on the development partition can be seen in Table 7. The improvement of 0.003 on the original
macro Fl-score using 13-956 epochs was still considerable. The results seem to indicate that the
LMs become very stable with repeated adaptation.
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Table 7. Macro Fl-scores with iterative LM adaptation on the development
partition

Number of epochs ~ Macro F1-score  Number of epochs ~ Macro F1-score

1 0.900 13-956 0.903
2-4 0.901 957-999 0.902
5-12 0.902

We decided to try iterative LM adaptation using 485 epochs with the test set. The tests resulted
in a weighted F1-score of 0.700, which was a further 0.013 increase on top of the score obtained
without additional iterations. We report the weighted F1-scores from the GDI 2017 shared task
together with our own results in Table 8. The methods used are listed in the first column, used
features in the second column, and the best reached weighted F1-score in the third column. The
results from this paper are bolded. The results using other methods (team names are in parenthe-
ses) are collected from the shared task report (Zampieri et al. 2017) as well as from the individual
system description articles. The 0.013 point increase obtained with the iterative LM adaptation
over the non-iterative version might seem small when compared with the overall increase over
the scores of the HeLI 2.0 method, but the increase is still more than the difference between the
first and third best submitted methods on the original shared task.

5.3 Experiments on the GDI 2018 dataset

5.3.1 Baseline results and parameter estimation

The GDI 2018 dataset included a separate development set (Table 2). We used the development set
to find the best parameters for the HeLI 2.0 method using the macro F1-score as the performance
measure. The macro F1-score of 0.659 was obtained by the HeLI 2.0 method using just character
n-grams of the size 4 with p,,,g = 1.15. The corresponding recall 66.17% was slightly higher than
the 66.10% obtained with the HeLI method used in the GDI 2018 shared task. We then used the
combined training and the development sets to train the LMs. On the test set, the language iden-
tifier using these parameters obtained a macro F1-score of 0.650. The HeLI 2.0 method reached
0.011 higher macro F1-score than the HeLI method we used in the shared task. Even without the
LM adaptation, the HeLI 2.0 method beats all the other reported methods.

5.3.2 Experiments with LM adaptation

Table 9 shows the increment of the macro F1-score with different values of k, the number of
parts the examined mystery text collection is split into, on the development set using the same
parameters with the HeLI 2.0 method as for the baseline. On the development set, k = 57 gave the
best F1-score, with the absolute increase of 0.116 over the baseline. The corresponding recall was
77.74%, which was somewhat lower than the 77.99% obtained at the shared task.

5.3.3 Results of the LM adaptation on the test set

Based on the evaluations using the development set, we decided to use k = 57 for the test run. All
the training and the development data were used for the initial LM creation. The method using
the LM adaptation algorithm reached the macro F1-score of 0.707. This macro F1-score is 0.057
higher than the one obtained by the nonadaptive version and 0.021 higher than the results we
obtained using LM adaptation in the GDI 2018 shared task. The performance improvement with
LM adaptation is partly due to the ability of the HeLI 2.0 to better handle the adapted LMs and
the optimization of the k-value.
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Table 8. The weighted F1-scores using different methods on the 2017 GDI test set.
The results from the experiments presented in this article are bolded. The system
description papers of each team, if existing, are listed in Section 2.1

Method (Team) Features used wgh. F1
Hell 2.0 + iterative LM-adapt. ch. n-grams 1-5 and words 0.700
HeL|20+LMadapt e Ch ngrams 15andwords R 0687
SVM meta-classifier ensemble (MAZA) ch. n-grams 1-6 and words 0.662
SVM,cat equa|2 (CECL) e BM25 Ch ngramSls 0661
CRF (CLUZH) e Chngrams’ .am).(e.s'.“. I 0653
NB, CRF,and SVM ensemble (CLUZH) ~ ch.n-grams, affixes.. 0653
SVM probability ensemble (MAZA) ch. n-grams 1—6 and words 0.647
SVM+SGD ensemble(qcrl_mlt) e - gramSI \ [ ,.0639”
.H.e.LI. 20 T ..Ch N gramSI sand v.vords ..0'639..
SVM cat equal 1 (CECL) BM25 ch. n-grams 1-5 0.638
KRR sum of3 kernels (unlbuckernel)v n—grams 36 0637
KDA, sum of2 kernels (unibuckernel) . N n—.gr.a.ms3—.6. - 0635
‘KDA, sum of 3 kernels (unlbuckernel)> ngrams 36 0634
SVM voting ensemble (MAZA) ch. n-grams 1-6 and words 0.627
LnearSVM (wbasts)  TRADFch.ngamsandwords 0626
o (cecl S BM25 Ch ngramSls R ..0625..
NB (CLUZH) ch n- grams 2 6 0.616
Cross Entropy (ahaqst) ” ch n grams up to 25 bytes o 0614
PerpleX|ty (Citius_Ixa Im‘a.><|n). » ‘ words o 0612
Perplexity (C|t|us_|xa_|maxm)‘ ch 5-7 and word 1- én grams‘ 0.61i
Naive Bayes (XAC_Bayesline) TF IDF 0;605
PerpleX|ty (Cltlus Ixa Ima><|n) ' . ch 7- -grams - 0577
Cross Entropy (ahaqst) Word n-grams 1H3 - 0548
LSTM NN (deepCybErNet) characters or words 0.263

Table 9. The macro Fl-scores gained with different values of k when evaluated

on the GDI 2018 development set

k Macro F1-score k Macro F1-score
1 0.659 52,54, or 55 0.774
2 0719 560r57 0776
8 0.769 60 or 64 0.775
16 e 0773. R 96 o e 0774 I
32, 40’44,0r46 R ..0774. R - orsn... [ 0775 .
48 0.775 1024, 2048, or 4658 0.774
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Table 10. Macro Fl-scores with iterative LM adaptation on the GDI 2018 develop-

ment set

Number of epochs Macro F1-score Number of epochs Macro F1-score
1 0.776 17-19 0.813

.3 ........................ 0.7.9,.2 ................ 2.1 ................ 0 51.3. e
4 0.797 22-33 0.814

5 0.800 34-54 0.815
7 0804 83_88 0815
8 0.806 89-94 0.816

11 0.809 123-129 0.815
li—lé o 0.810 - 136—4'}6 o 0.81é

.1.4 ....................... 0811 ............ 477_999 ............. 0817 vvvvv

5.3.4 Iterative adaptation

We tested repeating the LM adaptation algorithm for several epochs, and the results of those trials
on the GDI 2018 development set can be seen in Table 10. There was a clear improvement of 0.041,
at477-999 epochs, on the original macro F1-score. It would again seem that the LMs become very
stable with repeated adaptation, at least when there is no unknown language present in the data
which is the case with the development set. Good scores were obtained already at 20 iterations,
after which the results started to fluctuate up and down.

Based on the results on the development set, we decided to try two different counts of iterations:
738, which is the number of epochs in the middle of the best scores, and 20, after which the results
started to fluctuate. The tests resulted in a macro F1-score of 0.696 with 738 epochs and 0.704 with
20 epochs. As an additional experiment, we evaluated the iterative adaptation on a test set, from
which the unknown dialects had been removed and obtained an F1-score of 0.729 with 738 epochs.
From the results, it is clear that the presence of the unknown language is detrimental to repeated
LM adaptation. In Table 11, we report the macro F1-scores obtained by the teams participating
in the GDI 2018 shared task, as well as our own. The methods used are listed in the first column,
used features in the second column, and the best reached macro F1-score in the third column.

5.4 Experiments on the ILI 2018 dataset

5.4.1 Baseline results and parameter estimation

We used the development set to find the best parameters for the HeLI 2.0 method using the macro
F1-score as the measure. Using both original and lowercased character n-grams from one to six
with p,,0q = 1.09, the method obtained the macro Fl-score of 0.954. The corresponding recall
was 95.26%, which was exactly the same we obtained with the HeLI method used in the ILI 2018
shared task. We then used the combined training and the development sets to train the LMs. On
the test set, the language identifier using the above parameters obtained a macro F1-score of 0.880,
which was clearly lower than the score we obtained using the HeLI method in the shared task.
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Table 11. The macro Fl-scores using different methods on the 2018 GDI test set.
The results from the experiments presented in this article are bolded. The system
description papers of each team, if existing, are listed in Section 2.1

Method (team) Features used F1

HelLl 2.0 with LM adapt. ch. 4-grams 0.707
Heuzo WIthlter(zo)LMadapt [ Ch4grams e 0704
HelLl 2.0 with iter. (738) LM adapt. ch. 4-grams 0.696
I._Ive,L.I Wlth LM.adéF.),t.v(.SUKl.) e Ch4grams R .vov..68,6
Heuzo e Ch4grams R 0650
SVMensemble (TwistBytes)  ch.andwordn-grams17 0,646

CNN with GRU (safina) characters 0.645
SVMs (Tiibingen-Oslo) ch. n-grams 1-6, word n-grams 1-3 0.640

HeLl (SUKI) ch. 4-grams 0.639

Voting ensemble (LaMa) ch. n-grams 1-8, word n-grams 1-6 ~ 0.637
N,avi\./évB,a.yés (XAC) T TF|DF ChngramSls e 0634
Ridgeregression (XAQ)  TFDFch.ngramsl6 0630
SGD (XAC) S TFIDFChngrams 16 I 0630
CNN (safina) characters 0.645
SVM ensemble (GDI_classification)  chogams2s 0620
CNNWIthembeddmg(saflna) [ Characters S 0645
RNN with LSTM (Tuibingen-Oslo) 0.616
Euclidean distance (dkosmajac) ~ ch.ngrams 0591

Table 12. The macro F1-scores gained with different values of
k when tested on the ILI 2018 development set

k Macro F1-score k Macro F1-score
1 0.954 320r48 0.964

4,. e 0960 I 600r62 R 0964 I
8orl6 0.963

5.4.2 Experiments with LM adaptation

Table 12 shows the increment of the macro F1-score with different values of k on the development
set using the same parameters with the HeLI 2.0 method as for the baseline. On the development
set, k = 64 gave the best Fl-score, 0.964, which is an absolute increase of 0.010 on the original
F1-score. The corresponding recall was 96.29%, which was a bit better than the 96.22% obtained
in the shared task.

5.4.3 Results of the LM adaptation on the test data
Based on the evaluations using the development data, we decided to use k = 64 as the number of
splits for the actual test run. All the training and the development data were used for the initial
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Table 13. Macro F1-scores with iterative LM adaptation on the ILI 2018 devel-
opment set

Number of epochs ~ Macro F1-score  Number of epochs ~ Macro F1-score

1 0.964 2-999 0.965

Table 14. The macro F1-scores using different methods on the 2018 ILI test set. The
results presented for the first time are in bold. The system description papers of each
team, if existing, are listed in Section 2.2

Method (team) Features used F1

HelLl 2.0 with iter. LM adapt. ch. n-grams 1-6 0.958
Heuw'th Iter LMadapt (SUKI) S Ch ngramSlG e, 0958
.H.e.l._l.v;’iéh.l_.w.l. adapt(SUK|) S Chngram$16 [ 0955
HeLl 2.0 with LM adapt. ch. n-grams 1-6 0.955
$VM (vT‘Ubingevr;—Osvl;)) ' o ' ‘ch. H—gramé ‘1—6,vv‘vovrd n—éramg 1-3 ' '0.9(')'2
Rldgeregressmn (XAC) ...................... Ch ngrams26 ........... 0898
SVMensemble (ILidentification) ~ ch.ngrams24 0889
Hell (SUKI) ch. n-grams 1-6 0.887
SGD(XAC) e . Ch ngram526 [ 0883
Heu 20 e et ChngramSIG [ 0880
CNN (safina) characters 0.863
N‘B(XYA‘C)v S Chv‘.n_gvrém,s 26 [ 0854
.E.u .C“.d.e; n dlstan Ce (a I.@sﬂm.aja.c ) ..................................... 0.'8'4%
CNNWlth e.rgbea.dih.g.(s.a%iha.). [T .Chéra.c.térs..... [ 0844
LSTM RNN (we_are_indian) words 0.836
CNNWIthGRU (Safma) S Characters [ 0826
NB(LaMa) ettt 0819
RNN with GRU (Tubingen-Oslo) 0.753
Muwalmformatlon (.vvve._é,re;ivnai,avn)., SR 0744

LM creation. The identifier using the LM adaptation algorithm obtained a macro F1-score of
0.955. This macro F1-score is basically the same we obtained with LM adaptation in the ILI 2018
shared task, only some small fractions lower.

5.4.4 Iterative adaptation

We experimented repeating the LM adaptation algorithm for several epochs, and the results of
those trials on the development set can be seen in Table 13. There was a very small improvement
0f 0.001 on the original macro F1-score. The best absolute F-scores were reached at epochs 17 and
18. It would again seem that the LMs become very stable with repeated adaptation.

Based on the results on the development set, we decided to use LM adaptation with 18 iterations
on the test set. The test resulted in a macro F1-score of 0.958, which is again almost the same as in
the shared task, though this time some small fractions higher. We report the F1-scores obtained
by the different teams participating in the ILI 2018 shared task in Table 14, with the results from
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this article in bold. The methods used are listed in the first column, used features in the second
column, and the macro F1-scores in the third column.

6. Discussion

The LM adaptation scheme proved to be of great importance with all three datasets. The F1-scores
improved from 5 to 7 absolute points from the results gained by the same methods without LM
adaptation. The fundamental component for the performance improvement is the ability to learn
new information from the test set itself. As of this writing, the results from the shared tasks of
VarDial 2019 (Zampieri et al. 2019) are being prepared for publication, and several participating
teams had incorporated some sort of an LM adaptation algorithm into their systems. We used the
same LM adaptation scheme as presented in this paper with the HeLI 2.0 method as well as with
a custom NB implementation (Jauhiainen, Jauhiainen, and Lindén 2019), two teams used such a
scheme with SVMs (Benites, von Daniken, and Cieliebak 2019; Wu et al. 2019) and one learned
new information from the test set with deep neural networks (Bernier-Colborne, Goutte, and
Léger 2019). All three shared tasks® concentrating on language, dialect, or variety identification
were won using one of these systems.

The results using the HeLI 2.0 method and the improved LM adaptation are clearly better with
the GDI 2018 dataset than the ones with the original HeLI method. However, with the ILI 2018
dataset, there is no real difference in performance between the old and the new methods. This is
at least partly due to the fact that the size of the test set relative to the training set is much larger
with the GDI 2018 dataset than with the ILI 2018 dataset.

The additional performance gained using the LM adaptation on the GDI 2017 development
data (F1-score rose from 0.890 to 0.903) was much less than in the GDI 2018 development data
(F1-score rose from 0.659 to 0.817). This indicates that the training and the development data
of the GDI 2017 were already in-domain with each other as opposed to being out-of-domain
in the GDI 2018 data. Additionally, the 26% difference in Fl-scores between the development
portion (0.890) and the test set (0.659) of the GDI 2017 data obtained by the HeLI 2.0 method
is considerable. It seems to indicate that the test set contains more out-of-domain material when
compared with the partition of the training set we used for development. In order to validate this
hypothesis, we divided the test set into two parts. The second part remained to be used for testing
in four scenarios with the HeLI 2.0 method. In the scenarios we used different combinations of
data for training: the original training set, the training set augmented with the first part of test data,
the training set of which a part was replaced by the first part of the test set, and only using the first
part of the test set. The results of these experiments support our hypothesis, as can be seen in
Table 15. The domain difference between the two sets explains why iterative adaptation performs
better with the test set than with the development set. After each iteration, the relative amount of
the original training data gets smaller, as the information from the test data is repeatedly added to
the LMs.

In the GDI 2018 dataset, there is only a 1.4% difference between the macro F1-scores obtained
from the development and the test sets. This indicates that the GDI 2018 development set is in the
same way out-of-domain when compared with the training set as the actual test set is.

There is a small difference (7.8%) between the F1-scores attained using the development set and
the test set of the ILI 2018 data as well. However, such small differences can be partly due to the
fact that the parameters of the identification method have been optimized using the development
set.

Though the iterative LM adaptation is computationally costly when compared with the base-
line HeLI 2.0 method, it must be noted that the final identifications with 485 epochs on the GDI

“The three tasks were GDI, Discriminating between Mainland and Taiwan variation of Mandarin Chinese, and Cuneiform
Language Identification (Zampieri ef al. 2019).
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Table 15. The macro F1-scores for the second part of test set using
different training data combinations

Data used for the language models Macro F1
Training set 0.656
Tralnlngset+t|rst partoftestset I 0801”
Part of training set replaced with flrst part oftest set - 0.803 ”
First part of test set 0.858

Table 16. Time measurements for creating the LMs and predicting the language
for different test sets. The measurements give some indication of the computational
efficiency but can only be considered rough estimates

Procedure Time (seconds) F1

Creating LMs: character n-grams 1-8 and words, GDI 2017 4

Predlctlons Heuzo GD|2017 e 3 0639
Predictions: HeLl 2.0 + LM adapt GDI2017 - 6 o HO.6‘8>7
Predlctlons HeLI 2 0 + |terat|ve LM adapt GDI 2017 1194 0.700
Creatmg LMs charactern gramsl 8and Words GDI.2018‘ - 6 -
Predictions: HeLl 2.0, GDI 2018 - 3 - 0650
Predictions: HeLl 2.0 + LM adapt GDI 2018 12 0.707
Predlctlppé vl‘-ivevl_‘IvZ 0 + |terat|ve LM adapt GDI 2018 vvvvvvvvvv 5645 vvvvvvvvv (')‘6'9'6
Creatlng LMs charactern gramsl 8and words ILI 2.018 - 39 -
Predictions: HelLl 2.0, ILI 2018 - 7 - HO.8‘80
Predlctlons HeLI 2 0 + LM adapt ILI 2018 39 0.955
Predictions: HeLl 2.0 + iterative LM adapt I‘LI 2018 R 557 - 0958

2017 test set took only around 20 minutes using one computing core of a modern laptop. We
provide the time taken for creating the initial LMs for each dataset as well as the time taken by
different methods when calculating the predictions on the test partitions of the different datasets
in Table 16.f

The time taken by the iterative LM-adaptation is linearly related to the number of epochs used.
With the GDI 2017 dataset, one epoch took around 2.45 seconds, which is also near the difference
between the basic HeLI 2.0 method and the one with LM adaptation. The reason for one round
of LM adaptation taking so much longer (7.64 seconds) with the GDI 2018 test set is that the
number of splits used also adds linearly to the time consumed. The test sets were also considerably
different in size, and the size of the test set also linearly affects the time used. The ILI 2018 test set
had around five times more sentences than that of GDI 2017.

We are not providing an error analysis of the errors made by our system on the test sets. If we
would do so, it would make us, and any of the readers, less qualified to use these same datasets for
further development of our methods.

fThe laptop used was a MacBookPro14,3 with 2.9 GHz Intel Core i7 processor. The Java program used only one core during
the identification.
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7. Conclusions

The results indicate that unsupervised LM adaptation should be considered in all language iden-
tification tasks, especially in those where the amount of out-of-domain data is significant. If the
presence of unseen languages is to be expected, the use of LM adaptation could still be beneficial,
but special care must be taken as repeated adaptation in particular could decrease the identifica-
tion accuracy. We were delighted to see that some of the other participants of the 2019 VarDial
Evaluation Campaign (Zampieri et al. 2019) had noticed our LM adaptation scheme and used a
somewhat similar way of gathering new information from the test sets with their own systems.

8. Future work

We believe that it is possible to apply a similar adaptation scheme with other NLP problems and
especially with other classification tasks. We are looking forward to investigating these possibilities
in the future.

An experiment left for future work is to test how the amount of test data affects the final lan-
guage identification accuracy. In the experiment, we would divide the test sets into smaller parts
and evaluate how the LM adaptation technique performs in them. Our intuition suggests that the
smaller the test set, the less effective the LM adaptation will be. However, if the larger test set con-
sists of texts in several separable domains, it might actually be beneficial to divide the test set to
smaller parts.

The adaptation technique presented in this paper could, in theory, be used to annotate a large
dataset with an extremely small training set, maybe even with just one sentence. This is perhaps
the most interesting avenue for further research.
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